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Abstract−−−−Two nonlinear control algorithms for controlling nonlinear systems include the receding horizon method
and the nonlinear neural network inverse model methods. These methods have been found to be useful in dealing
with difficult-to-control nonlinear systems, especially in simulated systems. However although much simulation work
has been performed with these methods, simulation only is inadequate to guarantee that these algorithms could be
successfully implemented in real plants. For this reason, a relatively low cost and simple online experimental con-
figuration of a partially simulated continuous reactor has been devised which allows for the realistic testing of a wide
range of nonlinear estimation and control techniques i.e. receding horizon control and neural network inverse model
control methods. The results show that these methods are viable and attractive nonlinear methods for real-time ap-
plication in chemical reactor systems.
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INTRODUCTION

In practice, most systems encountered in the real world are to
some extent nonlinear and in many of the control applications,
nonlinear models are required to provide acceptable controls. In
reality modelling and identification of nonlinear system is much
more complex and difficult to obtain when compared to linear sys-
tems. This difficulty has limited the usage of nonlinear models to
regions and systems where the model obtained is reliable. How-
ever in recent years many different techniques involving nonlinear
control methodology have been proposed [Bequette, 1991]. Two
such advanced control algorithms include the nonlinear receding
horizon method, which is a model-based strategy and the other is
the neural-network inverse-model based method, which is an in-
put-output data based strategy. The receding horizon method is ba-
sically an extension of the open-loop optimal method. It incorpo-
rates plant nonlinearities, feedback and an end-point constraint
while computing a control trajectory in time. While in the neural-
network-based technique, the inverse neural network model acts
as the controller in a one-step implementation action. The inverse
model is obtained from using the input-output data of the plant or
model of the system. Details of these two techniques will be given
in later sections.

Both these techniques have been applied by other researchers
in many simulation studies [Kershenbaum, 1993; Mayne, 1995;
Hunt, 1992; Nahas, 1992] but since real plants do not behave in
exactly the same manner as their models, the real performance and
stability tests of any control strategy must include some plant-mod-
el mismatch. This can be introduced by subjecting these algo-
rithms and methods to an actual plant. In fact plant/model mis-

match and disturbances are inherently present in the real sys
These control algorithms would only be useful for industrial app
cations if proven successful in these real plants. However be
applying them in the industrial scale plants, they are norma
tested in pilot plants, which is the common, safe and econom
approach for testing new and advanced methods such as the
fact up-to-date no other applications utilising any of these two te
niques have been reported on a real reactor system, whethe
pilot-plant or an industrial plant [Hussain, 1999]. This paper p
sents an experimental investigation concerning the utilisation
these two techniques on a partially simulated pilot-plant reac
(PARSEX) system for controlling its temperature. Studies we
made for set point tracking as well as for disturbance rejection c
under plant-model mismatches, as will be reported in the next 
sections.

PILOT PLANT-PARTIALLY SIMULATED REACTOR 
SYSTEM

The PARSEX (Partially Simulated Exothermic Reactor) is a 
latively low-cost, simple on-line experimental configuration, whic
approximates an exothermic reaction taking place in a batc
continuous reactor, as can be seen in Fig. 1 [Kershenbaum, 1
This plant has been devised for testing the performance of var
nonlinear estimation and control algorithms. It basically consists
two main units: a continuous well-stirred reactor of approxim
volume of 0.1 m3 and a separate cooler section with approximat
0.7 m2 of heat transfer area. The reactor is charged with wa
which represents the liquid reactants in this PARSEX system. H
within these reactants is exchanged with the cooling medium
pumping the reactants through the external cooler via pump, 
before being recycled into the reactor again. The cooler is prov
with good circulation of cooling water by the pump, M10 and fre
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make up water from the main water supply system. The feed to
the reactor is pumped into the reactor from the feed tank through
the pump M9. This feed flow is measured by the flowmeter F1
and controlled by the control valve V1. The temperature of the re-
actor, measured by detector T14 is regulated by the cooling water
temperature, measured by detector T12. This cooling water tem-
perature is manipulated by the fresh make-up cooling water flow,
measured by flowmeter F10 and controlled by the control valve
V5. The “reaction” is simulated by solving the relevant dynamic
mass balance equations for the system. The concentration of reac-
tant in the reactor denoted by C3 is a ‘simulated’ value obtained
from solving these dynamic equations. The simulation also calcu-
lates the amount of heat liberated by the “reaction” as a function of
time. An appropriate amount of steam is then sparged into the re-
actor, which is measured by flowmeter F3 and controlled by the
control valve V3. Many exothermic reactions can be experimen-
tally simulated quite realistically in this way and the effect of this
operation is to achieve close resemblance in the pilot plant to the
real reactor with true reactions. The controllers for all these control
valves are “software-driven” by the Paragon data acqusition and

control system. The process data for the reactor can be se
Table 1. The model equations relating to the reactor can be se
the Appendix.

The information flow for the reactor/computer interaction 
shown in Fig. 2. The Paragon 550 Software (Intec Controls Cor
ration) manages the data acquisition and conventional PID co
of slave loops. At a high frequency (typically every 2 second

Fig. 1. Diagram of the PARSEX reactor.

Table 1. Physical properties and process data for the reactor

Ur=68.0 kcal/(min·m2 oC) k0=3.64*106 min−1

A r=0.7 m2 ∆H=8000.0 kcal/k·mol
Vr=0.24 m3 E/R= 6000.0oK−1

Cpr=Cpj kcal/(kg3 oC) F=0.0036 m3/min
Cpj=1.0 kcal/(kg·oC) Vj =0.012 m3

ρr=ρj kg/m3 τj=1.1 min
ρj=1000.0 kg/m3 Tcw=293.15 K (20oC)

Initial Steady State Condition

Ca(0)=5.364 kmol/m3 Tr(0)=333.15 K (60oC)
Cao=25.0 kmol/m3 Trsp=333.15 K (60oC)
Tfo=300.15 K (23oC) Tj(0)=324.15 K (51oC) Fig. 2. Information flowchart of the experimental study.
Korean J. Chem. Eng.(Vol. 17, No. 5)
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measurements of the reactor temperature, level, and flowrates are
sent to a reactor simulation programme. Although there are no real
chemical reactions occurring in the reactor, any desired reaction
processes with or without assumptions of perfect mixing, constant
temperature, etc. can be simulated by solution of the dynamic ma-
terial balance equations in real time, given the actual measure-
ments of inlet and outlet flowrates, reactor level and temperatures
and suitable rate expressions for the simulated reactions. Then, giv-
en knowledge of the heats of reaction for the simulated reactions,
the amount of heat released by reaction can be calculated and con-
verted to a desired flow rate of sparge steam which is controlled by
the steam control valve (V3). Finally, at a lower frequency (typi-
cally every 6-12 seconds), the control and estimation algorithms
being tested calculate the desired set point of the jacket tempera-
ture and/or the required cooling water flow rate and this informa-
tion is passed back to the PARSEX reactor. Clearly, the PARSEX
configuration can be used to test a wide range of control and esti-
mation algorithms and the size of the equipment can be altered to
suit individual requirements. In this work, we demonstrate the ap-
plication of receding horizon control and neural-network-inverse-
model based control on the reactor.

THEORETICAL DESCRIPTION

1. Receding Horizon Control
The idea of a Receding Horizon Control algorithm has been

known for a long time. The basic concept of the RHC control de-
sign is to compute a control trajectory for a whole horizon time
minimising a cost function of a plant subject to a dynamic plant
model incorporating plant nonlinearities, and an end point con-
straint. The initial value of control is then applied to the plant.
Some feedback is provided by measurements/estimates of state at
the next interval and repeating the calculation [Mayne and Michal-
ska, 1990; Kershenbaum et al., 1993].

As in several model-based controllers, RHC requires the meas-
urement or estimation of the states of an appropriate process mod-
el. However, in most industrial processes, the state variables are
not all measurable or not with sufficient accuracy for control pur-
poses. Furthermore measurements that are available often contain
significant amounts of random noise and systematic errors. In
these situations, online estimation techniques have been applied to
estimate the state variables. Sequential estimation techniques such
as the extended kalman filter (EKF) produce estimates of true pro-
cess values from noisy process measurement and suitable process
models. They can also be easily incorporated into the RHC tech-
nique to cater for plant/model mismatches, as demonstrated in this
work [Maybeck, 1982].

The basic concept of a receding horizon control algorithm is
that the whole future control actions of the receding horizon con-
trol (RHC) algorithm are calculated from an optimal control prob-
lem including the current measurements, cost function, model par-
ameters and constraints of states and controls. However, only the
first element of control is applied to the system. Then, states are
measured or estimated and used as initial conditions in order to re-
calculate the future controls by resolving the optimal control prob-
lem [Kwon, 1977; Biegler, 1993].

Typically, the optimal control problem can be given by a cost

function (Performance Index):

(1)

where W1 is a weighting factor, subject to a final state constra
[Tr(τf)=Trsp] and the system equations (state constraints), as ta
from the Appendix i.e.

(2)

(3)

The meanings of these symbols can be seen in the nome
ture. The model Eqs. (2) and (3) are obtained with standard
sumptions such as perfect mixing and no heat lost, which are
neccessarily valid in an experimental system. Here, standard v
tional optimal control techniques are used to calculate U(t).

Since, in most processes, the state variables required for m
based controller implementation are not all measurable or, not 
sufficient accuracy for control purposes, state estimation techniq
have been utilised as well. In addition, it is possible to include 
certain model parameters such as the heat transfer coefficien
the rate constant within the state vector and estimate these a
with the measured temperature, Tr and unmeasured concentration
Ca.

Fig. 3. illustrates the flowchart of the RHC with the EKF ap
proach. As we see from the RHC algorithm, a set of control 
tions is determined on-line based on current states. Only the
element of control is applied to the system; the control action
time k+1 is the control Tjm(1) of future controls calculated at time
k. Some feedback is obtained by measurements of state at the
interval and repeating the calculation. The inclusion of the EKF
for estimating the unmeasured state, Ca, and unknown parameters

min W1 Tr  − Tr
sp( )2

dτ
0

τf∫

dTrm

dt
---------- = 

Qr

ρrCprV r

-----------------  + 

F
V r

----- Tf − Trm( ) + 
Ur*Ar* T jm − Trm( )

ρrCprV r

------------------------------------------

dCa

dt
--------  = − R1 + 

F
V r

----- Cao − Ca( )

Fig. 3. Flowchart of the RHC with the EKF approach.
September, 2000
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the heat transfer coefficient and the rate constant, using the avail-
able measurement of Tr. Measurements and estimates are com-
pared to a set point or predicted value. As a result, the error be-
tween the measurements and set point or predicted value caused
by plant/model mismatch or disturbances can be utilised within the
RHC algorithm. The RHC algorithm, then, produces the future
controls which minimise this error based on the updated model
parameters.
2. Neural-Network Inverse-Model Based Method

A robust and stable control strategy incorporating neural net-
work is that of the nonlinear internal model control technique,
which is basically an extension of the linear IMC method [Econo-
mou, 1986]. In this method both the forward and inverse models,
as seen in Fig. 4 are used directly as elements within the feedback
loop. In this case the neural network, acting as the controller, has to
learn to supply at its output, the appropriate control parameters, u
for the desired target, ysp at its input. In this implementation u re-
presents the jacket temperature, Tjm and the y is represented by the
reactor temperature, Tm. The network inverse model is then utilised
in the control strategy by simply cascading it with the controlled
system or plant as seen in Fig. 4. In this control scheme the desired
set point, ysp acts as the desired output temperature which is fed to
the network together with the past values of inputs Tjm and outputs
Tm and Ca respectively to predict the desired current plant input i.e
current value of Tjm. The input output pattern for the inverse model
in this implementation can be seen in Fig. 5. Further to this, the
forward model placed in parallel with the plant, to cater for plant/
model mismatches and in addition the error between the plant out-
put and the neural net forward model is subtracted from the set po-
int before being fed into the inverse model. In this case the forward
model is fed with the current value of Tjm and the past values of
Tjm, Tm and Ca respectively. The forward model can also be fed
with its past outputs instead of the plant outputs, especially in cases
of noisy plant output data (as seen from the dotted line of Fig. 4).

A filter, F is introduced prior to the controller in this approach 
incorporate robustness in the feedback system (especially whe
is difficult to get exact inverse models) and also to project the e
signal into the appropriate input space of the controller.

Other variations to this approach such as adding delay elem
instead of the forward model (called dual neural net controlle
direct network controller) and having a backup neural net in pa
lel with the neural net controller for online training and control 
finement have also been discussed in the literature [Psicho
1991; Pao, 1992; Hunt, 1992]. In many of the cases, presente
the literature using this approach, the necessary control signa
is computed by numerically inverting the neural network forwa
model at each interval by Newton’s method or substitution me
ods based on the contraction mapping theorem. The first deriva
with respect to the control input can be computed in these t
niques by the usual bakpropagation method. These numerical 
niques are however computationally intensive and time-cons
ing, they are very sensitive to the initial estimates and may not 
cessarily give the global and unique solution. Hence they are
suitable for online implementation. For online implementation
in our study, we utilise the output of the offline trained inverse n
ral network model directly as the control signal, which has fast 
tion and suitable for real life application such as described in 
work.

EXPERIMENTAL STUDIES ON THE PARSEX
REACTOR

1. Receding Horizon Control Implementation
The aim of this experimental work is to test the receding ho

Fig. 4. Implementation diagram of neural-network based IMC
strategy.

Fig. 5. Input-output pattern for the neural network inverse model.
Korean J. Chem. Eng.(Vol. 17, No. 5)
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experimental case study involves set point tracking under the dis-
turbance of feed flow rate and parameter changes. In all the cases
below, a 25% increase in feed flowrate was introduced at time 100
minutes and the control action initiated at time 200 minutes.

In reality, neither the parameters nor the true process model are
known exactly. Therefore, the experimental results already include
the effects of plant/model mismatch. The experimental results for a
nominal case of the RHC controller with estimator and a corre-
sponding PID controller are presented in Figs. 6 and 7 respectively.
Fig. 6 shows that the RHC controller with estimator is able to pro-
vide good control response. This is because the EKF can give a
good estimate of the reactant concentration. This estimated reactant
concentration together with measured variables are used in the re-
ceding horizon control algorithm to determine the jacket tempera-
ture which can regulate the reactor temperature to the desired set-
point.

On the other hand, although the PID controller can control the
reactor temperature at the desired setpoint, it provides control ac-

tion which is rather noisy and the reactor temperature oscilla
around the setpoint (Fig. 7). Without any special tuning, the rec
ing horizon control gives the control action with less drastic con
action than that of the PID controller.

Next, the RHC controller with the EKF is tested in a case wh
the true rate of reaction has been increased by 25%. It can be 
that the EKF can accommodate the mismatch and give good
mates of Ca as shown in Fig. 8. With these estimates, the R
controller can control the reactor temperature to its set point 
maintain it throughout the experiment.

Finally, the RHC controller with the EKF is tested in a ca
where the assumed value of the heat transfer coefficient has bee
decreased by 50%. It can be seen that the RHC controller with
EKF is still able to drive the reactor temperature to its set po
Then, it can control the reactor temperature at the set point thro
out the experiment. In addition, this experimental result sho
that the EKF can accommodate the mismatch and give good 
mates of Ca as shown in Fig. 9.

Fig. 6. Response of the RHC (nominal case).

Fig. 7. Response of the PID (nominal case).

Fig. 8. Response of the RHC (mismatch in rate constant).

Fig. 9. Response of the RHC (mismatch in heat transfer coeffi-
cient).
September, 2000
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2. Neural Network Inverse Model Based Implementation
In order to implement the neural-network method online, open

loop testing was performed on the PARSEX reactor to generate
the relevant data for training the forward and inverse model repec-
tively. The open loop data was generated by varying the control in-
put signal i.e. the cooling water jacket temperature set point, in var-
ious step sequences and then observing and recording the effect on
the reactor temperature and concentration. The neural network
models were trained by use of the backpropagation technique with
adaptive learning rate. Various training and test data sets were used
in validating the accuracy of the neural network utilised in the con-
trol strategy. The details of these methods and the neural network
training can be found in Hussain [1996]. The forward and inverse
models obtained from the training above were then implemented
in the IMC strategy for performing set-point tracking and distur-
bance-rejection studies on the PARSEX reactor. These control im-
plementations are discussed below: -
2-1. Set Point Tracking

The set point tracking experiment was done with step down in
the required reactor temperature, to 42oC, and step up, to 53oC
from the initial steady state temperature of 47oC. A tuning filter
value of 0.85 was used in this implementation. Each time step re-
presents the concurrent data acquisition and control implementa-
tion sampling time of 6 secs. The experimental results obtained in
this case can be seen in Fig. 10 The results overall showed that the
reactor temperature could track the set point profile reasonably
well even under the nonideal experimental conditions. However
other observations seen from these results are as follows: -

(1) Offsets in the range 0.5-1.1oC were observed at all set points
and they were biggest at the highest and lowest set point values.
These offsets were mainly due to the offset in the control predic-
tion as given by the neural network controller, which depended on
the accuracy of the trained inverse model offline.

(2) At the nominal set point value (of about 47oC) in the begin-
ning and middle of tracking, the jacket temperature could not reach
its set point temperature due to the saturation of the valve, V5 and

the fact that the jacket temperature cannot go higher than the 
tor temperature in practice. However this high jacket tempera
set point value of over 47oC, set by the neural-network controlle
enabled the jacket temperature to reach close to the value of 4oC.
This enabled the reactor temperature to keep close to the nom
set point, with small offsets.

(3) The set point tracking action was fast when stepping do
but sluggish when stepping up. This is basically due to satura
of the control valve, V5 (controlling the temperature of the cooli
water) at these lower set-point values, as seen in the valve % o
ing graph of Fig. 10. This speed of tracking in the response b
cally follows that of the jacket cooling water temperature in trac
ing the jacket set point temperature, as expected. This sluggish
however would not have happen if dual configuration for contr
ling the reactor temperature were available in the system: coo
water for cooling and hot water/steam for heating purposes.

2-2. Set Point Regulation under Plant/Model Mismatch Cases -
crease in ∆H

In this case study, the disturbance represents an internal d
bance in the form of plant/model mismatch introduced by an
crease in the heat of reaction ∆H by 10% to 115558 kcal/min. This
change was introduced by changing the relevant parameter w
the reactor program, which re-calculates the amount of heat ge
ated and hence the amount of steam injected into the system
this instant also the controller action i.e jacket set point temp
ature, was frozen to its latest value (47.5oC), which is the value
prior to the introduction of the disturbance at the 300th time s
The system was then operated under open-loop control unti
900th time step. The increase in ∆H at the 300th time step, cause
the reactor temperature to rise to another steady state tempe
of about 50.7oC. When the controller was initiated again at th
900th time step, the neural network controller immediately ac
to reduce the jacket set point temperature and hence the re
temperature to its initial nominal value. When the reactor temp
ture reached below its set point value at the 1040 time step the
trol action increased again to bring the reactor temperature b
close to its steady state value at the 1300th time step. The r

Fig. 10. Set point tracking - Neural Network inverse-model ap-
plication.

Fig. 11. Set point regulation with plant/model mismatch - Neural
Network inverse-model application.
Korean J. Chem. Eng.(Vol. 17, No. 5)
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can be seen in Fig. 11.

CONCLUSION

The experimental results have clearly shown the effectiveness
of these nonlinear control algorithms under the inherent presence
of plant/model mismatches. The PARSEX reactor can be stabilised
by the RHC controller with EKF in the presence of disturbances,
plant/model mismatch and uncertainties. It gave better results than
the conventional PID method which had nosiy responses. In the
neural-network method, set point tracking and regulation under
plant/model mismatch was achieved equally well with slight off-
sets in the responses. The PARSEX reactor can also complement
simulation studies and lend credence to tests of proposed new and
advanced control algorithms. However further tests on robustness
will have to be carried out before such algorithms are implemented
on the industrial scale.

Appendix: Model Equations for the Continuous Reactor

The reaction used by Limqueco et al. [1990] has been studied
here. Some of the physical and model parameters in that work (spe-
cifically, the reactor volume, the heat transfer coefficient and the
heat exchange area) have been modified to match those of the av-
ailable experimental reactor. The system assumes a first order, ir-
reversible reaction, A�B, occurring in the continuous reactor.

(4)

(5)

(6)

where

Note: The solution of these equations is required in order to cal-
culate the amount of steam to be injected. Table 1 gives the physi-
cal properties and process data for the reactor.

NOMENCLATURE

A : component “A”
A r : heat transfer area [m2]
Ca : reactant concentration [mol/m3]
Cao : nominal feed concentration [mol/m3]
Cp : specific heat capacity [Kcal/kg·K]
E : activation energy [J/mol]
F : volumetric flowrate [m3/min]
Fj : jacket flowrate
∆H : heat of reaction [Kcal/K·mol]
k0 : Arrhenius pre-exponential constant [min−1]
R : universal gas constant [J/mol·K]

t : time
Trm : measured reactor temperature [K]
Tjm : measured jacket temperature [K]
Tcw : feed cooling water temperature [K]
Tf : feed temperature [K]
Ur : heat transfer coefficient [Kcal/min·m2·K]
Vr : volume of reactor [m3]

Greek Letters
ρ : reactant density [kg/m3]
τ : time constant [min]

Subscripts
a : component “A”
c : cooling water
f : feed condition
o : initial condition or nominal condition
sp : set point
r : reactor
j : jacket
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dCa

dt
--------  = − R1 + 

F
V r

----- Cao − Ca( )

dTjm

dt
----------  = 

Fj

V j

----- Tcw − T jm( )  − 
Ur*A r* T jm − Trm( )

ρjCpjV j

------------------------------------------

dTrm

dt
---------- = 

Qr

ρrCprV r

----------------- + 
F
V r

----- Tf  − Trm( ) + 
Ur*A r* T jm − Trm( )

ρrCprV r

------------------------------------------

R1 = k0exp
− E

RTrm

----------- 
 Ca

Qr  = − ∆H( )R1V r
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