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Abstract—Two nonlinear control algorithms for controlling nonlinear systems include the receding horizon method
and the nonlinear neural network inverse model methods. These methods have been found to be useful in dealing
with difficult-to-control nonlinear systems, especially in simulated systems. However although much simulation work
has been performed with these methods, simulation only is inadequate to guarantee that these algorithms could be
successfully implemented in real plants. For this reason, a relatively low cost and simple online experimental con-
figuration of a partially simulated continuous reactor has been devised which allows for the realistic testing of a wide
range of nonlinear estimation and control techniques i.e. receding horizon control and neural network inverse model
control methods. The results show that these methods are viable and attractive nonlinear methods for real-time ap-
plication in chemical reactor systems.
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INTRODUCTION match and disturbances are inherently present in the real system.
These control algorithms would only be useful for industrial appli-
In practice, most systems encountered in the real world are teations if proven successful in these real plants. However before
some extent nonlinear and in many of the control applicationsapplying them in the industrial scale plants, they are normally
nonlinear models are required to provide acceptable controls. Itested in pilot plants, which is the common, safe and economical
reality modelling and identification of nonlinear system is much approach for testing new and advanced methods such as these. In
more complex and difficult to obtain when compared to linear sys-fact up-to-date no other applications utilising any of these two tech-
tems. This difficulty has limited the usage of nonlinear models toniques have been reported on a real reactor system, whether in a
regions and systems where the model obtained is reliable. Howpilot-plant or an industrial plant [Hussain, 1999]. This paper pre-
ever in recent years many different techniques involving nonlinearsents an experimental investigation concerning the utilisation of
control methodology have been proposed [Bequette, 1991]. Twdhese two techniques on a partially simulated pilot-plant reactor
such advanced control algorithms include the nonlinear recedingPARSEX) system for controlling its temperature. Studies were
horizon method, which is a model-based strategy and the other Bade for set point tracking as well as for disturbance rejection cases
the neural-network inverse-model based method, which is an inunder plant-model mismatches, as will be reported in the next few
put-output data based strategy. The receding horizon method is baections.
sically an extension of the open-loop optimal method. It incorpo-
rates plant nonlinearities, feedback and an end-point constraintPILOT PLANT-PARTIALLY SIMULATED REACTOR
while computing a control trajectory in time. While in the neural- SYSTEM
network-based technique, the inverse neural network model acts
as the controller in a one-step implementation action. The inverse The PARSEX (Partially Simulated Exothermic Reactor) is a re-
model is obtained from using the input-output data of the plant ofatively low-cost, simple on-line experimental configuration, which
model of the system. Details of these two techniques will be giverapproximates an exothermic reaction taking place in a batch or
in later sections. continuous reactor, as can be seen in Fig. 1 [Kershenbaum, 1994].
Both these techniques have been applied by other researcheris plant has been devised for testing the performance of various
in many simulation studies [Kershenbaum, 1993; Mayne, 1995nonlinear estimation and control algorithms. It basically consists of
Hunt, 1992; Nahas, 1992] but since real plants do not behave itwo main units: a continuous well-stirred reactor of approximate
exactly the same manner as their models, the real performance amdlume of 0.1 Mand a separate cooler section with approximately
stability tests of any control strategy must include some plant-mod0.7 nt of heat transfer area. The reactor is charged with water
el mismatch. This can be introduced by subjecting these algowhich represents the liquid reactants in this PARSEX system. Heat
rithms and methods to an actual plant. In fact plant/model mis-within these reactants is exchanged with the cooling medium by
pumping the reactants through the external cooler via pump, M6
To whom correspondence should be addressed. before being recycled into the reactor again. The cooler is provided
E-mail: azlan@fk.un.edu.my with good circulation of cooling water by the pump, M10 and fresh
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make up water from the main water supply system. The feed t@ontrol system. The process data for the reactor can be seen in
the reactor is pumped into the reactor from the feed tank througfable 1. The model equations relating to the reactor can be seen in
the pump M9. This feed flow is measured by the flowmeter F1the Appendix.
and controlled by the control valve V1. The temperature of the re- The information flow for the reactor/computer interaction is

actor, measured by detector T14 is regulated by the cooling wateshown in Fig. 2. The Paragon 550 Software (Intec Controls Corpo-
temperature, measured by detector T12. This cooling water tenration) manages the data acquisition and conventional PID control
perature is manipulated by the fresh make-up cooling water flowof slave loops. At a high frequency (typically every 2 seconds),

measured by flowmeter F10 and controlled by the control valve
V5. The “reaction” is simulated by solving the relevant dynamic
mass balance equations for the system. The concentration of rea
tant in the reactor denoted by C3 is a ‘simulated’ value obtainec
from solving these dynamic equations. The simulation also calcu-
lates the amount of heat liberated by the “reaction” as a function o
time. An appropriate amount of steam is then sparged into the re
actor, which is measured by flowmeter F3 and controlled by the
control valve V3. Many exothermic reactions can be experimen-
tally simulated quite realistically in this way and the effect of this
operation is to achieve close resemblance in the pilot plant to th
real reactor with true reactions. The controllers for all these contro
valves are “software-driven” by the Paragon data acqusition anc

Table 1. Physical properties and process data for the reactor
U,=68.0 kcal/(min-rh°C) ky=3.64-10° min™

A,=0.7 nt AH=8000.0 kcal/k-mol

V,=0.24 nt E/R= 6000.0K™

C,.=C, keal/(kg’ °C) F=0.0036 rfifmin

C,;=1.0 kcal/(kg®C) V;=0.012 mi

p.=p, kg/m? T,=1.1min

£,=1000.0 kg/m T.,=293.15K (20°C)
Initial Steady State Condition

C,(0)=5.364 kmol/m T,(0)=333.15 K (60C)

C.,=25.0 kmol/ni T=333.15 K (60°C)

T,=300.15 K (23C) T,(0)=324.15 K (5I°C)
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Fig. 2. Information flowchart of the experimental study.
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measurements of the reactor temperature, level, and flowrates afenction (Performance Index):
sent to a reactor simulation programme. Although there are no real
chemical reactions occurring in the reactor, any desired reaction
processes with or without assumptions of perfect mixing, constantvhere W is a weighting factor, subject to a final state constraint
temperature, etc. can be simulated by solution of the dynamic mgTr(t)=Tr"] and the system equations (state constraints), as taken
terial balance equations in real time, given the actual measurefom the Appendix i.e.
ments of inlet and outlet flowrates, reactor level and temperatures JT E U*AR T T
and suitable rate expressions for the simulated reactions. Then, giv- d_trm =% +\7(Tf -T.) +,_r((:r,\r;_,m) 2
en knowledge of the heats of reaction for the simulated reactions, PV Vi PV
the amount of heat released by reaction can be calculated and con-dC, I (C.-C.) ®)
verted to a desired flow rate of sparge steam which is controlled by dt Ty, e
the steam control valve (V3). Finally, at a Iower freguency (pr" The meanings of these symbols can be seen in the nhomencla-
cally every 6-12 seconds), the control and estimation algorlthm% . .

. : . . ure. The model Egs. (2) and (3) are obtained with standard as-
being tested calculate the desired set point of the jacket tempera- : - :

. ; o sumptions such as perfect mixing and no heat lost, which are not

ture and/or the required cooling water flow rate and this informa-

fion is passed back to the PARSEX reactor. Clearly, the PARSE .eccessa}nly valid in an expgrlmental system. Here, standard varia
) . . ional optimal control techniques are used to calculate U(t).
configuration can be used to test a wide range of control and est- .. . . .
Since, in most processes, the state variables required for model-

mation algorithms and the size of the equipment can be altered tB . . .
L . . ased controller implementation are not all measurable or, not with
suit individual requirements. In this work, we demonstrate the ap-

L : ) . sufficient accuracy for control purposes, state estimation techniques
plication of receding horizon control and neural-network-inverse- - . . .
have been utilised as well. In addition, it is possible to include un-
model based control on the reactor.

certain model parameters such as the heat transfer coefficient and
the rate constant within the state vector and estimate these along
with the measured temperatureamd unmeasured concentration,

C.

Fig. 3. illustrates the flowchart of the RHC with the EKF ap-
proach. As we see from the RHC algorithm, a set of control ac-
tions is determined on-line based on current states. Only the first
element of control is applied to the system; the control action at
time k+1 is the controlJ{1) of future controls calculated at time

minf, Wy(T, -T,°)°dt €h)

THEORETICAL DESCRIPTION

1. Receding Horizon Control

The idea of a Receding Horizon Control algorithm has been
known for a long time. The basic concept of the RHC control de-
sign is to compute a control trajectory for a whole horizon time
minimising a cost function of a plant subject to a dynamic plant

model incorporating plant nonlinearities, and an end point oMy Some feedback is obtained by measurements of state at the next

straint. The initial value of control is then applied to the plant. in%erval and repeating the calculation. The inclusion of the EKF is

Some feedback is provided by measurements/estimates of state AL timating the unmeasured state 48d unknown parameters
the next interval and repeating the calculation [Mayne and Michal- 9 P '

ska, 1990; Kershenbaum et al., 1993].

As in several model-based controllers, RHC requires the meas Measurement (Trm) Reactor Simulation e
urement or estimation of the states of an appropriate process mo
el. However, in most industrial processes, the state variables at . k=k+1
Attime =k At time =k, Tjm(1)

not all measurable or not with sufficient accuracy for control pur-
poses. Furthermore measurements that are available often conte

significant amounts of random noise and systematic errors. Ir Tjm(1), TjmQ), Tim@), ......, Tjm(N-1),

these situations, online estimation techniques have been applied Tjm(N)

estimate the state variables. Sequential estimation techniques su A Time =k
as the extended kalman filter (EKF) produce estimates of true pra | = jzo==msm==ooms==omsmomomecommomnoconesoomn ooy

cess values from noisy process measurement and suitable proce i '
models. They can also be easily incorporated into the RHC tech : !
nigue to cater for plant/model mismatches, as demonstrated in th . :
work [Maybeck, 1982]. i :

The basic concept of a receding horizon control algorithm is ' '
that the whole future control actions of the receding horizon con- : . ;
trol (RHC) algorithm are calculated from an optimal control prob- : Optimal Control Problem ,

»| Extended Kalman Filter

Estimate of Ca and
parameters

lem including the current measurements, cost function, model par
ameters and constraints of states and controls. However, only tF
first element of control is applied to the system. Then, states ar
measured or estimated and used as initial conditions in order to re¢
calculate the future controls by resolving the optimal control prob-
lem [Kwon, 1977; Biegler, 1993].  reemememmeeemeeeemeeeemeeeeecoocoocooooomoooooonoo o '
Typically, the optimal control problem can be given by a cost Fig. 3. Flowchart of the RHC with the EKF approach.

- Material/Energy balances
- Final state constraint

- Fixed horizon time
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Fig. 4. Implementation diagram of neural-network based IMC Input Data
Strategy. T - reactor temperature

C - reactor concentration

Output Data U - control input (jacket set temp)
the heat transfer coefficient and the rate constant, using the aval
able measurement of. Measurements and estimates are com-
pared to a set point or predicted value. As a result, the error be=ig. 5. Input-output pattern for the neural network inverse model.
tween the measurements and set point or predicted value caused
by plant/model mismatch or disturbances can be utilised within theA filter, F is introduced prior to the controller in this approach to
RHC algorithm. The RHC algorithm, then, produces the futureincorporate robustness in the feedback system (especially where it
controls which minimise this error based on the updated models difficult to get exact inverse models) and also to project the error
parameters. signal into the appropriate input space of the controller.
2. Neural-Network Inverse-Model Based Method Other variations to this approach such as adding delay elements

A robust and stable control strategy incorporating neural netinstead of the forward model (called dual neural net controller or
work is that of the nonlinear internal model control technique, direct network controller) and having a backup neural net in paral-
which is basically an extension of the linear IMC method [Econo-lel with the neural net controller for online training and control re-
mou, 1986]. In this method both the forward and inverse modelsfinement have also been discussed in the literature [Psichogios,
as seen in Fig. 4 are used directly as elements within the feedbadl991; Pao, 1992; Hunt, 1992]. In many of the cases, presented in
loop. In this case the neural network, acting as the controller, has tthe literature using this approach, the necessary control signals, u
learn to supply at its output, the appropriate control parameters, is computed by numerically inverting the neural network forward
for the desired target,at its input. In this implementation u re- model at each interval by Newton’s method or substitution meth-
presents the jacket temperaturg,ahd the y is represented by the ods based on the contraction mapping theorem. The first derivative
reactor temperature,, TThe network inverse model is then utilised with respect to the control input can be computed in these tech-
in the control strategy by simply cascading it with the controlled niques by the usual bakpropagation method. These numerical tech-
system or plant as seen in Fig. 4. In this control scheme the desiradques are however computationally intensive and time-consum-
set point, ysp acts as the desired output temperature which is fed ting, they are very sensitive to the initial estimates and may not nec-
the network together with the past values of inpytantl outputs  cessarily give the global and unique solution. Hence they are not
T,, and G respectively to predict the desired current plant input i.e suitable for online implementation. For online implementation as
current value of ;. The input output pattern for the inverse model in our study, we utilise the output of the offline trained inverse neu-
in this implementation can be seen in Fig. 5. Further to this, theral network model directly as the control signal, which has fast ac-
forward model placed in parallel with the plant, to cater for plant/tion and suitable for real life application such as described in this
model mismatches and in addition the error between the plant outwvork.
put and the neural net forward model is subtracted from the set po-
int before being fed into the inverse model. In this case the forward ~ EXPERIMENTAL STUDIES ON THE PARSEX
model is fed with the current value gf &nd the past values of REACTOR
Tm T and G respectively. The forward model can also be fed
with its past outputs instead of the plant outputs, especially in casek. Receding Horizon Control Implementation
of noisy plant output data (as seen from the dotted line of Fig. 4). The aim of this experimental work is to test the receding hori-

Korean J. Chem. Eng.(Vol. 17, No. 5)



520

85

Ca(—}, Cae(-}, Casp(.)

M. A. Hussain et al.

Cafkmotm3)

Ca(-~), Cas(-, Casp(.)

4
100

X
150

100 150 200
Tri-), TH—) Tisp(-}. Trsp()

g% D
g D
prif CG'GO
& soF i -1 -
= . < I - - - TN
%0 : it z 1 1, ,f,v r :{/Jm'-
& P waor Doy S
3 ! = P
w30 L 1 ' H
- I ESO' ] i 4
2 . . A : . 20 : . . bo! :
() 50 100 150 200 250 300 ) 50 160 150 200 250 300
TIAE(min}

TIME(min)

Fig. 6. Response of the RHC (nominal case). Fig. 8. Response of the RHC (mismatch in rate constant).

zon control algorithm performance on the PARSEX reactor. Thetion which is rather noisy and the reactor temperature oscillates
experimental case study involves set point tracking under the disaround the setpoint (Fig. 7). Without any special tuning, the reced-
turbance of feed flow rate and parameter changes. In all the cas@gy horizon control gives the control action with less drastic control
below, a 25% increase in feed flowrate was introduced at time 10@&ction than that of the PID controller.
minutes and the control action initiated at time 200 minutes. Next, the RHC controller with the EKF is tested in a case where
In reality, neither the parameters nor the true process model arhe truerate of reaction has been increased by 25%. It can be seen
known exactly. Therefore, the experimental results already includehat the EKF can accommodate the mismatch and give good esti-
the effects of plant/model mismatch. The experimental results for anates of Ca as shown in Fig. 8. With these estimates, the RHC
nominal case of the RHC controller with estimator and a corre-controller can control the reactor temperature to its set point and
sponding PID controller are presented in Figs. 6 and 7 respectivelynaintain it throughout the experiment.
Fig. 6 shows that the RHC controller with estimator is able to pro- Finally, the RHC controller with the EKF is tested in a case
vide good control response. This is because the EKF can give where the assumed valoEthe heat transfer coefficient has been
good estimate of the reactant concentration. This estimated reactadecreased by 50%. It can be seen that the RHC controller with the
concentration together with measured variables are used in the r&KF is still able to drive the reactor temperature to its set point.
ceding horizon control algorithm to determine the jacket tempera-Then, it can control the reactor temperature at the set point through-
ture which can regulate the reactor temperature to the desired saiut the experiment. In addition, this experimental result shows
point. that the EKF can accommodate the mismatch and give good esti-
On the other hand, although the PID controller can control themates of Cas shown in Fig. 9.
reactor temperature at the desired setpoint, it provides control ac-
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Fig. 7. Response of the PID (nominal case).
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Fig. 9. Response of the RHC (mismatch in heat transfer coeffi-
cient).
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2. Neural Network Inverse Model Based Implementation the fact that the jacket temperature cannot go higher than the reac-
In order to implement the neural-network method online, opentor temperature in practice. However this high jacket temperature
loop testing was performed on the PARSEX reactor to generatset point value of over 4T, set by the neural-network controller,
the relevant data for training the forward and inverse model repecenabled the jacket temperature to reach close to the valuéf 45
tively. The open loop data was generated by varying the control inThis enabled the reactor temperature to keep close to the nominal
put signal i.e. the cooling water jacket temperature set point, in varset point, with small offsets.
ious step sequences and then observing and recording the effect on(3) The set point tracking action was fast when stepping down
the reactor temperature and concentration. The neural networkut sluggish when stepping up. This is basically due to saturation
models were trained by use of the backpropagation technique witbf the control valve, V5 (controlling the temperature of the cooling
adaptive learning rate. Various training and test data sets were usedhter) at these lower set-point values, as seen in the valve % open-
in validating the accuracy of the neural network utilised in the con-ing graph of Fig. 10. This speed of tracking in the response basi-
trol strategy. The details of these methods and the neural networkally follows that of the jacket cooling water temperature in track-
training can be found in Hussain [1996]. The forward and inverseing the jacket set point temperature, as expected. This sluggishness
models obtained from the training above were then implementedhowever would not have happen if dual configuration for control-
in the IMC strategy for performing set-point tracking and distur- ling the reactor temperature were available in the system: cooling
bance-rejection studies on the PARSEX reactor. These control imwater for cooling and hot water/steam for heating purposes.
plementations are discussed below: -

2-1. Set Point Tracking 2-2. Set Point Regulation under Plant/Model Mismatch Cases - In-
The set point tracking experiment was done with step down increase if\H
the required reactor temperature, td@_2and step up, to 58 In this case study, the disturbance represents an internal distur-

from the initial steady state temperature ofG@7A tuning filter bance in the form of plant/model mismatch introduced by an in-
value of 0.85 was used in this implementation. Each time step reerease in the heat of reactidd by 10% to 115558 kcal/min. This
presents the concurrent data acquisition and control implementachange was introduced by changing the relevant parameter within
tion sampling time of 6 secs. The experimental results obtained irthe reactor program, which re-calculates the amount of heat gener-
this case can be seen in Fig. 10 The results overall showed that tlaged and hence the amount of steam injected into the system. At
reactor temperature could track the set point profile reasonablyhis instant also the controller action i.e jacket set point temper-
well even under the nonideal experimental conditions. Howeverature, was frozen to its latest value (4Ch which is the value
other observations seen from these results are as follows: -  prior to the introduction of the disturbance at the 300th time step.
The system was then operated under open-loop control until the
(1) Offsets in the range 0.5-2@ were observed at all set points 900th time step. The increaseH at the 300th time step, caused
and they were biggest at the highest and lowest set point valuethe reactor temperature to rise to another steady state temperature
These offsets were mainly due to the offset in the control predicof about 50.7C. When the controller was initiated again at the
tion as given by the neural network controller, which depended ord00th time step, the neural network controller immediately acted
the accuracy of the trained inverse model offline. to reduce the jacket set point temperature and hence the reactor
(2) At the nominal set point value (of about’@y in the begin-  temperature to its initial nominal value. When the reactor tempera-
ning and middle of tracking, the jacket temperature could not reacture reached below its set point value at the 1040 time step the con-
its set point temperature due to the saturation of the valve, V5 anttol action increased again to bring the reactor temperature back
close to its steady state value at the 1300th time step. The result
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t :time

T.. : measured reactor temperature [K]

T,» : measured jacket temperature [K]

T :feed cooling water temperature [K]
The experimental results have clearly shown the effectiveness; :feed temperature [K]

of these nonlinear control algorithms under the inherent presenct, : heat transfer coefficient [Kcal/min?rk]

of plant/model mismatches. The PARSEX reactor can be stabilisel, : volume of reactor [

by the RHC controller with EKF in the presence of disturbances,

plant/model mismatch and uncertainties. It gave better results thatreek Letters

the conventional PID method which had nosiy responses. In th@ : reactant density [kg/th

neural-network method, set point tracking and regulation undert  : time constant [min]

plant/model mismatch was achieved equally well with slight off-

sets in the responses. The PARSEX reactor can also complemegtibscripts

simulation studies and lend credence to tests of proposed new ard : component “A”

advanced control algorithms. However further tests on robustness : cooling water

will have to be carried out before such algorithms are implemented  : feed condition

can be seen in Fig. 11.

CONCLUSION

on the industrial scale. 0 :initial condition or nominal condition
sp :set point
Appendix: Model Equations for the Continuous Reactor r :reactor
j :jacket

The reaction used by Limqueco et al. [1990] has been studied
here. Some of the physical and model parameters in that work (spe- REFERENCES
cifically, the reactor volume, the heat transfer coefficient and the
heat exchange area) have been modified to match those of the aequette, B. W., “Nonlinear Control of Chemical Processes: A Re-
ailable experimental reactor. The system assumes a first order, ir- view; Ind. Eng. Chem. ReS0, 1391 (1991).
reversible reaction, A>B, occurring in the continuous reactor. ~ Biegler, L. and Rawlings, J., “Optimization Approaches to Nonlin-
ear Model Predictive Control? In Chemical Process Control

dd(t:a =-R, + 5((;30 -C,) @ CPCIV Proceedings (1991).
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