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Abstract—Nonminimum-phase parts are better removed in the feedback loop like the time delay term. For this,
Wright and Kravaris [1992] proposed the concept of optimal minimum-phase output to control nonlinear nonminimum-
phase processes. However, their optimal minimum-phase output has no analytic solutions for processes with more
than three state variables. Here, methods for analytic minimum-phase outputs approximating the optimal ones are
proposed, having no limitations in the number of state variables. The proposed methods provide analytic solutions for
processes with three state variables and simple numerical solutions for those with more state variables.
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INTRODUCTION Wright and Kravaris [1992] and can be used in the framework of
their control system for nonlinear nonminimum-phase processes.
For nonlinear nonminimum-phase processes, controller desigiThe extended linearization method [Baumann and Rugh, 1986;
methods such as the input/output linearization method [KravaridLin, 1994] is utilized. As shown later, it is the first order Taylor
and Chung, 1987], which are based on the inversion of process dgeries expansion of the global ISE optimal minimum-phase one
namics, cannot be applied directly due to their unstable inversewhich is valid for neighborhoods along equilibrium points. If set
The nonminimum-phase parts which yield unstable inverse shoulghoint changes are not very fast and control actions are mild, states
be removed in the inversion mechanism. For linear processes, thaf the process will not excurse far from their equilibrium values
nonminimum-phase parts can be easily isolated by decomposingnd the proposed minimum-phase output approximating the global
the process transfer functions. The internal model control of GarcidSE optimal one will be effective. It has the following properties:
and Morari [1982] and the generalized Smith predictor of Raman-
athan et al. [1989] incorporate decomposition of transfer functions - Analytic solutions are available for processes with zero dy-
in their controller design frameworks. For nonlinear nonminimum- namics of orders up to 3.
phase processes, such decomposition is not apparent except for the- For processes with higher order zero dynamics, solutions can
second order processes [Kravaris and Daoutidis, 1990]. Insteadhe easily calculated numerically and interpolated to analytic forms.
Wright and Kravaris [1992] have proposed a method using auxil- - When linearized at equilibrium points, both the proposed out-
iary outputs which are statically equivalent to the real outputs angut and the ISE optimal minimum-phase output are the same.
minimum-phase. With the auxiliary outputs, minimum-phase pre-Minimum-phase predictor with the proposed output can be inter-
dictors and consequent nonlinear control systems for the nonlinegsreted as a gain-scheduled linear ISE optimal predictor compensat-
nonminimum-phase processes can be designed. One of key stejpg) variation of the equilibrium point because it is the linear ap-
in the method is how to obtain appropriate statically equivalentproximation of the global ISE optimal output of Wright and
minimum-phase outputs. For this, Wright and Kravaris [1992] alsoKravaris [1992].
have proposed statically equivalent outputs which are optimal withl. Nonlinear Nonminimum-phase Processes
respect to a certain integral of square error (ISE) criterion. Their Consider a nonlinear process
control systems provide excellent control performances. However,
obtaining the ISE optimal minimum-phase output is somewhat re- XO= )+ 9O
strictive because it is based on the nonlinear processes in natural y(t)=h(x(t)) 1)
coordinates [Hunt et al., 1983]. Furthermore, because it requires
solving high-order Euler-Lagrange equations for nonlinear dynam-Where X, U and y are the n state variable vector, the scalar input
ical optimization, it is very hard to compute except for the pro- variable and the scalar output variable, respectively. It is assumed
cesses with zero dynamics of order 2 for which analytic solutiondhat the process (1) has an isolated equilibrium paintuThe
exist. process (1) is locally minimum-phase in a neighborhood of the
Here we propose a statically equivalent minimum-phase out-£quilibrium point (y x), if all roots of the following polynomial
put which approximates the ISE optimal minimum-phase one of" Laplace variable s are in the open left half plane:

n(s)=c adj(stA) b @)
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Yo Lincarizing and Kravaris [1992]. It is stated as anr{nl)-th dimensional non-

QO Controller for Process ‘ linear dynamical optimization problem and it results in solving an
” (n—r+1)-th order Euler-Lagrange equation which is usually very
hard to solve except for the second order case. Minimum-phase

Process Model

Q y* i ,Wit_bb e output which approximates the ISE optimal one is investigated.
B m"?'m"fpﬁt“e Since the steady-state values of stéfes;2, 3, ..., ar+1, are ze-

ro, the first approximation which is valid along equilibrium points

y Process e IS
HModel
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Fig. 1. Linearizing control system for nonlinear nonminimum- It is just the first order Taylor series expansion abouffa=2,
phase processes. 3, .., nrr+1 around their steady-state values of zero. From Eq. (4),

we can see that the state variales=2, 3, ..., ar+1 will not be
9f(x) ‘19@ dh(x) fa'r from their steady-stqte values of zero if the cgntrol input 'is
A= [ ax s} »b=g(x), c= [ ax } mild. Hence effects of higher order terms ignored in Eq. (6) will

not be much.

Processes for which some roots of (2) are in the open right half The zero polynomial for the auxiliary output (6) around an equi-

plane over desired equilibrium points are considered. The iNputfisrium pointZ=(,, O, ..., 0)is
output linearization method cannot be applied directly to such pro- .
cesses. Wright and Kravaris [1992] proposed a nonlinear control | . 5= dhy (G A )s* hE (DS )

system as in Fig. 1 which is an extension of the linear generalized dg,

Smith predictor. In Fig. 1, the auxiliary output For the auxiliary output (6) to be approximation of the ISE optimal

y*=h*(x) €) minimum-phase output, the zero polynomial (7) should be ISE op-
timal locally around the equilibrium poift=((,,, 0,..., OJ and

is such that it is statically equivalent to the output y and mini-
statically equivalent. That is, it should satis right and Kra-
mum-phase. The choice of the auxiliary output y* is rather arbi- varis 1592? fy Wi g

trary but very much affects control performance. With transform-
ing the process in natural coordinates, Wright and Kravaris [1992] n*(s) n*(—s) =n(s) n(=s) (8)
proposed the auxiliary output which is optimal with respect to the
integral of square error (ISE) between y and y* when controlled®"
perfectly. The ISE optimal minimum-phase output provides excel- h*(2,)=h@)
lent control performance. However, because it requires solving the
Euler-Lagrange equation, it is very hard to obtain except for theFrom Egs. (5), (7) and (8), we have [Riddle and Anderson, 1966]
second order case. Its approximation is investigated here. N R R
2. Approximation of the ISE Optimal Mimimum-phase Out- [dhééas)} =[ag(55)}
pUt 1 1
The ISE optimal minimum-phase output of Wright and Kra- [ h’(Z,)]>-2 dhé(zls) h5(Z,) = [ah(zﬂ AL
varis [1992] can be obtained for a nonlinear process in natural co- . G 9%, SIS
ordinates [Hunt et al., 1983]. Consider a nonlinear system of re-

lative order r in natural coordinates: [R5 () 1P [gzh (Zﬂ 9
4.=¢,
.=, Argument(,, in both sides of Eq. (9) is a dummy and can take

any value in the desired whole range. Hence we can drop the sub-
script s in,.. Closed-form solutions are available for orders up to

.Zn = 3. For example, in case ofn+1=2, the solution of (9) is
fl:r?(glz“:)wl U @ y* =h(Z,0) - 0hglzl,0)zz (10)
The |OCE.l| zero polynomial around an equilibrium paLr(C,, It can be easily checked that it is the first order Taylor series ex-
2 0)is parjsion about,=0 gf the ISE optimal minimum-phase output of
n(9 = ag({l1 J . ag(és) glhn(zﬁ)l - ) Wright and Kravaris [1992]

0h(¢..¢

)
D, (a2

If some roots of the zero polynomial (5) are in the open right half Yl =N(8n &) =255
plane, control systems like in Fig. 1 which does not inverse the
zero dynamics should be used. For the control system in Fig. 1 1 _3 andahgzl,o 0)

>0 (without loss of generality),
the ISE optimal minimum-phase output y* is proposed by Wright ( g )
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y* =h(¢,,0,0) EXAMPLES
2
0h(glz,0, O)J _20h(320, O)ah(glz,o, 0) 1. Example 1
+ : ! R M‘ZS For illustration purposes, we consider a second order nonmini-
+26h(11’0’ 0)[9h(2,,0.0) 9% mum-phase process as [Wright and Kravaris, 1992];

¢, | 0% |
(12) X=X,

There is no such closed-form solution for the ISE optimal mini- %= Xu %) ¥9(%. X)u
mum-phase output. Wher+1 is greater than 3, solutions of (9)  y=h(x)=x—3%—-x%,-x}
can be found numerically for the whole range of the gtaémd
can be interpolated to the analytical minimum-phase output.
3. Extension to General Nonlinear Nonminimum-phase Pro-
cesses n(9 _oh(x) , oh(x)
The auxiliary output of the form (6) can also be applied to gen- 0x, 0x,
eral nonlinear nonm|n|mum-phgse processes which car.1.no.t bﬁence it is nonminimum-phase along the equilibrium points. From
transformed to the natural coordinates whenever the equmbrlun]E
L ) - g. (8), we have
point is of the form.=({,,, O, ..., 0} Since a restrictive class of
nonlinear processes can be transformed to the process in natural n*(s) =1 +(3 +x;,)s

coordinates, it is important for wide applications. For a nonlinearrarefore Bi(x,) =%, and B(x,)=3+%,. The minimum-phase out-
system (1), the equation f(x)+g(x)u=0 usually has a solution abouf, + \hich results in the above zero polynomial at each equilibrium
{u, X,, %, ..., %} as a function of x Let the solution for xas@(x,) point is

and define new state variables as

The process is already in the form of natural coordinates. The equi-
librium point is x=(x,, 0). The zero polynomial is

s=1-(3+x%)s

y*:X 1+3X2+X§X2

(=X
i We can see that it is the first order Taylor series expansion about
{=x—q(x), =2, 3, .., n (13) x, of the global ISE optimal one of Wright and Kravaris [1992];
Then the state Eq. (1) becomes Yi=Xa+ 3%+ XX+ 5%
(=00 +bQu 2. Example 2
Consider the system of a stirred tank reactor where the isother-
y=h(Q) (14) mal series/parallel Van de Vusse reaction is taking place. It is de-

ibed in the stat f :
with an equilibrium point of the fora=((,., O, ..., 0} scribed in the state space form as

The zero polynomial is X, =KX, —KX+(C, =X U
n(s)=c adj(stA)b (15) X, =KX, —kX, XU
where y=%
where k=50, k=100, k=10, ¢,=10, x.=3 and x=1.117 (see
A =[gﬁ +%Eus} , b=w(2)), c=[g—h} Wright and Kravaris [1992] for meanings and dimensions in de-
¢ 0Tl e tail). The transformation [Wright and Kravaris, 1992]
The zero polynomial for the process with output y* of the form (6) Xy
is T,
n*(s)=c* adj(skA)b (16) ¢ _koXg TRaXE (G mX) (KyX TKoX,)
2 Xz X5
where )
leads the process to the natural coordinates form and the output
dhi(Z) x
o= D 1R M@ | becomes
1

For the output y* to be ISE optimal along equilibrium points, the Yy
above two zero polynomials should satisfy the Eq. (8). It is known

as a spectral factorization problem to find a stable polynomialwhere

n*(s) from n(s) satisfying Eq. (8). There are closed-form solutions kel —2KeCooXy KX
for orders up to 3. Numerical iterative methods for higher order of A =k:(i = 2
equations are given in Riddle and Anderson [1966]. From n(s) as ’

a function of¢,;we obtain n*(s) by solving Eq. (8). With n*(s), c* B ==, ~Cu(ky ko +2KksCao ~Kil1)

and consequently/d,) can be easily found from (16) since they _KiClo ~K1CaXs ~K1CagXp = 2KaCaX, +2KsCaXa Xy ~KaXiXo
appear linearly. X5

_~B+JB*~4AC
2A
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— _ C,, X
C _klcaa +k3C§a _klca011 _klcaa +k3C§a _klcaa ae d
2

Hence, from Eq. (10),

. =[—B +J/B’ —4AC} _i[—s +JB’ —4AC} ¢

y 2A - 97, 2A im0
2 2 _
:[_B _op+B.*3BD+2D°~4AC], a7
J(B+D)*~4AC
where
D=( :klxl +k3Xf _(Caa _Xl)(klxl _kzxz)
2

Xz X5
Since at the steady-state
_KiXgs kX
s Caa _Xls

— klxls - klxls

Xps =
’ k2 +u5 k2 +(klxls +k3xis)/(caa _Xls)

we can find another transformation which results in the state Eq

(14) as

(=%

(=% =@yx)
where

KiX1(Cao ~X1)
Ka(Cao =Xy) FKX, +k3Xf

@(x,) =

The output becomes

y=@)+¢,

Table 1. Integral of square errors between y and y for load and
set-point changes

Wright and  Output Output
Kravaris a7) (18)

Load (g,: 10 to 9) 6.244E-5 6.364E-5 6.565E-5
Set-point (1.117 to 1.05) 5.478E-5 5.445E-5 5.392E-5

Change

1.12

1.115

1.1

1.105F

0 0005 001 0015 0.02 0025 003 0.035 004 0045 0.05
time

Fig. 2. Control responses with three minimum-phase outputs in
case of a step set-point change of the Van de Vusse reaction
example: solid line-Wright and Kravaris ISE optimal out-
put, dotted line-output (17), and dashed line-output (18).

5 andt,=0.01 was used (Fig. 1). Integration step size was 0.002
and 500 steps were simulated. Partial derivatives for linearizing
controller block in Fig. 1 were calculated numerically via the cen-

Thus' we can Choose’ as an appropriate auxi"ary m|n|mum_phas€a| difference method with perturbation of 0.0001 to avoid mis-

output,
y*= Q)+ (@)L,

The zero polynomials for the output and the auxiliary minimum-
phase output are

n(s) :(pz(lls)(kz"' LQ(Caa_le)_(pz(le)s

() =G (Kot W (Cr=Lid +{BCud(Co o)
gL (CN[CI(ON (WY SRR (ER]} S

Hence

@(4)(Co ) —0:(2)
@(4)(Co~Cy) T0(81)

h(2) =

That is,

— X2 ~@p(Xy)
y* =X, —o— "2 w2V
(([;22(())((11) (Caa _Xl) +1

(18)

becomes a local ISE optimal minimum-phase output.
Control performances with the ISE optimal minimum-phase
output of Wright and Kravaris [1992] and the above two auxil-

takes in the program coding. The integral of square errors between
Yy, and y for load change and set-point change are shown in Table
1. Degradation due to our approximation is not so serious and

would be compensated by adjusting parameters of the external Pl
controller. Control responses for step set-point changes are shown
in Fig. 2. All of them are almost not distinguishable.

CONCLUSION

Methods to obtain minimum-phase outputs approximating the
ISE optimal minimum-phase outputs of Wright and Kravaris
[1992] are proposed. While the Wright and Kravaris method has
no analytic solutions for processes with more than three state var-
iables, the proposed method has no limitations in the number of
state variables.
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