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Abstract −−−−Nonminimum-phase parts are better removed in the feedback loop like the time delay term. For this,
Wright and Kravaris [1992] proposed the concept of optimal minimum-phase output to control nonlinear nonminimum-
phase processes. However, their optimal minimum-phase output has no analytic solutions for processes with more
than three state variables. Here, methods for analytic minimum-phase outputs approximating the optimal ones are
proposed, having no limitations in the number of state variables. The proposed methods provide analytic solutions for
processes with three state variables and simple numerical solutions for those with more state variables.
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INTRODUCTION

For nonlinear nonminimum-phase processes, controller design
methods such as the input/output linearization method [Kravaris
and Chung, 1987], which are based on the inversion of process dy-
namics, cannot be applied directly due to their unstable inverse.
The nonminimum-phase parts which yield unstable inverse should
be removed in the inversion mechanism. For linear processes, the
nonminimum-phase parts can be easily isolated by decomposing
the process transfer functions. The internal model control of Garcia
and Morari [1982] and the generalized Smith predictor of Raman-
athan et al. [1989] incorporate decomposition of transfer functions
in their controller design frameworks. For nonlinear nonminimum-
phase processes, such decomposition is not apparent except for the
second order processes [Kravaris and Daoutidis, 1990]. Instead,
Wright and Kravaris [1992] have proposed a method using auxil-
iary outputs which are statically equivalent to the real outputs and
minimum-phase. With the auxiliary outputs, minimum-phase pre-
dictors and consequent nonlinear control systems for the nonlinear
nonminimum-phase processes can be designed. One of key steps
in the method is how to obtain appropriate statically equivalent
minimum-phase outputs. For this, Wright and Kravaris [1992] also
have proposed statically equivalent outputs which are optimal with
respect to a certain integral of square error (ISE) criterion. Their
control systems provide excellent control performances. However,
obtaining the ISE optimal minimum-phase output is somewhat re-
strictive because it is based on the nonlinear processes in natural
coordinates [Hunt et al., 1983]. Furthermore, because it requires
solving high-order Euler-Lagrange equations for nonlinear dynam-
ical optimization, it is very hard to compute except for the pro-
cesses with zero dynamics of order 2 for which analytic solutions
exist.

Here we propose a statically equivalent minimum-phase out-
put which approximates the ISE optimal minimum-phase one of

Wright and Kravaris [1992] and can be used in the framework
their control system for nonlinear nonminimum-phase proces
The extended linearization method [Baumann and Rugh, 19
Lin, 1994] is utilized. As shown later, it is the first order Taylo
series expansion of the global ISE optimal minimum-phase 
which is valid for neighborhoods along equilibrium points. If s
point changes are not very fast and control actions are mild, s
of the process will not excurse far from their equilibrium valu
and the proposed minimum-phase output approximating the gl
ISE optimal one will be effective. It has the following propertie

- Analytic solutions are available for processes with zero d
namics of orders up to 3.

- For processes with higher order zero dynamics, solutions
be easily calculated numerically and interpolated to analytic form

- When linearized at equilibrium points, both the proposed o
put and the ISE optimal minimum-phase output are the sa
Minimum-phase predictor with the proposed output can be in
preted as a gain-scheduled linear ISE optimal predictor compe
ing variation of the equilibrium point because it is the linear a
proximation of the global ISE optimal output of Wright an
Kravaris [1992].
1. Nonlinear Nonminimum-phase Processes

Consider a nonlinear process

x(t)=f(x(t))+g(x(t))u(t)

y(t)=h(x(t)) (1)

where x, u and y are the n state variable vector, the scalar i
variable and the scalar output variable, respectively. It is assu
that the process (1) has an isolated equilibrium point (us, xs). The
process (1) is locally minimum-phase in a neighborhood of 
equilibrium point (us, xs), if all roots of the following polynomial
in Laplace variable s are in the open left half plane:

n(s)=c adj(sI−A) b (2)

where
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Processes for which some roots of (2) are in the open right half
plane over desired equilibrium points are considered. The input/
output linearization method cannot be applied directly to such pro-
cesses. Wright and Kravaris [1992] proposed a nonlinear control
system as in Fig. 1 which is an extension of the linear generalized
Smith predictor. In Fig. 1, the auxiliary output

y*=h*(x) (3)

is such that it is statically equivalent to the output y and mini-
mum-phase. The choice of the auxiliary output y* is rather arbi-
trary but very much affects control performance. With transform-
ing the process in natural coordinates, Wright and Kravaris [1992]
proposed the auxiliary output which is optimal with respect to the
integral of square error (ISE) between y and y* when controlled
perfectly. The ISE optimal minimum-phase output provides excel-
lent control performance. However, because it requires solving the
Euler-Lagrange equation, it is very hard to obtain except for the
second order case. Its approximation is investigated here.
2. Approximation of the ISE Optimal Mimimum-phase Out-
put

The ISE optimal minimum-phase output of Wright and Kra-
varis [1992] can be obtained for a nonlinear process in natural co-
ordinates [Hunt et al., 1983]. Consider a nonlinear system of re-
lative order r in natural coordinates:

ζ1=ζ2

ζ2=ζ3

.

.

.
ζn−1=ζn

ζn=ϕ(ζ1, ..., ζn)+ψ(ζ1, ..., ζn)u

y=h(ζ1, ..., ζn−r+1) (4)

The local zero polynomial around an equilibrium point ζs=(ζ1s,
0, ..., 0)T is

(5)

If some roots of the zero polynomial (5) are in the open right half
plane, control systems like in Fig. 1 which does not inverse the
zero dynamics should be used. For the control system in Fig. 1,
the ISE optimal minimum-phase output y* is proposed by Wright

and Kravaris [1992]. It is stated as an (n−r+1)-th dimensional non-
linear dynamical optimization problem and it results in solving 
(n−r+1)-th order Euler-Lagrange equation which is usually ve
hard to solve except for the second order case. Minimum-ph
output which approximates the ISE optimal one is investigat
Since the steady-state values of states, ζi, i=2, 3, ..., n−r+1, are ze-
ro, the first approximation which is valid along equilibrium poin
is

y*=h*
1(ζ1)+h*

2(ζ1)ζ2+...+h*
n−r+1(ζ1)ζn−r+1 (6)

It is just the first order Taylor series expansion about for ζi, i=2,
3, ..., n−r+1 around their steady-state values of zero. From Eq. 
we can see that the state variables ζi, i=2, 3, ..., n−r+1 will not be
far from their steady-state values of zero if the control inpu
mild. Hence effects of higher order terms ignored in Eq. (6) w
not be much.

The zero polynomial for the auxiliary output (6) around an eq
librium point ζs=(ζ1s, 0, ..., 0)T is

(7)

For the auxiliary output (6) to be approximation of the ISE optim
minimum-phase output, the zero polynomial (7) should be ISE 
timal locally around the equilibrium point ζs=(ζ1s, 0, ..., 0)T and
statically equivalent. That is, it should satisfy [Wright and Kr
varis, 1992]

(8)

and

h*
1(ζ1s)=h(ζs)

From Eqs. (5), (7) and (8), we have [Riddle and Anderson, 196

.

.

.
(9)

Argument ζ1s in both sides of Eq. (9) is a dummy and can ta
any value in the desired whole range. Hence we can drop the
script s in ζ1s. Closed-form solutions are available for orders up
3. For example, in case of n−r+1=2, the solution of (9) is

(10)

It can be easily checked that it is the first order Taylor series
pansion about ζ2=0 of the ISE optimal minimum-phase output o
Wright and Kravaris [1992]

(11)

For n− r+1=3 and  (without loss of generality),

A  = 
∂f x( )

∂x
------------  + 

∂g x( )
∂x

-------------us
xs

, b = g xs( ), c = 
∂h x( )

∂x
-------------

xs

n s( )  = 
∂h ζs( )

∂ζ1

-------------- + 
∂h ζs( )

∂ζ2

--------------s + 
…

 + 
∂h ζs( )
∂ζn − r  + 1

----------------sn − r

n* s( )  = 
dh*

1 ζ1s( )
dζ1

--------------------- + h*
2 ζ1s( )s  +  

…h*
n − r + 1 ζ1s( )sn − r

n* s( ) n* − s( )  = n s( ) n − s( )

dh*
1 ζ1s( )
dζ1

---------------------
2

 = 
∂h ζs( )

∂ζ1

--------------
2

h*
2 ζ1s( )[ ]2

 − 2
dh*

1 ζ1s( )
dζ1

---------------------h*
3 ζ1s( )  =  

∂h ζs( )
∂ζ1

--------------
2

 −  2
∂h ζs( )

∂ζ1

--------------
∂h ζs( )

∂ζ3

--------------

h*
n − r +1 ζ1s( )[ ]2

 = 
∂h ζs( )
∂ζn − r + 1

----------------
2

y*  = h ζ1 0,( )  − 
∂h ζ1 0,( )

∂ζ2

--------------------ζ2

y*WK  =  h ζ1 ζ2,( )  −  2
∂h ζ1 ζ2,( )

∂ζ2

----------------------ζ2

∂h ζ1 0 0, ,( )
∂ζ1

------------------------- 0>

Fig. 1. Linearizing control system for nonlinear nonminimum-
phase processes.
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There is no such closed-form solution for the ISE optimal mini-
mum-phase output. When n−r+1 is greater than 3, solutions of (9)
can be found numerically for the whole range of the state ζ1 and
can be interpolated to the analytical minimum-phase output.
3. Extension to General Nonlinear Nonminimum-phase Pro-
cesses

The auxiliary output of the form (6) can also be applied to gen-
eral nonlinear nonminimum-phase processes which cannot be
transformed to the natural coordinates whenever the equilibrium
point is of the form ζs=(ζ1s, 0, ..., 0)T. Since a restrictive class of
nonlinear processes can be transformed to the process in natural
coordinates, it is important for wide applications. For a nonlinear
system (1), the equation f(x)+g(x)u=0 usually has a solution about
{u, x2, x3, ..., xn} as a function of x1. Let the solution for xi as φi(x1)
and define new state variables as

ζ1=x1

ζi=xi−φi(xi), i=2, 3, ..., n (13)

Then the state Eq. (1) becomes

ζ=ϕ(ζ)+ψ(ζ)u

y=h(ζ) (14)

with an equilibrium point of the form ζs=(ζ1s, 0, ..., 0)T.
The zero polynomial is

n(s)=c adj(sI−A)b (15)

where

The zero polynomial for the process with output y* of the form (6)
is

n*(s)=c* adj(sI−A)b (16)

where

For the output y* to be ISE optimal along equilibrium points, the
above two zero polynomials should satisfy the Eq. (8). It is known
as a spectral factorization problem to find a stable polynomial
n*(s) from n(s) satisfying Eq. (8). There are closed-form solutions
for orders up to 3. Numerical iterative methods for higher order of
equations are given in Riddle and Anderson [1966]. From n(s) as
a function of ζ1s we obtain n*(s) by solving Eq. (8). With n*(s), c*
and consequently h*

i(ζ1) can be easily found from (16) since they
appear linearly.

EXAMPLES

1. Example 1
For illustration purposes, we consider a second order nonm

mum-phase process as [Wright and Kravaris, 1992];

x1=x2

x2=f(x1, x2)+g(x1, x2)u

y=h(x)=x1−3x2−x1
2x2−x2

3

The process is already in the form of natural coordinates. The e
librium point is xs=(x1s, 0). The zero polynomial is

Hence it is nonminimum-phase along the equilibrium points. Fr
Eq. (8), we have

Therefore, h*1(x1s)=x1s and h*2(x1s)=3+x2
1s. The minimum-phase out-

put which results in the above zero polynomial at each equilibri
point is

y*=x1+3x2+x1
2x2

We can see that it is the first order Taylor series expansion a
x2 of the global ISE optimal one of Wright and Kravaris [1992];

y*WK=x1+3x2+x1
2x2+5x2

3

2. Example 2
Consider the system of a stirred tank reactor where the isot

mal series/parallel Van de Vusse reaction is taking place. It is
scribed in the state space form as:

x1=−k1x1−k3x1
2+(cao−x1)u

x2=k1x1−k2x2−x2u

y=x2

where k1=50, k2=100, k3=10, cao=10, x1s=3 and x2s=1.117 (see
Wright and Kravaris [1992] for meanings and dimensions in d
tail). The transformation [Wright and Kravaris, 1992]

leads the process to the natural coordinates form and the ou
becomes

where

y*  = h ζ1 0 0, ,( )

+ 

∂h ζ1 0 0, ,( )
∂ζ2

-------------------------
2

 − 2
∂h ζ1 0 0, ,( )

∂ζ1

------------------------- 
∂h ζ1 0 0, ,( )

∂ζ3

-------------------------

+ 2
∂h ζ1 0 0, ,( )

∂ζ1

------------------------- 
∂h ζ1 0 0, ,( )

∂ζ3

-------------------------

 ζ2 + 
∂h ζ1 0 0, ,( )

∂ζ3

------------------------- ζ3

A  = 
∂ϕ
∂ζ
------  + 

∂ψ
∂ζ
-------us

ζs

, b = ψ ζs( ), c = 
∂h
∂ζ
------

ζs

c*  = 
dh*

1 ζ1s( )
dζ1

--------------------- h*
2 ζ1s( ) ... h*

n ζ1s( )

n s( ) = 
∂h xs( )

∂x1

-------------- + 
∂h xs( )

∂x2

--------------s = 1 − 3 + x1s
2( )s

n* s( )  = 1 + 3 + x1s
2( )s

ζ1 = 
cao − x1

x2

---------------

ζ2 = 
k1x1 + k3x1

2

x2

------------------------ − 
cao − x1( ) k1x1 − k2x2( )

x2
2

-------------------------------------------------

y  = 
− B  + B2

 − 4AC
2A

---------------------------------------

A  = k3ζ1
2

 = 
k3cao

2
 − 2k3caox1 + k3x1

2

x2
2

-------------------------------------------------

B  = − ζ2 − ζ1 k1 − k2 + 2k3cao − k1ζ1( )

= 
k1cao

2
 − k1caox1 − k1caox2 − 2k3cao

2 x2 + 2k3caox1x2 − k3x1
2x2

x2
2

------------------------------------------------------------------------------------------------------------------------------
Korean J. Chem. Eng.(Vol. 17, No. 5)
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Hence, from Eq. (10),

(17)

where

Since at the steady-state

we can find another transformation which results in the state Eq.
(14) as

ζ1=x1

ζ2=x2−φ2(x1)

where

The output becomes

y=φ2(ζ1)+ζ2

Thus, we can choose, as an appropriate auxiliary minimum-phase
output,

y*= φ2(ζ1)+h*
2(ζ1)ζ2

The zero polynomials for the output and the auxiliary minimum-
phase output are

n(s)=φ2(ζ1s)(k2+us)(cao−ζ1s)−φ2(ζ1s)s

n*(s)=φ2(ζ1s)(k2+us)(cao−ζ1s)+{φ2(ζ1s)(cao−ζ1s)
−h*

2(ζ1s)[φ2(ζ1s)(cao−ζ1s)+φ2(ζ1s)]}s

Hence

That is,

(18)

becomes a local ISE optimal minimum-phase output.
Control performances with the ISE optimal minimum-phase

output of Wright and Kravaris [1992] and the above two auxil-
iary outputs (17) and (18) were compared. The same linearizing
control system as in Wright and Kravaris [1992] with β=0.01, Kc=

5 and τΙ=0.01 was used (Fig. 1). Integration step size was 0.0
and 500 steps were simulated. Partial derivatives for lineariz
controller block in Fig. 1 were calculated numerically via the ce
tral difference method with perturbation of 0.0001 to avoid m
takes in the program coding. The integral of square errors betw
ysp and y for load change and set-point change are shown in T
1. Degradation due to our approximation is not so serious 
would be compensated by adjusting parameters of the extern
controller. Control responses for step set-point changes are sh
in Fig. 2. All of them are almost not distinguishable.

CONCLUSION

Methods to obtain minimum-phase outputs approximating 
ISE optimal minimum-phase outputs of Wright and Krava
[1992] are proposed. While the Wright and Kravaris method 
no analytic solutions for processes with more than three state
iables, the proposed method has no limitations in the numbe
state variables.
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C = k1cao + k3cao
2
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2

 − k1cao

cao − x1

x2

---------------

y*  = 
− B + B2

 − 4AC
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ζ2 =0

 − 
∂

∂ζ2

-------
− B  + B2

 − 4AC
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ζ2 =0
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 − 4AC
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 − 4AC
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------------------------ − 
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2

-------------------------------------------------
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2( )/ cao − x1s( )

----------------------------------------------------------------

φ2 x1( ) = 
k1x1 cao − x1( )

k2 cao − x1( )  + k1x1 + k3x1
2

------------------------------------------------------

h*
2 ζ1( )  =  

φ'2 ζ1( ) cao − ζ1( )  − φ2 ζ1( )
φ'2 ζ1( ) cao − ζ1( )  + φ2 ζ1( )
------------------------------------------------------

y*  = x2 − 2
x2 − φ2 x1( )

φ'2 x1( )
φ2 x1( )
--------------- cao − x1( ) + 1
-------------------------------------------

Table 1. Integral of square errors between ysp and y for load and
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Change
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Output
(17)

Output
(18)

Load (ca0 : 10 to 9)
Set-point (1.117 to 1.05)
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5.478E-5

6.364E-5
5.445E-5

6.565E-5
5.392E-5

Fig. 2. Control responses with three minimum-phase outputs in
case of a step set-point change of the Van de Vusse reactio
example: solid line-Wright and Kravaris ISE optimal out-
put, dotted line-output (17), and dashed line-output (18).
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