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Abstract—A chaotic system with available prior knowledge is identified with both the sequential hybrid neural net-
work and the standard Artificial Neural Network (ANN). The identified models are validated with phase portrait, return
map, the largest Lyapunov exponent and correlation dimension instead of using Sum of Square Errors (SSE). In-
terpolation and Extrapolation capability of the models are compared. This is demonstrated for nonisothermal, irrevers-
ible, first-order, series reactionAB—C in a CSTR.
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INTRODUCTION variables since all components of the standard ANN are thought to
be partially responsible for the output of the network. Although the
Industrial chemical processes involving chemical reactions, heastandard ANN can be simplified by various pruning techniques,
and mass transfer, separations and fluid flow are inherently anduch as sensitivity analysis of weights with respect to the output
strongly nonlinear and exhibit complicated dynamic behavior. Inerror of ANN, we still cannot give physical meanings to the re-
the past, a considerable number of studies have been carried osititing network. Therefore, we cannot guarantee the extrapolation
for the processes showing multiple steady states, oscillatory behaeapability of the standard ANN beyond the limits of training data,
ior and chaos [Kim, 1998]. Most of the studies were based on theven in case the standard ANN is trained very well.
mathematical models of systems derived from governing physical Another recourse is to use the hybrid (structured) neural net-
laws. In actual industrial processes, however, it is usually very difwork approach. If prior knowledge about a system is available, it
ficult to obtain rigorous mathematical models of the systems bedis smart to incorporate the prior knowledge into the black box mod-
cause of both the complexity of the systems and the lack of availel of the system. Recently, there have been many attempts and an
able system parameters. An alternative method is to use the stanexcellent summary of the subject is given in the paper of Thomp-
ard black-box Artificial Neural Network (ANN) based only on son and Kramer, 1994. In the hybrid neural network approach, the
the input-output data of the systems. Recently, it has been widel§irst principle models from physical considerations such as mass
used as a universal function approximator when there is no prioand energy balance or empirical correlation are used as prior knowl-
knowledge about the systems because of its ability to describe noredge about a system, and the ANN model complements the uncer-
inear systems. It has been proved that the standard ANN can again parts of the first principle models. It is also possible to regard
proximate arbitrary complex functions well and describe even comthe hybrid neural network model as the ANN constrained by the
plex nonlinear phenomena such as steady state multiplicity and odirst principle models. There can be several approaches in the ac-
cillatory behavior only if the internal parameters such as the numiual implementation of the hybrid neural network, but here we deal
ber of inputs, neurons, layers and the transfer functions of neurongith only the sequential hybrid neural network approach, where
are properly chosen, and a sufficiently large data set with desirethe ANN model is combined with the first principle models in se-
property is available. This inherent capability of the standard ANNTries. In the approach, the ANN serves as a nonparametric estimator
is due mainly to the combination of nonlinear transfer functionsof the unmeasured process parameters which are the intermediate
used for each node. The standard ANN also has noise smocthingalues to be used in the first principle models, and estimates the
effect if the internal parameters are properly chosen or if the batcklependence of the process parameters on the state variables of the
mode learning of back-propagation is used. system. In this sense, the approach provides more general parame-
It has, however, many disadvantages. If the training data set dodsr estimation strategy and usually gives better estimations than
not have proper quality and the internal parameters are not propelassical parameter estimation schemes such as nonlinear program-
erly chosen, the standard ANN suffers from serious malfunctionming (NLP) optimization and kalman filter parameter estimation
For example, if the training data set is corrupted with noise and th§Psichogios and Ungar, 1992]. The approach has many advantages.
number of internal parameters is more than needed, the standaRkcause the ANN component approximates only the uncertain parts
ANN fits the noise as well as the system dynamics. It is also im-of the first principle models, the size of the ANN can be drastically
possible to realize what kind of interaction occurs between procesgeduced. Therefore, the training is more focused, and then potential
error sources are greatly reduced. As a result, the sequential hybrid
*To whom correspondence should be addressed. neural network model usually shows better performance and is
E-mail: kschang@postech.ac.kr more robust to noise than the standard ANN model. Moreover, be-
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cause the hybrid model is based mainly on the first principle mod- Neural Network
els, it can also be used for extrapolation purpose as well as interp | Parameter Estimator ] First Principle Model
lation. ! !

In any ANN, important steps are in the selection of appropriate
number of layers and of neurons in each layer, the choice of th:
transfer function used for each neuron and the training algorithm ir
order to obtain a good identified model, and also the validation of
the model. Usually, a trial and error procedure based on criterion ¢
minimization of sum of squares of ANN training errors and com-
parison of the time series of the original system with the model
generated time series by calculating the mean square error betwe
them are used for this purpose. For chaotic systems, however, th
criterion may not provide useful information. ldentified models can
show different dynamical behaviors even though the training errors ] ] ] ]
are roughly the same, and the criterion of minimization of the mearl|: 9. 1. r?g:ior?;t'c representation of the sequential hybrid neural
square error between the time series is just a necessary condition '
for an identified model to capture the dynamical properties of the
system; it is definitely not sufficient. In the case of a chaotic sys-ate values to be used in the first principle model. The inputs to the
tem, although the initial prediction of an identified model can be ANN component are current state variables and current manipu-
very accurate, predicted values diverge from the original time selated variables, and then the ANN estimates current process par-
ries at much later prediction times no matter how good the modeameters. The obtained parameter values are considered as constants
is. This is due to the inaccuracies in the model and the existence dletween sampling instants. Then the parameter values with the in-
positive Lyapunov exponents. Because nearby trajectories divergputs to the ANN component are propagated through the first prin-
locally in state-space for a chaotic system, the initial error due tcciple model. The outputs of the first principle model are the es-
the modeling error, however small, is magnified. The model genertimates of the process state variables for the next sampling time.
ated time series thus becomes completely different from the origiThe schematic representation of the sequential hybrid neural net-
nal time series in the long run. Therefore, more sophisticated criwork is given in Fig. 1.
teria are required. One of the criteria is to compare attractors (phade Modified Error Back Propagation
portraits), and reconstructed attractors (or return maps, the 2-dimen- In the standard ANN, weights are updated by using the error sig-
sional projection of reconstructed attractors). Because there existsrals between the outputs of the ANN and the target values as dri-
smooth invertible transformation between the original states andring force. One of the most famous methods is the error back-pro-
the reconstructed states with appropriately chosen delay time arhgation algorithm [Runmelhart et al., 1986], where the output er-
embedding dimension, we can check if an identified model capfors of the ANN are back-propagated through the network so that
tures the original dynamic behavior of the system by comparingveights are updated in the local direction of steepest descent of the
the reconstructed attractors. In many cases, however, although tlegror signals. In the sequential hybrid neural network, however, the
location and the overall shape of the attractors look similar and thustandard error back-propagation algorithm cannot be applied di-
the dynamic behavior of the system seems to have been reasamctly, because the target values of the outputs of the ANN compo-
ably captured, detailed characteristics such as the density of trajeaent are unmeasured process parameters and therefore the output
tories in some region of the attractor and the local divergence raterrors of the ANN component are not directly available. Therefore,
of nearby trajectories are somewhat different. Therefore, other crithe modified error-back propagation algorithm [Psaltis et al., 1988]
teria like Lyapunov exponent and correlation dimension that quanis introduced, where the errors between the outputs of the first prin-
tify numerically the matching between the dynamic behaviors areciple model part (the plant) and the target values of the process state
also required. From the criteria, we can determine and validate theariables are translated into the error signals for the outputs of the
optimal ANN model describing the system’s chaotic dynamical be-ANN component by Jacobian (differential gain) of the plant. In the
havior. algorithm, the plant can be thought of as an additional, but unmod-

In this paper, we identify a chaotic chemical reaction system withifiable, layer since the output errors of the plant are propagated back
both the sequential hybrid neural network and the standard ANNthrough the plant without modifying anything. The translated error
and validate the identified models with the criteria used for nonlin-signals are then used as the driving force to update the weights of
ear dynamics instead of sum of square error (SSE). Then we conthe ANN component. More details about the modified back propa-
pare the interpolation and the extrapolation capability of the opti-gation algorithm are given as follows. The objective function to be
mal sequential hybrid neural network model with those of the op-minimized can be expressed as
timal standard ANN model.

. xftH]
Piant Dynamic [— X{t+1]
Equation

s x[t+]

k

I=25 Ay &)

THEORETICAL BACKGROUNDS «

where y and ¢ denote the k th plant output and the k th target

In the sequential hybrid neural network, the ANN component value, respectively. If we differentiate the objective function (J) with
estimates the unmeasured process parameters which are intermedispect to the ANN's weight between the i th neuron of th tm
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layer and the j th neuron of the m th laye], we obtain
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whereg,=d~Y, is the k th plant output error and m denotes the fi-
nal layer of the ANN. From the chain rule, the gradient becomes
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where), is the j th output of the ANN, that is the j th unmeasured
process parameter, adyl/dA, is the differential gain of the plant.

If we define p and g as the input to the neuron and the output from
the neuron, respectively, the weighted sums of the outputs of th
m-—1 th layer, , and the output of the i th neuron of the m th lay-
er, d can be written as

pr=> wig" g =f(p") @)

where f'is the transfer function of the j th neuron of the m th lay-
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tions [Kahlert et al., 1981]:

ax _

gt ~1 7 Dax, exp{l +sxj (10)
d_X2 =—x,+ X3
i Dax, ex;{l Tex } DaSx ex;{l Tex } (11)
dx
d—; =—x, *DaBx, ex;{l +sxj
-DaBo Sx, exp{lli);( } —B(x: ) (12
3

where the variables xx, denote the dimensionless concentrations
"of species A, B, s the dimensionless temperature in the reactor,
Da is the Damkshler numberis the dimensionless activation en-
ergy, S is the ratio of the two rate constaxts, the ratio of ac-
tivation energies, B is the dimensionless adiabatic temperature rise,
a is the ratio of heat effect, is the dimensionless heat transfer
coefficient, and s the dimensionless coolant bath temperature and
can be viewed as an externally manipulable variable. The system
is known to show deterministic chaos when the system parameter

er. If we incorporate the above notation into the gradient expresyalues are Da=0.26=0.0, S=0.5k=1.0, B=57.770=0.42, 3=

sion,
03 a m m a - m
zkyk- EA T e =AY 5)
ow;
where, 3" =f"(p" )Zskayk
And therefore the amount of weight updated is
oy =022 =aqr gy G

ij

7.9999, and 0.0, that is, when there is no control action. Fig. 2-3

show the 3-D phase portrait of the system and the 2-D projection
of the 3-D phase portrait, respectively. The simulation was carried
out on IBM RS6000/370 using the IMSL subroutine ode_adams_
gear. Fig. 4 shows the second return map of the state vagiable x

wherea is the learning rate. For all other layers, the gradient of the
objective function with respect to the weight and the amount of
weight updated can be derived from the similar procedure as abov
and the results are given as follows.

aJ (m 1" m . m — m 2xm-1
"W, (o) 7
wn Z @
where, & =—f"" (p" )i Y &'wj’
i Fig. 2. 3-D phase portrait of the system.
- 0J
MWDt =—a =aqp et 8
In numerical calculation, the differential gady,/dA;, is usually 0.16}

approximated by determining how the plant outputs change as th
unmeasured parameters change at the operating point, that is, t
numerical derivative.
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We consider the dynamic behavior occurring in a honisotherma
CSTR with two irreversible consecutive first-order reactions; A
B—C,; the first exothermic, the second endothermic. The systerm.
can be described by the following dimensionless differential equafig. 3. x—x, plane projection of 3-D phase portrait of the system.
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9 equation is also carried out by using numerical continuation tech-
nigues which are implemented in the software package AUTO
8} [Doedel, 1986]. From the analysis, we obtain the bifurcation dia-
gram as shown in Fig. 5. All the detailed analysis is given in the
7r - paper of Kim, 1998.
g 6r SYSTEM IDENTIFICATION
2 5| o .
We assume that the first principle model of the system in the
al same form as above is available from the mass and energy bal-
ance. All of the parameters are assumed to be available from the
at individual experiments or the literature except the ratio of the two
rate constants, S. The parameter values are Das8(®26,k=1.0,
2 ; . B=57.77,0=0.42,3=7.9999, which are the same values as in sec-
2 4 6 8 10 . . . . .
X3[K] tion 3, and S is assumed to vary in complex ways with chemical

Fig. 4. Second return map of the system.

summarized in Table 1. The bifurcation analysis of the systemThe inputs to the ANN component are the state variablesand

Table 1. Summary of the largest Lyapunov exponent and corre-

lation dimension

699

composition and temperature of the system, that is, the state vari-

ables. Here we consider only the case with no control action (u=0).

First, we deal with the sequential hybrid neural network which
The largest Lyapunov exponent and correlation dimension are cabtilizes the above first principle model as the prior knowledge. In
culated for the time series data of the system using in-house inthis method, the dependence of the ratio of the two rate constants,
plementations of the Wolf's algorithm [1985] for the largest Lyap- S, on the state variables is described by the ANN component, and
unov exponent and the Grassberger and Procaccia algorithm [1988]en the ANN component is combined with the first principle mod-
for correlation dimension. The obtained values are 0.00446 for thel to compose the sequential hybrid neural network. We use the
largest Lyapunov exponent and 1.535 for correlation dimension athree layer feed forward neural network as the ANN component.

Xs. Each neuron in the hidden layer has the sigmoidal activation

function, while the linear activation function is used for the output

layer. The biases of the neurons in the input layer are assumed to

Lyapunov exponent dimension

The largest Correlation

10

Ongmal system. _ 0.00446 1.535 tive learning rate to increase the speed and the performance. Mo-
Hybr_|d modpl with h=4, 0.00446 1541 mentum helps the network avoid being trapped into local minimum,
(trained with full data) and the adaptive learning rate accelerates the training speed by
Hybrid model with h=7, 0.00436 1.854 keeping the learning step size as large as possible while keeping
(trained with full data) learning stable. The training data are obtained by integrating the
Standard ANN with h=8, 0.003942 1.402 system equations in section 3 and by sampling at every 0.001 di-
(trained with full data) mensionless time. The training is carried out on DEC Alpha Server
Hybrid model with h=4, 0.005129 1.301 2100 using MATLAB. We adapt only the number of hidden nodes
(trained with partial data) and determine the optimal model which best describes the chaotic
trajectory of the system according to the criteria of phase portrait,
return map, the largest Lyapunov exponent and correlation dimen-
—— stable steady state
wm unstable steady state
+ stable periodic branch
+  unstable periodic branch 10-
Y s Hopfbifurcation
‘x,\ A period doubling

" Fig. 6. 3-D phase portrait of the hybrid model with h=4 (trained

Fig. 5. Bifurcation diagram of the system. with full data).

Korean J. Chem. Eng.(Vol. 17, No. 6)

be zero. We train the sequential hybrid neural network by the mod-
ified error-back propagation algorithm proposed by Psaltis et al.:
however, we improve the algorithm with momentum and an adap-
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0.02— . . . Fig. 9. 3-D phase portrait of the hybrid model with h=7 (trained
0

0.05 0.11 0.15 0.2 with full data).
X

Fig. 7. x—x, plane projection of the 3-D phase portrait (The hy-

brid model with h=4, trained with full data). 0.2
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3 Fig. 10. x—x, plane projection of the 3-D phase portrait (The hy-
2 ) ) . brid model with h=7, trained with full data).
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Ak o
Fig. 8. Second return map of the hybrid model with h=4 (trained
with full data). 8r
sion.

Among an enormous number of candidates, we find two candi-
dates by trial and error which seem to describe the chaotic beha
ior of the system closely. The numbers of hidden nodes (h) are -
and 7, respectively. Fig. 6 denotes a 3-D phase portrait of the hy
brid model with 4 hidden nodes, and Fig. 7 is thexxplane pro-
jection of the 3-D phase portrait. Fig. 8 shows the second returt
map reconstructed from the time series data of the state variab
Xs. Figs. 9-11 denote the corresponding results when the numbe r
of hidden nodes is 7. The figures say that the hybrid model with ¢ (K]
hidden nodes describes the chaotic dynamics of the system better ) ) )
than the hybrid model with 7 hidden nodes. In addition, we also'9- 11 Second refum map of the hybrid model with h=7 (train-

. . - ed with full data).
calculate the largest Lyapunov exponent and correlation dimension
to check the matching between the dynamic behaviors quantita-
tively. The calculations are carried out by using the same method'he inputs to the standard ANN are the state variables and
as before. The obtained values are summarized in Table 1. From,. All activation functions, biases and the training data set used are
the results, we conclude that the hybrid model with 4 hidden nodesame as before. Levenberg-Marquardt optimization algorithm was
is the optimal model and, moreover, the model describes the chaised to train the standard ANN, and the training was carried out on
otic dynamics of the system almost perfectly. a DEC Alpha Server 2100 using MATLAB. We adapt only the

Next we compare the performance of the obtained optimal hy-number of hidden nodes and determine the optimal model which
brid model with that of the optimal standard ANN model. We usebest describes the chaotic trajectory of the system according to the
the three layer feed forward neural network as shown in Fig. 12criteria of phase portrait, return map, the largest Lyapunov expo-

x3[k+2]

8 10
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Fig.

Fig. 13. 3-D phase portrait of the standard ANN with h=8 (train-
ed with full data).

9

x3[k+2]

2 4 6 8 10
x3[K]
Fig. 15. Second return map of the standard ANN with h=8.

standard ANN with 8 hidden nodes using only the first one-fifth of
the original training data set, and then simulate the identified mod-
els up to the same final time as the case of the original training data.
The hybrid model shows quite good extrapolation capability as
shown in Figs. 16-18 and Table 1; however, the standard ANN can-
not extrapolate at all. Therefore, we can conclude that the sequen-
tial hybrid neural network shows better interpolation and also far

0.18 , —— . better extrapolation capability than the standard ANN.

0.18}
0.14}
0.12}

N 04t
0.08} §
0.06}
0.04}

0.02

0 0.05 0.I1 0..15 0.2
x1

Fig. 14. x—x, plane projection of the 3-D phase portrait (The  Fig. 16. 3-D phase portrait of the hybrid model with h=4 (trained
with partial data).

standard ANN with h=8, trained with full data).

nent and correlation dimension as before. From the extensive tric'
and error procedure, the optimal model is obtained when the nurr
ber of hidden nodes (h) is 8 among several candidate models ha
ing roughly the same SSE. The 3-D phase portrait ang-s X
plane projection are shown in Figs. 13-14, respectively. The sec
ond return map is shown in Fig. 15. We also calculate the larges
Lyapunov exponent and correlation dimension to check the match
ing between the dynamic behaviors quantitatively. The calculations
are carried out by using the same method as before. The obtaine
values are summarized in Table 1. The results say that the seque
tial hybrid neural network shows much better interpolation capa-
bility than the standard ANN although the standard ANN also de-
scribes the chaotic dynamics of the system quite well.

When we compare the extrapolation capability of the models, the

x2

0.18
0.16
0.14

0.12¢

1
o.08}
0.06 ‘

0.04 W&

0.02
0

0.05 0.1 0.15
x1

0.2

advantage of the sequential hybrid neural network becomes morgig. 17. x—x, plane projection of the 3-D phase portrait (The
hybrid model with h=4, trained with partial data).

obvious. We train the hybrid model with 4 hidden nodes and the

Korean J. Chem. Eng.(Vol. 17, No. 6)
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Fig. 18. Second return map of the hybrid model with h=4 (train-

If prior knowledge about a system is available, it is smart to in-

x3[k+2]

H.J. Kim and K. S. Chang

6 8 10
x3[k]

ed with partial data).

CONCLUSION

qr : output of the i th neuron of the m th layer

fl : transfer function of the j th neuron of the m th layer
a : learning rate

In Section 3

Xy : dimensionless concentrations of species A

X5 : dimensionless concentrations of species B

X3 : dimensionless temperature in the reactor

Da : Damkdéhler number

€ : dimensionless activation energy

S : ratio of the two rate constants

K : ratio of activation energies

B : dimensionless adiabatic temperature rise
a : ratio of heat effects

B : dimensionless heat transfer coefficient

u : dimensionless coolant bath temperature
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