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Abstract—In this paper, we present a theoretical analysis of the frequency response of a continuous-flow adsorber
with periodic modulation of the inlet flow-rate to measure multicomponent diffusion kinetics in porous media. Micro-
pore diffusion kinetics is assumed for the intraparticle mass transfer mechanism and three different shapes of micro-
particle are considered: slab, cylinder, and sphere. Simulation results for a binary system show that the frequency re-
sponse of the faster diffusing component is strongly influenced by the slower component. The out-of-phase characteris-
tic function of the frequency response of the faster diffusing component shows maximum and minimum points. The
deviation between these maximum and minimum values becomes smaller when the cross-terms of diffusivity go to
zero, while the deviation becomes larger when the cross-terms of the adsorption equilibrium constant go to zero. Con-
trary to the behaviour of the out-of-phase function of the faster diffusing component, the out-of-phase function of the
slower diffusing component shows no extrema at all. The in-phase characteristic function of the frequency response of
the continuous-flow adsorber is not affected by the overflow parameter.
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INTRODUCTION b]. The main advantages of FR using modulation of the inlet flow-
rate over the conventional FR using modulation of the reservoir vol-
Because of its importance in the study of catalytic or noncata-ume are the following [Park et al., 1998a, b]:

lytic gas-solid reactions, the problem of gaseous diffusion kinetics

in porous media has attracted much attention in the literature. As a - High frequencies of the inlet molar flow-rate modulations are

result, a variety of methods for investigation of the kinetics haveeasy to obtain in practice, contrary to volume modulations.

been presented. The mass transport phenomena in porous media Large relative amplitudes of the inlet flow-rate can be used.

include contributions from bulk, Knudsen and pore diffusion, and

viscous flow, which are further complicated by interactions with  The analysis of the multicomponent diffusion in a porous media

adsorption and surface diffusion on the internal surface of the porrequires knowledge of both the main-terms and cross-terms of dif-

ous media. In order to determine reliably the contribution of eactfusivity. However, our understanding of multicomponent diffusion

transport mechanism and the relevant parameters, some experimes-very limited [Qureshi and Wei, 1990; Markovska et al., 1999],

tal techniques are needed. To achieve this goal, one of the follonand a very limited number of papers for the FR of multicomponent

ing techniques can be used: gas chromatography, diffusion celtjiffusion are available [Yasuda and Matsumoto, 1989; Sun et al.,

gravimetric method using a microbalance, zero length column, and994].

differential adsorption bed. The advantages and disadvantages of The objective of this paper is to present a theoretical analysis of

these technigues are reported in the literature [Park et al., 1996]. the frequency response of a continuous-flow adsorber with peri-

Recently, a frequency response (FR) method was developed, fadic modulation of the inlet flow-rate for the multicomponent dif-

the investigation of the diffusion and adsorption kinetics in porousfusion in porous media. Micropore diffusion kinetics is assumed

media [Jordi and Do, 1992, 1993, 1994; Park et al., 1998a, b; Pefor the intraparticle mass transfer mechanism and three different

kovska and Do, 1998; Sun et al., 1993, 1994; Sun and Bourdinshapes of microparticle are considered: slab, cylinder, and sphere.

1993; Sun and Do, 1995, 1996; Yasuda and Saeki, 1978; Yasuda,

1982; Yasuda and Sugawara, 1984]. The potential of this method PROBLEM FORMATION AND

was extended to systems with chemical reactions [Yasuda, 1989; MATHEMATICAL MODEL

1993; Yasuda et al., 1995]. In the FR method the frequency re-

sponse is usually investigated in a batch system in which the gas Consider a continuous-stirred gas reservair, in which a known

pressure or concentration is changed by a forced periodic modulamount of porous particles is loaded. The particles are assumed to

tion of the reservoir volume, although FR in continuous flow sys-be of uniform size. At time t=0, a stream of an ideal gas mixture of

tems with periodic modulation of the inlet gas concentration [Ngain components is introduced to the reservoir with periodic flow rate

and Gomes, 1996] or the inlet molar flow rate [Park et al., 1998aand at the same time a flowing stream out of the reservoir is started.
We assume that the system is isothermal, and that the diffusion par-
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a porous patrticle for the micropore diffusion kinetics [Park et al., matrix, respectively. For a binary system} &nd [Z] are:
1998a] is:
A O Z1Z,
0, 011006 = =2 ®
at [D]rgar ar D (1) O )\2 ZleZ

whereC, is a vector of dimension n denoting the concentration in THen We can obtain for the binary system:

the micropore within particles and [D] is a square matrix of dif-
fusivities in which the off-diagonal terms are generally non-zero; r
is the coordinate variable of microparticles within a particlecand

1
)\1,2 :_[Dll +D221’\/(D11 _D22)2 +4D12D21] (10)

705

is a geometric factor of the particle (O for slab, 1 for cylinder and 2 D, -D,
for sphere). The initial and boundary conditions are (2] = A, =Dy = 1 ) (11)
D D
tt=0 C,=0 2 21 Do
2 g @ A1 7Dy, ! 3 !
atr=0, ez ®)
0r 1 Dy,
- - a1 )
atr=R, C,=[K]C @) (2] = e (12)
1 +D12D21 -D,,
whereC is the vector of dimension n denoting the concentration in & | 8 1
the reservoir and [K] is a square matrix of adsorption equilibrium
constant. The mass balance around the whole reservoir is 8=A; =Dz, =~(A; ~Dyy) (13)
d<C > 2. Decoupling of Diffusion Equation
=aX(@t)y - 5 ;
B Xy e ®a) In order to decouple Eq. (1) we introduce veatosuch that
<C,> =:a+1 (9C, dr (5b) CumlZu (14)
" Then Eq. (1) can be decoupled as
wherey is the vector of dimensiamdenoting the mole fraction in
the inlet stream aral is the intensity parameter measuring the mag- aa‘:k =S = Bl"%uk% (15)
nitude of the molar supply into the reseniis the capacity par- r=or
ameter, and is the overflow parameter, which are given as fol- (k=1, 2,A, n)
lows: The initial and boundary conditions become
NoaVe o og - -
aV,BV,yV att=0 ¥=0 (16)
X(t) in Eq. (5) is the forcing function, which defines the form of  at r=0, %—“k:o (17)
the periodic modulation of the inlet flow rate. We use the sinusoi- '
dal wave function: atr=R, u=[Z]'[K]C (18)
X()=1+vsinox ) 3. Transfer Function, Q(s)
The initial condition for Eq. (5) is .Now the solution in Laplace domain of Eq. (14) can be ob-
tained as:
att=0 C=0 7) _
C.=[Z]u (19)
SOLUTION OF THE MODEL EQUATIONS where
The frequency response of the above model can be analytically g=dia {f Eg S))}[z]’l[K]é (20)

obtained by using matrix manipulation. The key point is to diago-

nalize the diffusivity matrix [D] in terms of the eigenvalues and eig- The function f(r, s) in Eq. (20) is given by:

envectors. With the diagonalization of the diffusivity matrix, the n

coupled diffusion equations [EQ. (1)] can be decoupled into n in- g %
DCOS [

dividual equations, which can be easily solved as in the case of pure o &
component systems by using the Laplace transform, since the mod-
el is linear. fi(r,s) = D| Bl[ o=1 (21)
1. Diagonalization of Diffusivity Matrix
First we diagonalize the diffusivity matrix: smh% [
[Z17DIIZI=[ Al ®)

where ]\] and [Z] are the eigenvalue matrix and the eigenvector From Eq. (20) the volumetric average@yr  can be obtained as:
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<C,>=[T]|C
where

[T]=[Z]diag(F(s)[Z] (K]
The function F(s) is defined by:

sO
tan 2
F( - RJ kD f _
(s) ——S oro =0
Ny
k
0 sO
0 g '%u/;km
F(s) =2—— foro =1
s s
Rk, 2
k k
Scottdr [SH-10
DRSO e
Fk(S)-3% = % foro =2
O %”A/)\:km O

Eq. (22) can be rearranged to obtain the transfer function for the

particle:
<C,>=diag( Q(s))C

I.-S. Park et al.

(22)

(23)

(24a)

(24b)

(24c)

(25)

where the element @f the diagonal matrix diag((3)) can be ob-

tained as:

Q9 :sz.%%

The expression fa€./C,  will be given in the next section [see

(26)

Eq. (32)]. As shown by Eq. (25), The transfer functigs)@elates
the bulk concentration in the gas phase to the mean concentratiddubstituting Eq. (32) into Eq. (26), we obtain the exact expression

Table 1. Transfer function Q(s) for binary systems

in the adsorbed phase. We note that when all the cross-term ele-
ments of matrices [D] are zero(§) reduces to the functio(s).
Note that the function {5) is the particle transfer function in case
of pure component systems [Park et al., 1998b].
4. Overall Transfer Function for Adsorber, G(s)
The Laplace transform of Eq. (5) is:

s(C +p<C,>) =aXy -yC @7)
Substituting Eq. (25) foxC,> , we have
S%HY%I] +1 er/Sdlag( Q(s))% =aXy (28)

Thus, the overall transfer function for the kth component can be
obtained as

- G 1
G(s)E—=~= 29
O X 17Vs+BO9] #9)
To determineC/C, in Eq. (26), we rearrange Eq. (27) after sub-

stituting Eq. (22) foxC,> as follows:

S%”}s{%'“lw/ [T =aXy; %1”% =aX[Bly  (30)

where square matrix [B] is defined by

B

[(B] =[] +1+V/S[T] (31)
Then we can obtain

él _ n n

= _ZlBuyj/ZlBMyj (32)

k)

QO =Tl +TlS L B =Tol) +Tul9Re(9) (342)
Q) =TSR T =Tl RS +Tiel9) (340)
— l i D12K21 @12D21 12K21
T11( )_ 11 1( )+ 2 K~ 2( ) (34C)
> 1+D125>21E< Y05 °
— l i DlZKZZ @12D21 12K22
le( )_ 12 ( )+ 2 KlZ ( ) (34d)
> 1+Du?2ﬁ< ¥ °
T DlD =259 PR P 9 | (34)
l+ 127211 .
Tl =55 B 249 P2+ 29 | (349
1+=— -
Buy() = By( )(1 +T,o9)) (349) Bis) = By( )( T1(9)) (34h)
B2u(s) :m(_T21(S)) (34i) Bu(s) :m(l +T1(s)) (34))
where
8,9 =149+ T AL 9T - frome (34K)
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of Q(s): E B I%F%

nO o n O 3, =2ImF——= (39b)
k = E’I-kl BI] ]/ Bk] jD 33 '
Q9 =2, 002 B/ 2 By (33) %PIO%J@E
The transfer functions (3) for binary systems are given in Table 1.
The overall transfer function G(s) relates the forcing function to Foro=2:
the gas phase concentration in the reservoir. The difference between 0 0
the semibatch adsorbgr=0) and the conventional batch adsorber 0 smh%h, A/Z’D—sm%ﬁ FD 0
can be illustrated if the transfer function G(s) in Eq. (31a) is rear- - % %
ranged and put in a product of two functions as follows [Park et O F A/Zog_ FD 0
al., 1998al; éﬁq HcostiR, 55 -cosR g
G()=G(S) - G.() (35) . ; ; .
. W, W
where ({(s) and G (s) are defined by . SR, _D+S'”H?~J:D 5 .
8, =30 >0
G(9=2 (36) i [ costfR, [225-co g [2] & F’ oo
1 (390)
CT O e armserir-v=ary @7
1+y/s+BQYs) Now the overall in-phase and out-of-phase characteristic func-

The first function @s) is simply the transfer function of a physical tions for the adsorber are defined as:

filing reservoir, defining the relation between the inlet flow rate

ay,X and a hypothetical adsorbate concentration in the reservoir in e« —Re%m Q(s) +L J (40a)

the Laplace domain which would be obtained if no adsorbent and Bs

no outlet flow were present. The second functip($} defines in

which way this adsorbate is distributed between the gas phase and N - _ |, HimiQk(S) +1}% (40b)

the outlet flow. When no outlet flow was present (i.e., wj), B 0

the second function G(s) reduces to the transfer function of the

conventional batch adsorber containing adsorbent [Park et al] The overall characteristic functions for binary systems are given in

1998b]. Table 2.

CHARACTERISTIC FUNCTIONS OF SIMULATION OF THE FREQUENCY RESPONSE

FREQUENCY RESPONSE
The data of Chen and Yang [1992] for the surface diffusion of

The in-phase and out-of-phase characteristic functions for théC: and GHs in 4A zeolite were used to simulate the characteris-
element Ks) can be defined as: tic function of the frequency response. These data are also used in
Sun et al. [1994] to simulate their model. Values of parameters of

8r 71, =lim Fi(s) (38)  this system are summarized below:
Then, we can obtain: 0=2 (spherical microparticle);
Foro=0:

v=10"m’ V,=3x10"m’
SlnhDR, 2wD+S n%{ /200D R=17x10°m v,=0.33

- -/ 0.38 -0.1
2w 2w 20(] T =298 K =
% A/7 %COS%R( +°°%Ru/7 ' {—0.083 o.osja
200 200 -14 <1
sthRJ sm%?,,f (D] =|L:4 10 1.1x10
(392) 3.7x10" 1.2x 10"
"R F’E{wsrgaﬁmco%aﬁﬂ | | g
Fig. 1 shows the in-phase and out-of-phase characteristic func-

tions of the frequency response for the binary mixture ofaD@®

Foro=1:

C,H; in 4A zeolite when the outlet stream of the adsorber is closed

O o (i.e., wheny=0). On the whole, similar observations to those of Sun

% 1 'ﬂ%/;k et al. [1994] are shown in this figure: (1) The faster diffusing com-

Or=2Re——=———1[] ponent (CQ is strongly influenced by the slower component. (2)

10 1T ; .
%huA/)\: lopRu 3.0 The out-of-phase function of G8 negative near the resonance fre-
0 ‘ “0 guency of GHg. (3) The in-phase function has an overshoot near

Korean J. Chem. Eng.(Vol. 17, No. 6)



708 I.-S. Park et al.

Table 2. Overall characteristic functions of frequency response for binary systems

%Rl =Trat (TrRro1 ~ TR 20) (41a)
it = 4 (TR T Re) +2 (41b)
B 111 rR12M,210 T 2Rk 2 Bw
%Rz =Trat (Tr2Rr12 " Ti21R112) (41c)
r]_éz =T+t (TraRi2 7T 2RR 1) + Ey_ (41d)
— 1 [ DKy @12D21 D.K,y
Tru _l . D12D21|_%(11 + 5 et 0 & Ky~ 5 R,2:| (41e)
2
— 1 [ DKz E 2D21 DKy
T|,11 _l +D12D21|_%(11 + 6 11 + K11 6 I,2:| (4lf)
2
— 1 [ DKy Elz 21 DKy
TR,12 _1 N D12D21|_%(12 + 5 ,1 62 K12 5 R,2:| (419)
5
— 1 [ DKz DDy, DKy
TI'12_1+D12D21|_%(12+ 5 §|,1+D 52 K1z 5 |,2:| (4lh)
1 DKy Elz 21 DKy ;
TR n= +D12D21|_%(21 %RZ K = 5 R,1:| (41|)
D,,K D,,K .
T|,21 = D D L%(Zl = 11§| 2 ILHKzl-'— 216 11% 1} (41])
1221
1+—=—= 5
1 D21K 12 Elz 21 DKy
TR 22 1 +DuDz D12D21|_%(22 %R 2 K = 6 R,1:| (4lk)
D,,K D D,,K
TI 22 l D D21|_%(22 2 12§| 2 %ZHKZZ +%12§|,1} (41')
[y: *B(YiTr2e 7Y2Tra Y2 TB(Y2Tr1 ~YiTra0)] +|32§’1T|,22 Yol +|3l00%,2-rl'11 “YiTia +|3lw%
Rei2= ﬁ (41m)
[y2 +B(Y2Trus _y1TR,21)]2 +|328’2T|,11 “YiTia +|3le
BLy. *B(Y:Tri ~YiTr20)] 5’1T|,22 “YoTie +|3_¥0%_|3[y1 +B(Y1Tr22~Y2Tr12)] 5’2T|,11 “YiTi 1t Blw%
R .= 2 (41n)

[y2 +B(y2TR,11 _yl-I-FZ,Zl)]2 +BZ%ZTI,11 _leI,Zl +Bl(k)%

(Y2 +B(Y2Tru "YiTr2) Y1 FB(YiTr2 ~Y2Tr12)] +p? 2T 7YaTa +L 1Ti22 Yol + L0
Bw Bl
Reo1 = - 410)
[y +B(YiTree _szR,lz)]z +|325’1T|,22 Yol t B_(D%

Bly: tB(YiTr2 ~Y2Tr1)] %’le,u “YiTia +Ey(_*)%_|3[y2 +B(Y2Trii~YiTr20)] %llTI,ZZ =YoT 2% Ey(_*)%
R.a= E (41p)
[y *B(YiTrez _szR,lz)]z +BZB’1T|,22 Yol 112 +EYJ)D

the crossover frequency between the out-of-phase functions of twother. The in-phase function of each component does not exceed
components. unity and the out-of-function is always positive.

Fig. 2 shows the frequency response of the semibatch adsorber The in-phase and out-of-phase functions for the continuous-flow
(y=0) when the cross-terms of diffusivity and equilibrium constant adsorber are shown in Figs. 3 and 4, respectively. As shown in Fig.
are zero (R=D,,=0 and K,=K,,=0). In this case, the behaviour 3, the value of rise frequency of the in-phase function, at which the
of the frequency response of each component is independent of eaithiphase function starts to rise above unity, is largely affected by
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in-phase

out-of-phase
10° 104 102 102 101 100 10!
Frequency (rad/s)

Fig. 1. Normalized in-phase and out-of-phase functions of frequ-
ency response for the reference case [G@solid), CH,

(sho

1.0

0.4

Normalized Functions

02

0.0 . - - - -
105 104 103 102 10 100 101
Frequency (rad/s)

0.8 -

0.6 -

rt dash), Total (long dash)].

Fig. 2. Normalized in-phase and out-of-phase functions of frequ-
ency response for B=D,=K,,=K,,=0 [CO, (solid), GHs
(short dash), Total (long dash)].

4.0
3.5
3.0
25
20
15
1.0
0.5
0.0

Normalized Functions

CHg

107 108 108 104 103 102 101
Frequency (rad/s)

Fig. 3. Normalized in-phase functions of frequency responsy [
3=0.0001 (solid)y/3=0.001 (dash)].

the overflow parameter. However, the decreasing part of this func
tion seems to be unaffected by the overflow parameter. As we ca
see in Fig. 4, the out-of-phase function is much more sensitive tc
the overflow parameter than the in-phase function. The out-of-phas
function for CQ shows a maximum and minimum in Fig. 4. At

1.0

0.5

Normalized Functions

0.0

104 103 102 101 100 10!
Frequency (rad/s)

Fig. 4. Normalized out-of-phase functions of frequency response
[yB=0.0001 (solid line)y/3=0.001 (dash)].

viation between minimum and maximum points of the out-of-phase
functions becomes smaller and smaller, then the extrema them-
selves vanish at some higher valug. éflence, it might be impor-

tant to keep the overflow parameter at lower values when deter-
mining adsorption parameters using the minimum and maximum
properties (e.g., using deviation of concentrations or frequencies be-
tween minimum and maximum points) of the out-of-phase func-
tions [Park et al., 1998b]. On the other hand, the out-of-phase
function for GH, for the parameter values of Fig. 4 shows no ex-
trema at all. This is because the overflow process rather than the dif-
fusion process in this case limits the out-of-phase functiogHgf C

Fig. 5 shows the out-of-phase function of the continuous-flow
adsorber when the cross-terms of diffusivity and equilibrium con-
stant are zero (B=D,,=0 and K,=K,,=0). Note that the in-phase
function for this case is not affected by the overflow parameter (not
shown in the figure). Comparing the curves in Fig. 5 with those in
Fig. 4, we see that the minimum points of the out-of-phase func-
tions of CQ and total concentrations appear at slightly higher fre-
guencies in case of non-zero cross-term diffusivities (i.e., in case of
Fig. 4) when the overflow is relatively small.

Fig. 6 shows the out-of-phase function for the continuous-flow
adsorber when the cross-terms of diffusivity are zero. The in-phase
function in this case is not affected by the overflow parameter (not
shown in the figure). Note that the same result was obtained in case

1.0

0.5

Normalized Functions

0.0 . =
104 103 102 10t 100 10!
Frequency (rad/s)

the minimum point of the out-of-phase function, the rate of in- g 5 Normalized out-of-phase functions of frequency response
crease in the diffusion term equals the rate of decrease in the over-  for D,,=D,,=K,,=K,,=0 [y/B=0.0001 (solid),y=0.001

flow term. As the value of overflow paramejencreases, the de-

(dash)].

Korean J. Chem. Eng.(Vol. 17, No. 6)



710 I.-S. Park et al.

1.0

0.5

Normalized Functions

0.0

104 103 102 10! 10° 101
Frequency (rad/s)

Fig. 6. Normalized out-of-phase functions of frequency response

for D,,=D,,=0 [y{B=0.0001 (solid)y/B=0.001 (dash)]. C.G

<C>

of Fig. 5 (i.e., D,=D,,=0 and K,=K,,=0). Hence we can conclude D
that the in-phase function of the continuous-flow adsorber is identi+(s)
cal with that function of the semibatch adsorber when the diffusionG(s)
interference is neglected (i.e.,,BD,,=0). K

Other effects of the diffusion interference can be understood byN
comparing Fig. 6 (R=D,,=0) with Fig. 4. Due to the diffusionin- ¢
terference (in case of Fig. 4), the minimum point of the out-of-phaseQ(s)
function appears at much lower frequency (for, @l total con-  r
centrations), and the deviation between the maximum and the mirR,,
imum becomes much larger. s

Effects of equilibrium interference can be understood by com-t
paring Fig. 6 (.=D,,=0) with Fig.5 (0,=D,,=0 and K,=K,,=0). T(S)
Due to the equilibrium interference (in case Fig. 6), the minimumV, V,
point of the out-of-phase function appears at much higher fre-X(t)
guency (for CQand total concentrations), and the deviation be-y
tween the maximum and the minimum becomes much smaller.

faster diffusing component shows maximum and minimum points.

Due to the diffusion interference, the minimum point of the out-
of-phase function appears at much lower frequency, and the devia-
tion between the maximum and the minimum becomes much lar-
ger. Due to the equilibrium interference, the minimum point of the
out-of-phase function appears much higher, and the deviations be-
tween the maximum and the minimum become much smaller.

The in-phase characteristic function of the frequency response
of the continuous-flow adsorber is not affected by the overflow par-
ameter when the diffusion interference is neglected.

NOMENCLATURE

: concentrations in the reservoir and micropores, respec-

tively [mol/m?]

: volumetric average of mol/m’]

: effective diffusivity in micropores [Ag]

: transfer function, defined by Eq. (24)

: overall transfer function, defined by Eq. (29)
: adsorption equilibrium constant

: inlet molar flow rate to reservoir [mol/s]

: volumetric overflow rate from reservoir sl

: transfer function for the particle, defined by Eq. (26)
: coordinate variable of microparticle [m]

: equivalent radius of microparticle [m]

: Laplace variable [1/s]

: time variable [s]

: transfer function, defined by Eq. (23)

: volumes of reservoir and micropores, respectivefy [m
: nondimensional forcing function

: molar fraction of inlet stream to reservoir

Due to these compensating effects of diffusion and equilibriumGreek Letters

interferences, the minimum points of the curves in Fig. 5 appean
at comparable frequencies with those in Fig. 4, and the deviations
between the maximum and the minimum in Fig. 5 are also compag
rable with those in Fig. 4. y
Contrary to the behavior of the out-of-phase function of the faste®;, &
diffusing component, the out-of-phase function of the slower dif-
fusing component shows no extrema at all for the given values of), N,
yin this work.
Y
CONCLUSION o

In this paper, we presented a theoretical analysis of the frequenay
response of a continuous-flow adsorber with the periodic modula-

: intensity parameter measuring the magnitude of the molar

supply into the reservoir, N/V

: capacity parameter, XX/
. overflow parameter, g/V
: in-phase and out-of-phase characteristic function for the

transfer function F(s), defined by Eq. (39)

:in-phase and out-of-phase characteristic function of fre-

guency response, defined by Eq. (40)

: amplitude of modulation of inlet molar flow rate
: shape factor of particle (O for slab, 1 for cylinder and 2 for

sphere)

: angular frequency of the perturbation in flow rate [rad/s]

tion of the inlet flow-rate to measure multicomponent diffusion ki- Mathematical Function

netics in porous media. When the value of the overflow parametet,(z)
is zero, the frequency response of the continuous-flow adsorber ob-

: modified Bessel function of the first kind of order n

tained in this study reduces to those of semibatch adsorbers. Micr@&uperscript

pore diffusion kinetics is assumed for the intraparticle mass trans-
fer mechanism. Three different shapes of microparticle are consid-
ered: slab, cylinder, and sphere.
For the continuous-flow adsorber, simulation results for the bi-i, j, k
nary system show that the frequency response of the faster diffusing

: variables in the Laplace domain

Subscript
: component index

component is strongly influenced by the slower component. TheMatrix and Vector Notation
out-of-phase characteristic function of the frequency response of thBoldface letters : vectors of dimension n
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