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Abstract−−−−In this paper, we present a theoretical analysis of the frequency response of a continuous-flow adsorber
with periodic modulation of the inlet flow-rate to measure multicomponent diffusion kinetics in porous media. Micro-
pore diffusion kinetics is assumed for the intraparticle mass transfer mechanism and three different shapes of micro-
particle are considered: slab, cylinder, and sphere. Simulation results for a binary system show that the frequency re-
sponse of the faster diffusing component is strongly influenced by the slower component. The out-of-phase characteris-
tic function of the frequency response of the faster diffusing component shows maximum and minimum points. The
deviation between these maximum and minimum values becomes smaller when the cross-terms of diffusivity go to
zero, while the deviation becomes larger when the cross-terms of the adsorption equilibrium constant go to zero. Con-
trary to the behaviour of the out-of-phase function of the faster diffusing component, the out-of-phase function of the
slower diffusing component shows no extrema at all. The in-phase characteristic function of the frequency response of
the continuous-flow adsorber is not affected by the overflow parameter.
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INTRODUCTION

Because of its importance in the study of catalytic or noncata-
lytic gas-solid reactions, the problem of gaseous diffusion kinetics
in porous media has attracted much attention in the literature. As a
result, a variety of methods for investigation of the kinetics have
been presented. The mass transport phenomena in porous media
include contributions from bulk, Knudsen and pore diffusion, and
viscous flow, which are further complicated by interactions with
adsorption and surface diffusion on the internal surface of the por-
ous media. In order to determine reliably the contribution of each
transport mechanism and the relevant parameters, some experimen-
tal techniques are needed. To achieve this goal, one of the follow-
ing techniques can be used: gas chromatography, diffusion cell,
gravimetric method using a microbalance, zero length column, and
differential adsorption bed. The advantages and disadvantages of
these techniques are reported in the literature [Park et al., 1996].

Recently, a frequency response (FR) method was developed, for
the investigation of the diffusion and adsorption kinetics in porous
media [Jordi and Do, 1992, 1993, 1994; Park et al., 1998a, b; Pet-
kovska and Do, 1998; Sun et al., 1993, 1994; Sun and Bourdin,
1993; Sun and Do, 1995, 1996; Yasuda and Saeki, 1978; Yasuda,
1982; Yasuda and Sugawara, 1984]. The potential of this method
was extended to systems with chemical reactions [Yasuda, 1989;
1993; Yasuda et al., 1995]. In the FR method the frequency re-
sponse is usually investigated in a batch system in which the gas
pressure or concentration is changed by a forced periodic modula-
tion of the reservoir volume, although FR in continuous flow sys-
tems with periodic modulation of the inlet gas concentration [Ngai
and Gomes, 1996] or the inlet molar flow rate [Park et al., 1998a,

b]. The main advantages of FR using modulation of the inlet flo
rate over the conventional FR using modulation of the reservoir 
ume are the following [Park et al., 1998a, b]:

- High frequencies of the inlet molar flow-rate modulations a
easy to obtain in practice, contrary to volume modulations.

- Large relative amplitudes of the inlet flow-rate can be us

The analysis of the multicomponent diffusion in a porous me
requires knowledge of both the main-terms and cross-terms of
fusivity. However, our understanding of multicomponent diffusio
is very limited [Qureshi and Wei, 1990; Markovska et al., 199
and a very limited number of papers for the FR of multicompon
diffusion are available [Yasuda and Matsumoto, 1989; Sun et
1994].

The objective of this paper is to present a theoretical analys
the frequency response of a continuous-flow adsorber with p
odic modulation of the inlet flow-rate for the multicomponent d
fusion in porous media. Micropore diffusion kinetics is assum
for the intraparticle mass transfer mechanism and three diffe
shapes of microparticle are considered: slab, cylinder, and sphe

PROBLEM FORMATION AND
MATHEMATICAL MODEL

Consider a continuous-stirred gas reservoir, in which a kno
amount of porous particles is loaded. The particles are assum
be of uniform size. At time t=0, a stream of an ideal gas mixture
n components is introduced to the reservoir with periodic flow r
and at the same time a flowing stream out of the reservoir is sta
We assume that the system is isothermal, and that the diffusion
ameters are constant.

The mass balance describing the concentration distribution in
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 as:
a porous particle for the micropore diffusion kinetics [Park et al.,
1998a] is:

(1)

where Cµ is a vector of dimension n denoting the concentration in
the micropore within particles and [D] is a square matrix of dif-
fusivities in which the off-diagonal terms are generally non-zero; r
is the coordinate variable of microparticles within a particle, and σ
is a geometric factor of the particle (0 for slab, 1 for cylinder and 2
for sphere). The initial and boundary conditions are

(2)

(3)

(4)

where C is the vector of dimension n denoting the concentration in
the reservoir and [K] is a square matrix of adsorption equilibrium
constant. The mass balance around the whole reservoir is

(5a)

(5b)

where y is the vector of dimension n denoting the mole fraction in
the inlet stream and α is the intensity parameter measuring the mag-
nitude of the molar supply into the reservoir, β is the capacity par-
ameter, and γ is the overflow parameter, which are given as fol-
lows:

X(t) in Eq. (5) is the forcing function, which defines the form of
the periodic modulation of the inlet flow rate. We use the sinusoi-
dal wave function:

X(t)=1+νsinωt (6)

The initial condition for Eq. (5) is

at t=0 C=0 (7)

SOLUTION OF THE MODEL EQUATIONS

The frequency response of the above model can be analytically
obtained by using matrix manipulation. The key point is to diago-
nalize the diffusivity matrix [D] in terms of the eigenvalues and eig-
envectors. With the diagonalization of the diffusivity matrix, the n
coupled diffusion equations [Eq. (1)] can be decoupled into n in-
dividual equations, which can be easily solved as in the case of pure
component systems by using the Laplace transform, since the mod-
el is linear.
1. Diagonalization of Diffusivity Matrix

First we diagonalize the diffusivity matrix:

[Z] −1[D][Z]=[ Λ] (8)

where [Λ] and [Z] are the eigenvalue matrix and the eigenvector

∂Cµ

∂t
--------- = D[ ]1

rσ
---- ∂

∂r
----- rσ∂Cµ

∂r
--------- 

 

at t = 0        Cµ = 0

at r = 0,       
∂Cµ

∂r
--------- = 0

at r = Rµ      Cµ  = K[ ]C

dC
dt
-------  + βd<Cµ>

dt
---------------- = αX t( )y − γC

<Cµ> = 
σ  + 1

Rµ
σ + 1

----------- rσCµdr
0

Rµ∫

α = 
N
V
----;   β = 

Vµ

V
------;   γ = 

q
V
----

matrix, respectively. For a binary system, [Λ] and [Z] are:

(9)

Then we can obtain for the binary system:

(10)

(11)

(12)

(13)

2. Decoupling of Diffusion Equation
In order to decouple Eq. (1) we introduce vector u, such that

Cµµµµ=[Z]u (14)

Then Eq. (1) can be decoupled as

(15)

(k=1, 2, Λ, n)

The initial and boundary conditions become

(16)

(17)

(18)

3. Transfer Function, Q(s)
Now the solution in Laplace domain of Eq. (14) can be o

tained as:

(19)

where

(20)

The function f(r, s) in Eq. (20) is given by:

(21)

From Eq. (20) the volumetric average for  can be obtained

Λ[ ]  = 
λ1 0

0 λ2

;   Z[ ]  = 
Z11 Z12

Z21 Z22

λ1 2,  = 
1
2
--- D11 + D22 D11 − D22( )2

 + 4D12D21±[ ]

Z[ ]  = 

1
D12

λ2 − D11

-----------------

D21

λ1 − D22

----------------- 1

 = 

1
− D12

δ
-----------

D21

δ
------- 1

Z[ ] − 1
 = 

1

1 + 
D12D21

δ2
---------------

------------------------
1

D12

δ
-------

− D21

δ
----------- 1

δ = λ1 − D22 = − λ2 − D11( )

∂uk

∂t
------- = λk

1

rσ----
∂
∂r
----- rσ∂uk

∂r
------- 

 

at t = 0        uk = 0

at r = 0,       
∂uk

∂r
------- = 0

at r = Rµ      u = Z[ ] − 1 K[ ]C

Cµ  = Z[ ]u

u  = diag
fk r s,( )

fk Rµ s,( )
------------------ Z[ ] − 1 K[ ]C

fk r s,( ) = 

cosh r s
λk

---- 
      for σ = 0

I0 r s
λk

---- 
     σ = 1

1
r
---sinh r s

λk

---- 
      for σ = 2













Cµ
Korean J. Chem. Eng.(Vol. 17, No. 6)
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(22)

where

[T]=[Z]diag(Fk(s))[Z]−1[K] (23)

The function F(s) is defined by:

(24a)

(24b)

(24c)

Eq. (22) can be rearranged to obtain the transfer function for the
particle:

(25)

where the element Qk of the diagonal matrix diag(Qk(s)) can be ob-
tained as:

(26)

The expression for  will be given in the next section [see
Eq. (32)]. As shown by Eq. (25), The transfer function Qk(s) relates
the bulk concentration in the gas phase to the mean concentration

in the adsorbed phase. We note that when all the cross-term
ments of matrices [D] are zero, Qk(s) reduces to the function Fk(s).
Note that the function Fk(s) is the particle transfer function in cas
of pure component systems [Park et al., 1998b].
4. Overall Transfer Function for Adsorber, G(s)

The Laplace transform of Eq. (5) is:

(27)

Substituting Eq. (25) for , we have

(28)

Thus, the overall transfer function for the kth component can
obtained as

 (29)

To determine  in Eq. (26), we rearrange Eq. (27) after s
stituting Eq. (22) for  as follows:

(30)

where square matrix [B] is defined by

(31)

Then we can obtain

(32)

Substituting Eq. (32) into Eq. (26), we obtain the exact express

<Cµ> = T[ ]C

Fk s( ) = 

tanh Rµ
s
λk

---- 
 

Rµ
s
λk

----

------------------------------   for σ  = 0

Fk s( ) = 2
1

Rµ
s
λk

----

--------------

 
 
 
 
  I1 Rµ

s
λk

---- 
 

I0 Rµ
s
λk

---- 
 

-----------------------    for σ = 1

Fk s( ) = 3

Rµ
s
λk

----coth Rµ
s
λk

---- 
 

 − 1

Rµ
s
λk

---- 
 

2
-----------------------------------------------------

 
 
 
 
 

   for σ  = 2

<Cµ> = diag Qk s( )( )C

Qk s( )  = Tki
i = 1

n

∑ Ci

Ck

----- 
 

Ci  Ck⁄

s C  + β<Cµ>( ) = αXy − γC

<Cµ>

s 1 + 
γ
s
-- 

  I[ ]  + 
β

1 + γ s⁄
---------------diag Qk s( )( ) 

 C  = αXy

Gk s( ) Ck

αykX
------------  = 

1
s 1 + γ s + βQk s( )⁄[ ]
-------------------------------------------≡

Cj  Ck⁄
<Cµ>

s 1 + 
γ
s
-- 

  I[ ]  + 
β

1 + γ s⁄
--------------- T[ ] 

 C  = αXy;   s 1 + 
γ
s
-- 

 C  = αX B[ ]y

B[ ] − 1
 = I[ ] + 

β
1 + γ s⁄
--------------- T[ ]

Ci

Ck

----- = Bi jyj  Bkjy j
j = 1

n

∑⁄
j = 1

n

∑

Table 1. Transfer function Q(s) for binary systems

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

(34g) (34h)

(34i) (34j)

where

(34k)

Q1 s( ) = T11 s( ) + T12 s( )y1B21 + y2B22

y1B11 + y2B12

----------------------------- T11 s( ) + T12 s( )R21 s( )≡

Q2 s( ) = T21 s( )y1B11 + y2B12

y1B21 + y2B22

-----------------------------  + T22 s( ) T21 s( )R12 s( ) + T22 s( )≡

T11 s( ) = 
1

1 + 
D12D21

δ2
---------------

------------------------ K11 + 
D12K21

δ
--------------- 

 F1 s( ) + 
D12D21

δ2
---------------K11 − 

D12K21

δ
--------------- 

 F2 s( )

T12 s( ) = 
1

1 + 
D12D21

δ2
---------------

------------------------ K12 + 
D12K22

δ
--------------- 

 F1 s( ) + 
D12D21

δ2
---------------K12 − 

D12K22

δ
--------------- 

 F2 s( )

T21 s( ) = 
1

1 + 
D12D21

δ2
---------------

------------------------ K21 − 
D21K11

δ
--------------- 

 F2 s( ) + 
D12D21

δ2
---------------K21 + 

D21K11

δ
--------------- 

 F1 s( )

T22 s( ) = 
1

1 + 
D12D21

δ2
---------------

------------------------ K22 − 
D21K12

δ
--------------- 

 F2 s( ) + 
D12D21

δ2
---------------K22 + 

D21K12

δ
--------------- 

 F1 s( )

B11 s( )  = 
1

B0 s( )
------------ 1 + T22 s( )( ) B12 s( ) = 

1
B0 s( )
------------ − T12 s( )( )

B21 s( )  = 
1

B0 s( )
------------ − T21 s( )( ) B11 s( )  = 

1
B0 s( )
------------ 1 + T11 s( )( )

B0 s( ) = 1 + 

β
1 + γ s⁄
---------------T11 s( )  + 

β
1 + γ s⁄
---------------T22 s( )  + 

β
1 + γ s⁄
--------------- 

 
2

T11 s( )T22 s( )  − 
β

1 + γ s⁄
--------------- 

 
2

T11 s( )T21 s( )
November, 2000
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of Qk(s):

(33)

The transfer functions Qk(s) for binary systems are given in Table 1.
The overall transfer function G(s) relates the forcing function to

the gas phase concentration in the reservoir. The difference between
the semibatch adsorber (γ=0) and the conventional batch adsorber
can be illustrated if the transfer function G(s) in Eq. (31a) is rear-
ranged and put in a product of two functions as follows [Park et
al., 1998a]:

Gk(s)=GI(s) · GII, k(s) (35)

where GI(s) and GII , k(s) are defined by

(36)

(37)

The first function GI(s) is simply the transfer function of a physical
filling reservoir, defining the relation between the inlet flow rate
αykX and a hypothetical adsorbate concentration in the reservoir in
the Laplace domain which would be obtained if no adsorbent and
no outlet flow were present. The second function GII, k(s) defines in
which way this adsorbate is distributed between the gas phase and
the outlet flow. When no outlet flow was present (i.e., when γ=0),
the second function GII, k(s) reduces to the transfer function of the
conventional batch adsorber containing adsorbent [Park et al.,
1998b].

CHARACTERISTIC FUNCTIONS OF
FREQUENCY RESPONSE

The in-phase and out-of-phase characteristic functions for the
element Fk(s) can be defined as:

(38)

Then, we can obtain:
For σ=0:

(39a)

For σ=1:

(39b)

For σ=2:

(39c)

Now the overall in-phase and out-of-phase characteristic fu
tions for the adsorber are defined as:

(40a)

(40b)

The overall characteristic functions for binary systems are give
Table 2.

SIMULATION OF THE FREQUENCY RESPONSE

The data of Chen and Yang [1992] for the surface diffusion
CO2 and C2H6 in 4A zeolite were used to simulate the character
tic function of the frequency response. These data are also us
Sun et al. [1994] to simulate their model. Values of parameter
this system are summarized below:

σ=2 (spherical microparticle);

V=10−4 m3 Vµ=3×10−7 m3

Rµ=1.7×10−6 m y1=0.33

Fig. 1 shows the in-phase and out-of-phase characteristic f
tions of the frequency response for the binary mixture of CO2 and
C2H6 in 4A zeolite when the outlet stream of the adsorber is clo
(i.e., when γ=0). On the whole, similar observations to those of S
et al. [1994] are shown in this figure: (1) The faster diffusing co
ponent (CO2) is strongly influenced by the slower component. (
The out-of-phase function of CO2 is negative near the resonance fr
quency of C2H6. (3) The in-phase function has an overshoot n

Qk s( )  = Tki Bijyj  Bkjy j
j = 1

n

∑⁄
j = 1

n

∑
 
 
 

i = 1

n

∑

GI s( )  = 
1
s
---

GII k, s( ) = 
1

1 + γ s + βQk s( )⁄
------------------------------------

δR k,  − iδI k,  = Fk s( )
s iω→
lim

δR k,  = 

sinh Rµ
2ω
λk

------- 
 

 + sin Rµ
2ω
λk

------- 
 

Rµ
2ω
λk

------- 
  cosh Rµ

2ω
λk

------- 
 

 + cos Rµ
2ω
λk

------- 
 

------------------------------------------------------------------------------------------------

δI k,  = 

sinh Rµ
2ω
λk

------- 
 

 − sin Rµ
2ω
λk

------- 
 

Rµ
2ω
λk

------- 
  cosh Rµ

2ω
λk

------- 
 

 + cos Rµ
2ω
λk

------- 
 

------------------------------------------------------------------------------------------------

δR k,  = 2Re
1

Rµ
iω
λk

-----

---------------- 
I1 Rµ

iω
λk

----- 
 

I0 Rµ
iω
λk

----- 
 

------------------------

 
 
 
 
 
 
 

δI k,  = 2Im
− 1

Rµ
iω
λk

-----

---------------- 

I1 Rµ
iω
λk

----- 
 

I0 Rµ
iω
λk

----- 
 

------------------------

 
 
 
 
 
 
 

δR k,  = 3

sinh Rµ
2ω
λk

------- 
 

 − sin Rµ
2ω
λk

------- 
 

Rµ
2ω
λk

------- 
  cosh Rµ

2ω
λk

------- 
 

 − cos Rµ
2ω
λk

------- 
 

------------------------------------------------------------------------------------------------

 
 
 
 
 
 
 

δI k,  = 3

sinh Rµ
2ω
λk

------- 
 

 + sin Rµ
2ω
λk

------- 
 

Rµ
2ω
λk

------- 
  cosh Rµ

2ω
λk

------- 
 

 − cos Rµ
2ω
λk

------- 
 

------------------------------------------------------------------------------------------------  −  
2

Rµ
2ω
λk

------- 
 

2
------------------------

 
 
 
 
 
 
 

ηR k,

β
--------  = Re Qk s( ) + 

γ
βs
-----

s iω→
lim

 
 
 

η I k,

β
-------  = − Im Qk s( ) + 

γ
βs
-----

s iω→
lim

 
 
 

T  = 298 K  K[ ] = 
0.38   − 0.13

− 0.083   0.099

D[ ] = 
1.4 10

− 14×   1.1 10
− 14×

3.7 10
− 17×   1.2 10

− 16×
Korean J. Chem. Eng.(Vol. 17, No. 6)
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ceed

low
 Fig.
 the
 by
the crossover frequency between the out-of-phase functions of two
components.

Fig. 2 shows the frequency response of the semibatch adsorber
(γ=0) when the cross-terms of diffusivity and equilibrium constant
are zero (D12=D21=0 and K12=K21=0). In this case, the behaviour
of the frequency response of each component is independent of each

other. The in-phase function of each component does not ex
unity and the out-of-function is always positive.

The in-phase and out-of-phase functions for the continuous-f
adsorber are shown in Figs. 3 and 4, respectively. As shown in
3, the value of rise frequency of the in-phase function, at which
in-phase function starts to rise above unity, is largely affected

Table 2. Overall characteristic functions of frequency response for binary systems

(41a)

(41b)

(41c)

(41d)

(41e)

(41f)

(41g)

(41h)

(41i)

(41j)

(41k)

(41l)

(41m)

(41n)

(41o)

(41p)

ηR 1,

β
--------  = TR 11,  + TR 12, RR 21,  − TI 12, RI 21,( )

ηI 1,

β
-------  = TI 11,  + TR 12, RI 21,  + TI 12, RR 21,( )  + 

γ
βω
-------

ηR 2,

β
--------  = TR 22,  + TR 21, RR 12,  − TI 21, RI 12,( )

ηI 2,

β
-------  = TI 22,  + TR 21, RI 12,  + TI 21, RR 12,( )  +  

γ
βω
-------

TR 11,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K11 + 
D12K21

δ
--------------- 

 δR 1,  + 
D12D21

δ2
---------------K11 − 

D12K21

δ
--------------- 

 δR 2,

TI 11,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K11 + 
D12K21

δ
--------------- 

 δI 1,  + 
D12D21

δ2
---------------K11 − 

D12K21

δ
--------------- 

 δI 2,

TR 12,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K12 + 
D12K22

δ
--------------- 

 δR 1,  + 
D12D21

δ2
---------------K12 − 

D12K22

δ
--------------- 

 δR 2,

TI 12,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K12 + 
D12K22

δ
--------------- 

 δI 1,  + 
D12D21

δ2
---------------K12 − 

D12K22

δ
--------------- 

 δI 2,

TR 21,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K21 − 
D21K11

δ
--------------- 

 δR 2,  + 
D12D21

δ2
---------------K21 + 

D21K11

δ
--------------- 

 δR 1,

TI 21,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K21 − 
D21K11

δ
--------------- 

 δI 2,  + 
D12D21

δ2
---------------K21 + 

D21K11

δ
--------------- 

 δI 1,

TR 22,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K22 − 
D21K12

δ
--------------- 

 δR 2,  + 
D12D21

δ2
---------------K22 + 

D21K12

δ
--------------- 

 δR 1,

TI 22,  = 
1

1 + 
D12D21

δ2
---------------

------------------------ K22 − 
D21K12

δ
--------------- 

 δI 2,  + 
D12D21

δ2
---------------K22 + 

D21K12

δ
--------------- 

 δI 1,

RR 12,  = 

y1 + β y1TR 22,  − y2TR 12,( )I y2 + β y2TR 11,  − y1TR 21,( )[ ]  + β2 y1TI 22,  − y2TI 12,  + 
γ

βω
------- 

  y2TI 11,  − y1TI 21,  + 
γ

βω
------- 

 

y2 + β y2TR 11,  − y1TR 21,( )[ ]2
 + β2 y2TI 11,  − y1TI 21,  + 

γ
βω
------- 

 
2

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RI 12,  = 

β y2 + β y2TR 11,  − y1TR 21,( )[ ] y1TI 22,  − y2TI 12,  + 
γ

βω
------- 

 
 − β y1 +  β y1TR 22,  −  y2TR 12,( )[ ] y2TI 11,  − y1TI 21,  +  

γ
βω
------- 

 

y2 + β y2TR 11,  − y1TR 21,( )[ ]2
 + β2 y2TI 11,  − y1TI 21,  + 

γ
βω
------- 

 
2

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RR 21,  = 

y2 + β y2TR 11,  − y1TR 21,( )I y1 + β y1TR 22,  − y2TR 12,( )[ ]  + β2 y2TI 11,  − y1TI 21,  + 
γ

βω
------- 

  y1TI 22,  − y2TI 12,  + 
γ

βω
------- 

 

y1 + β y1TR 22,  − y2TR 12,( )[ ]2
 + β2 y1TI 22,  − y2TI 12,  + 

γ
βω
------- 

 
2

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RI 21,  = 

β y1 + β y1TR 22,  − y2TR 12,( )[ ] y2TI 11,  − y1TI 21,  + 
γ

βω
------- 

 
 − β y2 +  β y2TR 11,  −  y1TR 21,( )[ ] y1TI 22,  − y2TI 12,  +  

γ
βω
------- 

 

y1 + β y1TR 22,  − y2TR 12,( )[ ]2
 + β2 y1TI 22,  − y2TI 12,  + 

γ
βω
------- 

 
2

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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the overflow parameter. However, the decreasing part of this func-
tion seems to be unaffected by the overflow parameter. As we can
see in Fig. 4, the out-of-phase function is much more sensitive to
the overflow parameter than the in-phase function. The out-of-phase
function for CO2 shows a maximum and minimum in Fig. 4. At
the minimum point of the out-of-phase function, the rate of in-
crease in the diffusion term equals the rate of decrease in the over-
flow term. As the value of overflow parameter γ increases, the de-

viation between minimum and maximum points of the out-of-pha
functions becomes smaller and smaller, then the extrema th
selves vanish at some higher value of γ. Hence, it might be impor-
tant to keep the overflow parameter at lower values when de
mining adsorption parameters using the minimum and maxim
properties (e.g., using deviation of concentrations or frequencies
tween minimum and maximum points) of the out-of-phase fu
tions [Park et al., 1998b]. On the other hand, the out-of-ph
function for C2H6 for the parameter values of Fig. 4 shows no e
trema at all. This is because the overflow process rather than th
fusion process in this case limits the out-of-phase function of C2H6.

Fig. 5 shows the out-of-phase function of the continuous-flo
adsorber when the cross-terms of diffusivity and equilibrium co
stant are zero (D12=D21=0 and K12=K21=0). Note that the in-phase
function for this case is not affected by the overflow parameter 
shown in the figure). Comparing the curves in Fig. 5 with those
Fig. 4, we see that the minimum points of the out-of-phase fu
tions of CO2 and total concentrations appear at slightly higher f
quencies in case of non-zero cross-term diffusivities (i.e., in cas
Fig. 4) when the overflow is relatively small.

Fig. 6 shows the out-of-phase function for the continuous-fl
adsorber when the cross-terms of diffusivity are zero. The in-ph
function in this case is not affected by the overflow parameter 
shown in the figure). Note that the same result was obtained in 

Fig. 1. Normalized in-phase and out-of-phase functions of frequ-
ency response for the reference case [CO2 (solid), C2H6

(short dash), Total (long dash)].

Fig. 2. Normalized in-phase and out-of-phase functions of frequ-
ency response for D12=D21=K12=K21=0 [CO2 (solid), C2H6

(short dash), Total (long dash)].

Fig. 3. Normalized in-phase functions of frequency response [γγγγ/
ββββ=0.0001 (solid), γγγγ/ββββ=0.001 (dash)].

Fig. 4. Normalized out-of-phase functions of frequency response
[γγγγ/ββββ=0.0001 (solid line), γγγγ/ββββ=0.001 (dash)].

Fig. 5. Normalized out-of-phase functions of frequency response
for D12=D21=K 12=K21=0 [γγγγ/ββββ=0.0001 (solid), γγγγ/ββββ=0.001
(dash)].
Korean J. Chem. Eng.(Vol. 17, No. 6)
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of Fig. 5 (i.e., D12=D21=0 and K12=K21=0). Hence we can conclude
that the in-phase function of the continuous-flow adsorber is identi-
cal with that function of the semibatch adsorber when the diffusion
interference is neglected (i.e., D12=D21=0).

Other effects of the diffusion interference can be understood by
comparing Fig. 6 (D12=D21=0) with Fig. 4. Due to the diffusion in-
terference (in case of Fig. 4), the minimum point of the out-of-phase
function appears at much lower frequency (for CO2 and total con-
centrations), and the deviation between the maximum and the min-
imum becomes much larger.

Effects of equilibrium interference can be understood by com-
paring Fig. 6 (D12=D21=0) with Fig. 5 (D12=D21=0 and K12=K21=0).
Due to the equilibrium interference (in case Fig. 6), the minimum
point of the out-of-phase function appears at much higher fre-
quency (for CO2 and total concentrations), and the deviation be-
tween the maximum and the minimum becomes much smaller.

Due to these compensating effects of diffusion and equilibrium
interferences, the minimum points of the curves in Fig. 5 appear
at comparable frequencies with those in Fig. 4, and the deviations
between the maximum and the minimum in Fig. 5 are also compa-
rable with those in Fig. 4.

Contrary to the behavior of the out-of-phase function of the faster
diffusing component, the out-of-phase function of the slower dif-
fusing component shows no extrema at all for the given values of
γ in this work.

CONCLUSION

In this paper, we presented a theoretical analysis of the frequency
response of a continuous-flow adsorber with the periodic modula-
tion of the inlet flow-rate to measure multicomponent diffusion ki-
netics in porous media. When the value of the overflow parameter
is zero, the frequency response of the continuous-flow adsorber ob-
tained in this study reduces to those of semibatch adsorbers. Micro-
pore diffusion kinetics is assumed for the intraparticle mass trans-
fer mechanism. Three different shapes of microparticle are consid-
ered: slab, cylinder, and sphere.

For the continuous-flow adsorber, simulation results for the bi-
nary system show that the frequency response of the faster diffusing
component is strongly influenced by the slower component. The
out-of-phase characteristic function of the frequency response of the

faster diffusing component shows maximum and minimum poin
Due to the diffusion interference, the minimum point of the o

of-phase function appears at much lower frequency, and the d
tion between the maximum and the minimum becomes much
ger. Due to the equilibrium interference, the minimum point of t
out-of-phase function appears much higher, and the deviations
tween the maximum and the minimum become much smalle

The in-phase characteristic function of the frequency respo
of the continuous-flow adsorber is not affected by the overflow p
ameter when the diffusion interference is neglected.

NOMENCLATURE

C, Cµ : concentrations in the reservoir and micropores, resp
tively [mol/m3]

<Cµ> : volumetric average of Cµ [mol/m3]
D : effective diffusivity in micropores [m2/s]
F(s) : transfer function, defined by Eq. (24)
G(s) : overall transfer function, defined by Eq. (29)
K : adsorption equilibrium constant
N : inlet molar flow rate to reservoir [mol/s]
q : volumetric overflow rate from reservoir [m3/s]
Q(s) : transfer function for the particle, defined by Eq. (26)
r : coordinate variable of microparticle [m]
Rµ : equivalent radius of microparticle [m]
s : Laplace variable [1/s]
t : time variable [s]
T(s) : transfer function, defined by Eq. (23)
V, Vµ : volumes of reservoir and micropores, respectively [m3]
X(t) : nondimensional forcing function
y : molar fraction of inlet stream to reservoir

Greek Letters
α : intensity parameter measuring the magnitude of the mo

supply into the reservoir, N/V
β : capacity parameter, Vµ/V
γ : overflow parameter, q/V
δR, δI : in-phase and out-of-phase characteristic function for 

transfer function F(s), defined by Eq. (39)
ηR, ηI : in-phase and out-of-phase characteristic function of f

quency response, defined by Eq. (40)
ν : amplitude of modulation of inlet molar flow rate
σ : shape factor of particle (0 for slab, 1 for cylinder and 2 f

sphere)
ω : angular frequency of the perturbation in flow rate [rad

Mathematical Function
In(z) : modified Bessel function of the first kind of order n

Superscript
− : variables in the Laplace domain

Subscript
i, j, k : component index

Matrix and Vector Notation
Boldface letters : vectors of dimension n

Fig. 6. Normalized out-of-phase functions of frequency response
for D12=D21=0 [γγγγ/ββββ=0.0001 (solid), γγγγ/ββββ=0.001 (dash)].
November, 2000
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