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Abstract—The detailed pattern of spatial structures for the reaction-diffusion system involving substrate-inhibited
reactions on immobilized uricase enzyme was studied. Depending on the governing parameters, three basic solutions
may exist and there are two kinds of possible branching, either successive primary bifurcation from a basic trivial
branch or consecutive secondary bifurcation. In both cases the branching follows the sequence of syrasyatric
metric — symmetric, and so forth. The emergence of subsequently more complex spatial structures with the increasing
length of systems suggests a close similarity to gradual buildup of complex morphogenetic patterns in developmental
biology.
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INTRODUCTION changed.

A number of nonlinear reaction-diffusion systems can possess GOVERNING EQUATIONS
more than one stable steady-state solution. Some of these solutions
can be spatially uniform while the others can feature non-uniform The Thomas model for the substrate-inhibited kinetics on immo-
distribution in space (so called spatial structures). Existence of spabilized uricase enzyme [Kernevez et al., 1982] involves the follow-
tially periodic solutions, conditions necessary for their occurrencejng arrangement. Essentially, two chemicals, uric acid (S) and oxy-
and multiplicity are questions of considerable interest. gen (A), diffuse from a reservoir maintained at constant concentra-
The emergence of spatial structures from a perfectly homogetions $ and A through an inactive membrane of thicknessrito
neous medium is analogous to pattern formation in developmentah membrane of thickness (=50um) containing the immobilized
biology [Turing, 1952; Goodwin, 1969; Goldbeter, 1973; Murray, enzyme uricase as shown in Fig. 1. The two-dimensional plate is
1982; Gierer, 1981; Catalano, 1981], Benard convection in hydroclosed on the ends and immersed in the reservoir. The uric acid and
dynamics [Chandrasekhar, 1981], and the non-uniform distributioroxygen diffuse on this membrane with diffusion coefficienfs D
of concentration and/or temperature in chemical reaction-diffusionand ) and react under the catalytic action of uricase enzymes sub-
systems [Schmitz and Tsotsis, 1971, 1983; Erk and Dudukovicject to the following reaction rate expression:
1983]. The dissipative structure for the “Brusselator”, a simple auto-
catalytic trimolecular reaction scheme, has been extensively stud-
ied by Prigogine and his associates [Glansdorff and Prigogine, 197:
Prigogine and Lefever, 1968; Herschkowitz-Kaufman and Nicolis,
1972; Emeux and Herschkowitz-Kaufman, 1979; Herschkowitz-
Kaufman, 1975], Kubicek et al. [1978], and Janssen et al. [1983]
They have reported many interesting phenomena such as multip!
symmetric and asymmetric steady states, homogeneous periodic si
utions, and travelling, standing or rotating waves. So Ao
In this paper, we analyzed the properties of the diffusion-reac- reservoir
tion system with the substrate-inhibited immobilized enzyme kinet-
ics, frequently in the literature referred to as the “Thomas model”
[Kernevez et al., 1982]. The Thomas model has been proposed i

R=V, A S/(K, +S+S7/KJ) 6N

one of the possible mechanisms for pattern formation in develop inactive layer T L
mental biology. Emphasis is placed on the pattern of spatial struc E %
tures emerging from the homogeneous medium in an immobilizec active layer S+A—> i Lz
enzyme reaction-diffusion system. We will show that qualitative
features observed for an auto-catalytic reaction system remain ur - L

—_— Z
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E-mail: sanghkim@konkuk.ac.kr Fig. 1. One-dimensional immobilized uricase system.
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Here \,, K, and K are constants. This reaction scheme exhibits where
the characteristics of the substrate-inhibited reaction wheig K

related to the substrate inhibition rate. The small values infy p :&% —ks, +§% 12)
the large inhibition of substrates. For fixed concentrations of A, the
reaction rate of substrate-inhibited kinetics may be similar to that 15 . _psyj
of Michaelis-Menten kinetics for the low concentrations of S. "% P2 S ™50 (13)
Mass balances yield the following differential equations:
aS__ 'S V,AS = @4
EzDsg +Py(So _S)_K +£+SZ/K @
" s The number of basic solutions (one, two or three) depends on
0A _ O°A Ay V.AS the values of governing parameters,.kas o andp and shows
Da——; tPa(Ac—A) . @ . 2 .
ot z K, *+S+S7/Ks no relationship with the parametgrandp. It is noted that the num-

For simplicity we assume that (i) there exists a concentration gradil-?e.r of basic solutions is' inde.pe.ndent on 'the ratio of diffusion coef-
ent only in the z-direction and (i) homogeneous distribution of the ficients of oxygen to uric acid in the active layer. In order to de-

enzyme uricase on the active layer. termine the number of basic solutions, Cardan’s method [Hilde-
A set of differential equations, Egs. (2) and (3), can be rewritterrand, 1968] for a cubic equation with real coefficients can be ap-
in the following dimensionless form: plied to Eq. (11). The parameter D in Eq. (15) determines the num-
ber of solutions in the following way:
ds_0d’s [ pas O_0°
T VS S) T 07— *f(s. @ @) -
ot o 'g 1+s+ks'g 0x° D—%%%Q (15)
da_,0%s_ O pas O__d%a where
—=b —a) ————0=B— +a(s, 5
7t Pa YL@ ma) ~ =B (s, 9 ©) 2
_1 e PO_10 PO
u=ra +pas ~So g 5 Tkso (16)
subject to Neumann boundary conditions k% al SkZEl all
A, 0s _Oda_ :—S_O —i - +E + - _p_SOD
K20 2=ge R s T
2 e _PSoT
+—=_L+ B 17
x=1; %8=08-¢ @) o7l PR TS0 @n
ox 0x

'Btﬁere can exist three, two or one basic solution for D<0, D=0
or D>0, respectively. The stability of basic solutions can be
determined by the eigenvalues of the linearized opefator

Here we have denoted s and a the dimensionless concentrations
uric acid (S) and oxygen (A), respectivelythe ratio of mass trans-
fer coefficients of oxygen to uric acid in the inactive lafehe
ratio of diffusion coefficients of oxygen to uric acid in the active

layer, x the dimensionless length, k the dimensionless inhibition o +C, .
rate andr the dimensionless time. The various quantities in Egs. - dx’ (18)
(4) and (5) are defined as follows: o
C21 Bd_Xz +sz
=S LA cz =D
s—Km & K oot th )
o :& |3 :Q* :PSL2 where
P, D. "D,
Vo _Va (5,8 0, 3a)
P Ps k Ks’ ®) C= Cu Qz‘ _ ds oa (19)
. ~ o . . . Ch & 53 ER
A uniform steady statés, @ is obtained by solving the following “ (lgﬁa%‘) tlgﬁa%\)

algebraic equations simultaneously:

The basic solution, @) are stable if all eigenvalues of the opera-
tor & have negative real parts and unstable if there is at least one
- eigenvalue with positive real part.
(5 3 =a(a, —3) ——L= — =0. (10 For zero flux boundary conditions the eigenfunctions of the La-
1+s*ks placian operator in one-dimensional space can be expressed as cos
The uniform states, which are also called basic solutions, are dd™ (n=0, 1, 2;-). Therefore, the stability of basic solutions is de-
scribed by Eq. (11) termined by the sign of the eigenvaluag Gatisfying the follow-
ing characteristic equation:

f6, 8= ~S——=—— =0 )

.y ey - 1._
§ +p¥ +qs+r =0 and & a, +G(s So) (12) W ~T 0, +A =0 20)
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where 15
2 ks’ ~1)(s,=8) —pS" _, _ O
T =) O = ~1maD (21)
A=py +gy+r. (22) o Al

Here p', ' and r' are defined by

0 (E-D(&-90 . ps O, p(kE-1)(s,-3)

L (45 k@)E B 1+5+KED (1+3+KE)
(23)
0 L | t | I 1
0 100 200 300
o =(nrge s +p + 5 BUE (& T (24 '
a (1+5+k$)s O Fig. 2. Bifurcation diagram for 10-point discretization of immobi-
lized uricase plate.
r=p(nm°*. (25) — stable steady state, - unstable steady Stanfrca-

Uniform steady states can be destabilized into two ways; through tion point,(-} limit point, M bifurcation and limit point.

real eigenvalues (Re>0, |, w,=0) or through complex ones (Re
>0, |, w,<0). In the former case the instability of uniform steady grid points in space were used to discretize the differential operator
states is ascertained whitris greater than zerd¥0). Therefore,  for the bifurcation analysis. The numerical calculation was per-
non-uniform steady states can occur at the critical values of the biformed on CDC 730 and the error of integration was controlled to
furcation parametarsatisfying Eq. (22) whefiis set to zero. These  six significant decimal places.
values fory are called the primary bifurcation poin$ 6n the basic The complete bifurcation diagram, fgersusy’ is displayed in
branches. The successive primary bifurcation points can be easiligig. 2. The subscript i in en the ordinate represents the grid point
calculated for a set of discrete values of the wave number n.  in space. In this figure the solid and dotted lines portray the stable
Even though we can locate the primary bifurcation points an-and unstable steady-state solutions, respectively. The small letters
alytically, it is very difficult to calculate the whole parametric de- (a, b, -+, h) stand for the branches of steady state solutions while
pendence of solutions and secondary bifurcation points in an arthe capital letters (A, B;,, P) represent the bifurcation and limit
alytical way. Therefore, we will resort to a numerical scheme for points. Open circles and squares denote the bifurcation and limit

calculating the bifurcation diagram. points, respectively. The bifurcation-limit points are also represented
by the closed squares in this figure. The bifurcation and limit points
NUMERICAL RESULTS detected in the system considered are summarized in Table 2.

For all values ofy there exists one basic trivial branélF
In order to investigate the parametric dependence of solution

branches for a set of parabolic partial differential equations, EqSTabI e 2. Summary of bifurcation and limit points
(4)-(7), we approximate the differential operator in space by the i

Stormer-Numerov finite difference scheme [Kim, 1989; Doedel,  Point Y S Type*
1980] featuring the Ofhaccuracy where h is denoted by step size A 9.1 7.84 BP
in space. The complete bifurcation analysis of a resulting system B 23.9 7.84 BP
of ordinary differential equations was peformed by using the soft- C 36.3 7.84 BP
ware package AUTO [Kim, 1988]. The detailed algorithm for dis- D 81.2 7.84 BP
cretization of the differential operator with the Pgaccuracy will E 95.45 7.84 BP
be found elsewhere [Doedel, 1980]. There are seven parameters, g 1435 7.84 BP
o, BV p ks, and ain Egs. (4) and (5). Among them the var- G 2234 784 BP
iabley, representing the dimensionless length of the system, is most H 90 2 9.54 BP+LP
important. Therefore, we selected the varigtas the bifurcation | 89.2 6.32 BP
parameter in this study.
The values of governing parameters are shown in Table 1. Ten J 856 9.01 LP
K 180.3 9.83 LP
. . S L 158.7 5.67 BP
Table 1. Parametric values in substrate-inhibited enzyme systems M 180 3 493 Lp
$%=102.5 N 85.6 6.02 LP
a=19.2 o 161.1 0.88 BP
0=1.45 P 213.5 7.84 BP
BZS'C *BP: Bifurcation point
k=0.1 LP: Limit point
p=13.C

BP+LP: Bifurcation-limit point
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7.8479,2=13.9227 which is in good agreement with the analyti-
cal results obtained from Eq. (11). The positive value of D (D
2.4674x10) in Eq. (15) verifies the existence of a unique basic
branch. The primary bifurcation points are in full agreement with
those obtained from Eq. (22) analytically. The braatlef' sym-
metric profiles corresponds to the branch of uniform steady state
or a basic branch. There are several primary bifurcation points (A
B, C, D, E, F, G, P) on the basic branghThe bifurcation points

A and B, occurring at the brancii bf symmetric solutions, give
rise to a closed branch’ ‘of asymmetric solutions. At the bifurca-
tion points C and E, on the basic brargha closed branctt® of
symmetric solutions emerges. From the point D on the basic branc
‘a, a closed loop of asymmetric solutions, brardhrésults. A
typical bifurcation-limit point H is displayed in Fig. 2. This point is
a bifurcation point of the brancti bf symmetric solutions because

51
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an asymmetrical solution may emerge. On the other hand, H is 5|g. 4. Bifurcation diagram, branch f (asymmetric solutions).

limit point at the branchd® of the asymmetric solutions. At this
point two asymmetric solutions collapse into a symmetric one.
It may be inferred from the result obtained on the bragidb °
‘d’ that a homogeneous steady state exists for the small size of sy
tem §<9.1) and this stable steady state does not change to any pe
turbation in the concentration of uric acid and oxygen. As the lengtt
of immobilized enzyme systems is increased @28.9), the ho-
mogeneous steady state may be driven unstable by diffusion ar
asymmetric heterogeneous patterns are obtained. These spatial p
terns are relatively simple, asymmetric, and stable as shown in Fig
5. The pattern is composed of two regions of substrate concentr:
tions S. One is higher concentration region of §(s> ) and the othe
is lower concentration region of S< ). As the valugsrafrease,
the steep profiles of substrate concentrations S are developed. The
have been studied by Kernevez [1982] and Murray [1982]. The
former applied the diffusion-driven instability to sequential com-
partment formation in drosophila wings using Kauffamn’'s model
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Fig. 5. Spatial profiles at particular points on branch b.

and the latter proposed the mechanism for generating the prepat-
tern for animal coat markings. With further increasing size of sys-unstable and heterogeneous patterns are obtained for larger size of

17

tems (23.99<36.3) the basic branch’ ‘becomes again stable re- systemsy(>36.3).

sulting from exchange of stabilities between points B and C. There At the branchc¢’ of symmetric solutions there is a bifurcation
also exists the stable homogeneous steady state. This observatipoint (secondary bifurcation point) | which gives rise to a branch
may indicate the predominance of reaction kinetics in a certain siz&2 of asymmetric solutions, see Fig. 3. At point | the bifurcation is

of system (23.9%36.3). The homogeneous steady state becomedbackward with an exchange of stabiliies and the secondary bifur-
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Fig. 3. Bifurcation diagram, branch e (asymmetric solutions).
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cation branch is unstable at that point. Four limit points (J, K, M 3
and N) occurring at the above-mentioned bragchre depicted. i
From the point F on the basic branah & branch ' of symmet- ™ '."’\‘ R , NN,
ric solutions emerges, see Fig. 2. At the bifurcation point 0, a branct i NSO A ™ teed ) hadl )
of asymmetric solutiong' results as depicted in Fig. 4. In Figs. 3
and 4 the solid and dotted lines represent the asymmetric and syr 61 62 63 &
15 15
- ER - , N ; . ,
s T \ . 2y \‘ PR ,"— ‘- ’/- S ‘ /‘ A .’ // N " \\ ’l \‘ Il
- - <] A% h _ | 4 - . - N4 \ L
o 31 32 3 b o 65 66 &7 68
0 1
e X
5 Fig. 10. Spatial profiles at particular points on branch g.
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15 Fig. 11. Spatial profiles at particular points on branch h.
s | N
il ; \\ \/ /v ,x'"\\ metric solutions, respectively. Another branshdf asymmetric
- . i solutions is created from the bifurcation point P on the basic branch
y . " ‘a, see Fig. 2.
o5 nE . 4 The spatial profiles at particular points on the branches in Fig. 2,
— x are depicted in Figs. 5-11. In these figures the solid lines denote the

stable steady states while the dotted lines represent the unstable

steady solutions. Thevalues of numbered points are summarized

in Table 3. The basic brancki becomes always unstable for larger

values ofy (y>36.3). For smaller values pas shown in Figs. 5 and

L ] ) 6, the spatial patterns are relatively simple because there exist one

\/\/ v/\/ region of higher substrate concentrations(s> ) and one region of

- lower substrate concentration §s< ). As the valugsrarease fur-

51 sz 53 54 ther, the spatial patterns become complex with two regions of higher

¢ substrate concentration and two regions of lower substrate concen-

1 tration alternately as shown in Figs. 7 and 8. For the higher values
o of y the spatial patterns become more and more complex because

5, b . three regions of higher and lower substrate concentration exist al-
] \ /\/\ R B SRR NURN ternately as depicted in Figs.9 and 11. Thus, the buildup of more
" ' : complex patterns in compartment formation of drosophila wings,

55 s pu 58 prepattern for animal coat markings and so forth, can be in part ex-

° plained with these results. It is obvious that the length of the sys-
—x tem §) predicts the emergence of more and more complex spatial

Fig. 9. Spatial profiles at particular points on branch f. structures. The branches of asymmetric solutions possess one typi-

Fig. 8. Spatial profiles at particular points on branch e.
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Table 3. Theyvalues of important points

19

Table 4. Multiple steady states in immobilized enzyme systems

Branch  Point y Branch  Point y y Number of solutions (no. of stable solutions)

b 11 9.2(u)* f 51  145.0(u) (0.0, 9.1) 1(1)
12 10.1(u) 52  150.2(u) (9.1, 23.9) 3(2)
13 16.8(u) 53  172.2(u) (23.9, 36.3) 1(1)
14 22.8(u) 54  223.4(u) (36.3, 81.2) 3(2)
15 23.70) 55  227.2) (81.2, 85.6) 5 (2)
16 20.90) 56  172.5() (85.6, 89.2) 9 (4)
17 17.3) 57  150.9() (89.2, 90.2) 7 (4)
18 10.10 58  145.1() (90.2, 95.4) 5(2)

c 21 37.0(u) g 61  162.5(u) (95.4, 143.5) 3(2)
22 65.0(u) 62  177.1(u) (143.5, 158.7) 5(2)
23 84.1(u) 63  199.6(u) (158.7, 161.1) 7 (4)
24 95.0(u) 64  208.7(u) (161.1, 180.3) 9 (4)
25 89.4() 65  208.7() (180.3, 213.5) 5(2)
26 79.20) 66  199.6() (213.5, 223.4) 3(2)
27 57.3() 67  182.6() (223.4, 300.0) 5(2)
28 45.2() 68  163.0()

d 31 81.7(u) h 71 224.9(u) _ o
32 84.7(u) 72 249.4(u) - secondary- t.ertlarya Ir'1 both cases the branching is of the
33 86.1(u) 73 276.5(u) type symmetric> asymmetric- symmetn@---. Thg emergence
34 89.9(u) 74 25,8 of more and more com.pltlex spatial structures ywth increasing val-
35 89.9)) 75 249.4) ues of system sizg)(is smlar to the gradual bU|.Idup of complex

morphogenetic patterns in the developmental biology and deserves

36 86.3() 76 236.9) further study.
37 83.9() 77 227.00
38 8L7) 8 22349 ACKNOWLEDGEMENT

e 41 86.8(u)
42 134.8(u) The bifurcation diagrams reported in this paper have been cal-
43 177.9(u) culated by the hifurcation package AUTO which was provided by
44 160.10 Dr. E. Doedel. Computer Science Department, Concordia Uni-
45 174.70) versety, Montreal, Canada. His assistance and discussion is sin-
46 129.70) cerely appreciated.
47 98.8()
48 89.10) NOMENCLATURE

*. u denotes the upper part of each branch from the basic
while | represents the lower part of it.

: concentration of oxygen

a

cal property, namely mirror image profiles. For instance, the asym<C
metric profiles on the identical branch (12 & 18, 31 & 38,34 & 35 D
and 64 & 65) clearly show the characteristics of mirror images. OneDq,
of the interesting things to note is the number of steady states. The
multiplicity of steady states in Fig. 2 is summarized in Table 4. f, g

k
K

CONCLUSIONS

Da

K,

The continuous dependence of the character and number of sdl, L,

utions on the bifurcation parametgior the Thomas model has

shown that the primary bifurcation branches form the closed curveg', g', '
and three basic solutions at most are possible. The multiplicity oP, P,

steady state solutions is expected and among them a countable num-
ber of solutions are stable. R
There are two possible ways of branching the solutions. One i$
the successive branching from the primary bifurcation points ong
the basic branch. The other is consecutive branching, i.e., primary

: dimensionless concentration of oxyge% )

m

: Jacobian matrix defined by Eqg. (20)

. discriminant defined by Eq. (16)
. diffusion coefficients of uric acid and oxygen in the ac-

tive layer, respectively
: reaction kinetic term defined by Egs. (5) and (6)

: dimensionless inhibition rats%" )

: constants
: thickness of the inactive and active membrane layer, re-

spectively
: constants defined by Egs. (21) and (23)

: mass transfer coefficients of uric acid and oxygen through

inactive membrane, respectively

: reaction rate defined by Eq. (1)

: concentration of uric acid

: dimensionless concentration of uric acidg't )

m

Korean J. Chem. Eng.(Vol. 18, No. 1)



u : constant defined by Eq. (17)
\ : constant defined by Eq. (18)
Vo, : reaction rate constant

X : dimensionless Iengtl‘-FE )

z : space coordinate

Greek Letters

a : ratio of mass transfer coefficients of oxygen to uric
iq e
acid (_Ps)
B : ratio of diffusion coefficients of oxygen to uric acid
(=2
Ds
2
y : dimensionless Iengt#% )
S
A : determinant defined by Eq. (23)
p : dimensionless reaction rate const&r%f )
S
T : dimensionless tim@%st )
W : eigenvalues in Eq. (21)
Superscript
~ : steady state
Subscripts
i : grid point in space
n : wave number
o] : condition at the surrounding reservoir
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