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Abstract−−−−The detailed pattern of spatial structures for the reaction-diffusion system involving substrate-inhibited
reactions on immobilized uricase enzyme was studied. Depending on the governing parameters, three basic solutions
may exist and there are two kinds of possible branching, either successive primary bifurcation from a basic trivial
branch or consecutive secondary bifurcation. In both cases the branching follows the sequence of symmetric→ asym-
metric→ symmetric, and so forth. The emergence of subsequently more complex spatial structures with the increasing
length of systems suggests a close similarity to gradual buildup of complex morphogenetic patterns in developmental
biology.
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INTRODUCTION

A number of nonlinear reaction-diffusion systems can possess
more than one stable steady-state solution. Some of these solutions
can be spatially uniform while the others can feature non-uniform
distribution in space (so called spatial structures). Existence of spa-
tially periodic solutions, conditions necessary for their occurrence,
and multiplicity are questions of considerable interest.

The emergence of spatial structures from a perfectly homoge-
neous medium is analogous to pattern formation in developmental
biology [Turing, 1952; Goodwin, 1969; Goldbeter, 1973; Murray,
1982; Gierer, 1981; Catalano, 1981], Benard convection in hydro-
dynamics [Chandrasekhar, 1981], and the non-uniform distribution
of concentration and/or temperature in chemical reaction-diffusion
systems [Schmitz and Tsotsis, 1971, 1983; Erk and Dudukovic,
1983]. The dissipative structure for the “Brusselator”, a simple auto-
catalytic trimolecular reaction scheme, has been extensively stud-
ied by Prigogine and his associates [Glansdorff and Prigogine, 1971;
Prigogine and Lefever, 1968; Herschkowitz-Kaufman and Nicolis,
1972; Erneux and Herschkowitz-Kaufman, 1979; Herschkowitz-
Kaufman, 1975], Kubicek et al. [1978], and Janssen et al. [1983].
They have reported many interesting phenomena such as multiple
symmetric and asymmetric steady states, homogeneous periodic sol-
utions, and travelling, standing or rotating waves.

In this paper, we analyzed the properties of the diffusion-reac-
tion system with the substrate-inhibited immobilized enzyme kinet-
ics, frequently in the literature referred to as the “Thomas model”
[Kernevez et al., 1982]. The Thomas model has been proposed as
one of the possible mechanisms for pattern formation in develop-
mental biology. Emphasis is placed on the pattern of spatial struc-
tures emerging from the homogeneous medium in an immobilized
enzyme reaction-diffusion system. We will show that qualitative
features observed for an auto-catalytic reaction system remain un-

changed.

GOVERNING EQUATIONS

The Thomas model for the substrate-inhibited kinetics on imm
bilized uricase enzyme [Kernevez et al., 1982] involves the follo
ing arrangement. Essentially, two chemicals, uric acid (S) and o
gen (A), diffuse from a reservoir maintained at constant concen
tions S0 and A0 through an inactive membrane of thickness L1 onto
a membrane of thickness L2 ( 50µm) containing the immobilized
enzyme uricase as shown in Fig. 1. The two-dimensional plat
closed on the ends and immersed in the reservoir. The uric acid
oxygen diffuse on this membrane with diffusion coefficients S

and DA and react under the catalytic action of uricase enzymes 
ject to the following reaction rate expression:

(1)

~_

R = VmA S Km + S + S2 KS⁄( )⁄

Fig. 1. One-dimensional immobilized uricase system.
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Here Vm, Km, and Ks are constants. This reaction scheme exhibits
the characteristics of the substrate-inhibited reaction where Ks is
related to the substrate inhibition rate. The small values of Ks imply
the large inhibition of substrates. For fixed concentrations of A, the
reaction rate of substrate-inhibited kinetics may be similar to that
of Michaelis-Menten kinetics for the low concentrations of S.

Mass balances yield the following differential equations:

(2)

. (3)

For simplicity we assume that (i) there exists a concentration gradi-
ent only in the z-direction and (ii) homogeneous distribution of the
enzyme uricase on the active layer.

A set of differential equations, Eqs. (2) and (3), can be rewritten
in the following dimensionless form:

(4)

(5)

subject to Neumann boundary conditions

(6)

. (7)

Here we have denoted s and a the dimensionless concentrations of
uric acid (S) and oxygen (A), respectively, α the ratio of mass trans-
fer coefficients of oxygen to uric acid in the inactive layer, β the
ratio of diffusion coefficients of oxygen to uric acid in the active
layer, x the dimensionless length, k the dimensionless inhibition
rate and τ the dimensionless time. The various quantities in Eqs.
(4) and (5) are defined as follows:

. (8)

A uniform steady state  is obtained by solving the following
algebraic equations simultaneously: 

(9)

. (10)

The uniform states, which are also called basic solutions, are de-
scribed by Eq. (11)

(11)

where

(12)

(13)

. (14)

The number of basic solutions (one, two or three) depends
the values of governing parameters, k, sO, aO, α and ρ and shows
no relationship with the parameters, γ and β. It is noted that the num-
ber of basic solutions is independent on the ratio of diffusion co
ficients of oxygen to uric acid in the active layer. In order to d
termine the number of basic solutions, Cardan’s method [Hil
brand, 1968] for a cubic equation with real coefficients can be 
plied to Eq. (11). The parameter D in Eq. (15) determines the n
ber of solutions in the following way:

(15)

where

(16)

. (17)

There can exist three, two or one basic solution for D<0, D
or D>0, respectively. The stability of basic solutions can 
determined by the eigenvalues of the linearized operator �,

(18)

where

. (19)

The basic solutions  are stable if all eigenvalues of the op
tor � have negative real parts and unstable if there is at least
eigenvalue with positive real part.

For zero flux boundary conditions the eigenfunctions of the L
placian operator in one-dimensional space can be expressed a
nπx (n=0, 1, 2, ...). Therefore, the stability of basic solutions is d
termined by the sign of the eigenvalues (ωn) satisfying the follow-
ing characteristic equation:

(20)

∂S
∂t
------ = DS

∂2S
∂z2
-------- + PS SO − S( ) − 

VmAS

Km + S + S2 KS⁄
---------------------------------

∂A
∂t
-------  = DA

∂2A
∂z2
---------  + PA AO − A( ) − 

VmAS

Km + S + S2 KS⁄
---------------------------------

∂s
∂τ
----- = 

∂2s
∂x2
------- + γ sO − s( ) − 

ρas

1 + s + ks2
----------------------

 
 
 

 = 
∂2s
∂x2
------- + f s, a( )

∂a
∂τ
----- = β∂2s

∂x2
-------  + γ α aO − a( ) − 

ρas

1 + s + ks2
----------------------

 
 
 

 = β∂2a
∂x2
-------  + g s, a( )

x = 0;   
∂s
∂x
------ = 

∂a
∂x
------ = 0

x = 1;   
∂s
∂x
------ = 

∂a
∂x
------ = 0

s = 
S

Km

------     a = 
A
Km

------     x = 
z
L
---     τ = 

DS

L2
------t

α = 
PA

PS

-----     β  = 
DA

DS

------     γ  = 
PSL

2

DS

----------

ρ = 
Vm

PS

------     k = 
Vm

KS

------

(s̃, ã)

f s̃, ã( ) = sO − s̃ − 
ρãs̃

1 + s̃ + ks̃2
----------------------  = 0

g s̃, ã( )  = α aO − ã( ) − 
ρãs̃

1 + s̃ + ks̃2
----------------------  = 0

s̃3
 + ps̃2

 + qs̃ + r = 0 and a˜  = aO + 
1
α
--- s̃ − sO( )

p = 
1
k
--- 1 − ksO + 

ρ
α
--- 

 

q = 
1
k
--- 1 + ρaO − sO − 

ρsO

α
-------- 

 

r = − 

sO

k
----

D  = 
u
3
--- 

 
3

 + 
v
2
--- 

 
2

u = 
1
k
--- 1 + ρaO − sO − 

ρsO

α
-------- 

 
 − 

1

3k2
------- 1 − ksO + 

ρ
α
--- 

 
2

v  = − 
sO

k
---- − 

1

3k2
------- 1 − ksO + 

ρ
α
--- 

  1 + ρaO − sO − 
ρsO

α
-------- 

 

+ 
2

27k3
---------- 1 + ρaO − sO − 

ρsO

α
-------- 

 
3

  = 

d2

dx2
-------  + C11   C12

C21    β d2

dx2
-------  + C22

�

C = 
C11    C12

C21    C22

 = 

∂f s̃, ã( )
∂s

-----------------    
∂f s̃, ã( )

∂a
-----------------

∂g s̃, ã( )
∂s

------------------    
∂g s̃, ã( )

∂a
------------------

(s̃, ã)

ωn
2

 − Trωn + ∆ = 0
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(21)

. (22)

Here p', q' and r' are defined by

(23) 

(24) 

. (25)

Uniform steady states can be destabilized into two ways; through
real eigenvalues (Re ωn>0, Im ωn=0) or through complex ones (Re
ωn>0, Im ωn 0). In the former case the instability of uniform steady
states is ascertained when ∆ is greater than zero (∆>0). Therefore,
non-uniform steady states can occur at the critical values of the bi-
furcation parameter γ satisfying Eq. (22) when ∆ is set to zero. These
values for γ are called the primary bifurcation points (γ*) on the basic
branches. The successive primary bifurcation points can be easily
calculated for a set of discrete values of the wave number n.

Even though we can locate the primary bifurcation points an-
alytically, it is very difficult to calculate the whole parametric de-
pendence of solutions and secondary bifurcation points in an an-
alytical way. Therefore, we will resort to a numerical scheme for
calculating the bifurcation diagram.

NUMERICAL RESULTS

In order to investigate the parametric dependence of solution
branches for a set of parabolic partial differential equations, Eqs.
(4)-(7), we approximate the differential operator in space by the
Stormer-Numerov finite difference scheme [Kim, 1989; Doedel,
1980] featuring the 0(h4) accuracy where h is denoted by step size
in space. The complete bifurcation analysis of a resulting system
of ordinary differential equations was peformed by using the soft-
ware package AUTO [Kim, 1988]. The detailed algorithm for dis-
cretization of the differential operator with the 0(h4) accuracy will
be found elsewhere [Doedel, 1980]. There are seven parameters,
α, β, γ, ρ, k, so, and ao in Eqs. (4) and (5). Among them the var-
iable γ, representing the dimensionless length of the system, is most
important. Therefore, we selected the variable γ as the bifurcation
parameter in this study.

The values of governing parameters are shown in Table 1. Ten

grid points in space were used to discretize the differential oper
for the bifurcation analysis. The numerical calculation was p
formed on CDC 730 and the error of integration was controlled
six significant decimal places.

The complete bifurcation diagram “s1 versus γ” is displayed in
Fig. 2. The subscript i in si on the ordinate represents the grid poi
in space. In this figure the solid and dotted lines portray the st
and unstable steady-state solutions, respectively. The small le
(a, b, ..., h) stand for the branches of steady state solutions w
the capital letters (A, B, ..., P) represent the bifurcation and lim
points. Open circles and squares denote the bifurcation and 
points, respectively. The bifurcation-limit points are also represen
by the closed squares in this figure. The bifurcation and limit po
detected in the system considered are summarized in Table

For all values of γ there exists one basic trivial branch, 

Tr  = − nπ( )2 1 + β( ) + γ ks̃2
 − 1( ) sO − s̃( ) − ρs̃2

1 + s̃ + ks̃2
------------------------------------------------  − 1 − α

 
 
 

∆ = p'γ2
 + q'γ  + r'

p' = 1 − 
ks̃2

 − 1( ) sO − s̃( )
1 + s̃ + ks̃2( )s̃

------------------------------------
 
 
 

α  + 
ρs̃

1 + s̃ + ks̃2
----------------------

 
 
 

 + 
ρ ks̃2

 − 1( ) sO − s̃( )
1 + s̃ + ks̃2( )2

---------------------------------------

q' = nπ( )2 α  + β  + 
ρs̃2

 − β ks̃2
 − 1( ) sO − s̃( )

1 + s̃ + ks̃2( )s̃
----------------------------------------------------

 
 
 

r' = β nπ( )4

=

s̃ =

Table 1. Parametric values in substrate-inhibited enzyme systems

sO=102.50
aO=79.20
α=1.45
β=5.00
k=0.10
ρ=13.00

Fig. 2. Bifurcation diagram for 10-point discretization of immobi-
lized uricase plate.
–––– stable steady state, ------ unstable steady state, � bifurca-
tion point, �  limit point, �  bifurcation and limit point.

Table 2. Summary of bifurcation and limit points

Point γ s1 Type*

A 9.1 7.84 BP
B 23.9 7.84 BP
C 36.3 7.84 BP
D 81.2 7.84 BP
E 95.45 7.84 BP
F 143.5 7.84 BP
G 223.4 7.84 BP
H 90.2 9.54 BP+LP
I 89.2 6.32 BP
J 85.6 9.01 LP
K 180.3 9.83 LP
L 158.7 5.67 BP
M 180.3 4.93 LP
N 85.6 6.02 LP
O 161.1 9.88 BP
P 213.5 7.84 BP

*BP: Bifurcation point
*LP: Limit point
*BP+LP: Bifurcation-limit point
January, 2001
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7.8479,  which is in good agreement with the analyti-
cal results obtained from Eq. (11). The positive value of D (D
2.4674×105) in Eq. (15) verifies the existence of a unique basic
branch. The primary bifurcation points are in full agreement with
those obtained from Eq. (22) analytically. The branch ‘a’ of sym-
metric profiles corresponds to the branch of uniform steady states
or a basic branch. There are several primary bifurcation points (A,
B, C, D, E, F, G, P) on the basic branch ‘a’. The bifurcation points
A and B, occurring at the branch ‘a’ of symmetric solutions, give
rise to a closed branch ‘b’ of asymmetric solutions. At the bifurca-
tion points C and E, on the basic branch ‘a’, a closed branch ‘c’ of
symmetric solutions emerges. From the point D on the basic branch
‘a’, a closed loop of asymmetric solutions, branch ‘d’ results. A
typical bifurcation-limit point H is displayed in Fig. 2. This point is
a bifurcation point of the branch ‘c’ of symmetric solutions because
an asymmetrical solution may emerge. On the other hand, H is a
limit point at the branch ‘d’ of the asymmetric solutions. At this
point two asymmetric solutions collapse into a symmetric one.

It may be inferred from the result obtained on the branch ‘a’ to
‘d’ that a homogeneous steady state exists for the small size of sys-
tem (γ<9.1) and this stable steady state does not change to any per-
turbation in the concentration of uric acid and oxygen. As the length
of immobilized enzyme systems is increased (9.1<γ<23.9), the ho-
mogeneous steady state may be driven unstable by diffusion and
asymmetric heterogeneous patterns are obtained. These spatial pat-
terns are relatively simple, asymmetric, and stable as shown in Fig.
5. The pattern is composed of two regions of substrate concentra-
tions S. One is higher concentration region of S(s> ) and the other
is lower concentration region of S(s< ). As the values of γ increase,
the steep profiles of substrate concentrations S are developed. These
have been studied by Kernevez [1982] and Murray [1982]. The
former applied the diffusion-driven instability to sequential com-
partment formation in drosophila wings using Kauffamn’s model
and the latter proposed the mechanism for generating the prepat-
tern for animal coat markings. With further increasing size of sys-
tems (23.9<γ<36.3) the basic branch ‘a’ becomes again stable re-
sulting from exchange of stabilities between points B and C. There
also exists the stable homogeneous steady state. This observation
may indicate the predominance of reaction kinetics in a certain size
of system (23.9<γ<36.3). The homogeneous steady state becomes

unstable and heterogeneous patterns are obtained for larger s
systems (γ>36.3).

At the branch ‘c’ of symmetric solutions there is a bifurcation
point (secondary bifurcation point) I which gives rise to a bran
‘e’ of asymmetric solutions, see Fig. 3. At point I the bifurcation
backward with an exchange of stabilities and the secondary b

ã = 13.9227
≅

s̃
s̃

Fig. 3. Bifurcation diagram, branch e (asymmetric solutions).

Fig. 4. Bifurcation diagram, branch f (asymmetric solutions).

Fig. 5. Spatial profiles at particular points on branch b.

Fig. 6. Spatial profiles at particular points on branch c.
Korean J. Chem. Eng.(Vol. 18, No. 1)
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cation branch is unstable at that point. Four limit points (J, K, M
and N) occurring at the above-mentioned branch ‘e’ are depicted.
From the point F on the basic branch ‘a’, a branch ‘f’ of symmet-
ric solutions emerges, see Fig. 2. At the bifurcation point 0, a branch
of asymmetric solution ‘g’ results as depicted in Fig. 4. In Figs. 3
and 4 the solid and dotted lines represent the asymmetric and sym-

metric solutions, respectively. Another branch ‘h’ of asymmetric
solutions is created from the bifurcation point P on the basic bra
‘a’, see Fig. 2.

The spatial profiles at particular points on the branches in Fig
are depicted in Figs. 5-11. In these figures the solid lines denot
stable steady states while the dotted lines represent the uns
steady solutions. The γ values of numbered points are summariz
in Table 3. The basic branch ‘a’ becomes always unstable for large
values of γ (γ>36.3). For smaller values of γ as shown in Figs. 5 and
6, the spatial patterns are relatively simple because there exis
region of higher substrate concentration (s> ) and one regio
lower substrate concentration (s< ). As the values of γ increase fur-
ther, the spatial patterns become complex with two regions of hig
substrate concentration and two regions of lower substrate con
tration alternately as shown in Figs. 7 and 8. For the higher va
of γ the spatial patterns become more and more complex bec
three regions of higher and lower substrate concentration exis
ternately as depicted in Figs. 9 and 11. Thus, the buildup of m
complex patterns in compartment formation of drosophila win
prepattern for animal coat markings and so forth, can be in par
plained with these results. It is obvious that the length of the s
tem (γ) predicts the emergence of more and more complex sp
structures. The branches of asymmetric solutions possess one

s̃
s̃

Fig. 7. Spatial profiles at particular points on branch d.

Fig. 8. Spatial profiles at particular points on branch e.

Fig. 9. Spatial profiles at particular points on branch f.

Fig. 10. Spatial profiles at particular points on branch g.

Fig. 11. Spatial profiles at particular points on branch h.
January, 2001
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cal property, namely mirror image profiles. For instance, the asym-
metric profiles on the identical branch (12 & 18, 31 & 38, 34 & 35
and 64 & 65) clearly show the characteristics of mirror images. One
of the interesting things to note is the number of steady states. The
multiplicity of steady states in Fig. 2 is summarized in Table 4.

CONCLUSIONS

The continuous dependence of the character and number of sol-
utions on the bifurcation parameter γ for the Thomas model has
shown that the primary bifurcation branches form the closed curves
and three basic solutions at most are possible. The multiplicity of
steady state solutions is expected and among them a countable num-
ber of solutions are stable.

There are two possible ways of branching the solutions. One is
the successive branching from the primary bifurcation points on
the basic branch. The other is consecutive branching, i.e., primary

→secondary→tertiary→.... In both cases the branching is of th
type symmetric→asymmetric→symmetric→.... The emergence
of more and more complex spatial structures with increasing 
ues of system size (γ) is similar to the gradual buildup of complex
morphogenetic patterns in the developmental biology and dese
further study.
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NOMENCLATURE

A : concentration of oxygen

a : dimensionless concentration of oxygen ( )

C : Jacobian matrix defined by Eq. (20)
D : discriminant defined by Eq. (16)
DS, DA : diffusion coefficients of uric acid and oxygen in the a

tive layer, respectively
f, g : reaction kinetic term defined by Eqs. (5) and (6)

k : dimensionless inhibition rate ( )

Km, Ks : constants
L1, L2 : thickness of the inactive and active membrane layer,

spectively
p', q', r' : constants defined by Eqs. (21) and (23)
PS, PA : mass transfer coefficients of uric acid and oxygen throu

inactive membrane, respectively
R : reaction rate defined by Eq. (1)
S : concentration of uric acid

s : dimensionless concentration of uric acid ( )

= 
A
Km

------

= 
Vm

K s

------

= 
S
Km

------

Table 3. The γγγγ values of important points

Branch Point γ Branch Point γ

b 11 9.2(u)* f 51 145.0(u)
12 10.1(u) 52 150.2(u)
13 16.8(u) 53 172.2(u)
14 22.8(u) 54 223.4(u)
15 23.7(l) 55 227.2(l)
16 20.9(l) 56 172.5(l)
17 17.3(l) 57 150.9(l)
18 10.1(l) 58 145.1(l)

c 21 37.0(u) g 61 162.5(u)
22 65.0(u) 62 177.1(u)
23 84.1(u) 63 199.6(u)
24 95.0(u) 64 208.7(u)
25 89.4(l) 65 208.7(l)
26 79.2(l) 66 199.6(l)
27 57.3(l) 67 182.6(l)
28 45.2(l) 68 163.0(l)

d 31 81.7(u) h 71 224.9(u)
32 84.7(u) 72 249.4(u)
33 86.1(u) 73 276.5(u)
34 89.9(u) 74 295.3(l)
35 89.9(l) 75 249.4(l)
36 86.3(l) 76 236.9(l)
37 83.9(l) 77 227.0(l)
38 81.7(l) 78 223.4(l)

e 41 86.8(u)
42 134.8(u)
43 177.9(u)
44 160.1(l)
45 174.7(l)
46 129.7(l)
47 98.8(l)
48 89.1(l)

*: u denotes the upper part of each branch from the basic ‘a’
while l represents the lower part of it.

Table 4. Multiple steady states in immobilized enzyme systems

γ Number of solutions (no. of stable solutions)

(0.0, 9.1) 1 (1)
(9.1, 23.9) 3 (2)

(23.9, 36.3) 1 (1)
(36.3, 81.2) 3 (2)
(81.2, 85.6) 5 (2)
(85.6, 89.2) 9 (4)
(89.2, 90.2) 7 (4)
(90.2, 95.4) 5 (2)
(95.4, 143.5) 3 (2)

(143.5, 158.7) 5 (2)
(158.7, 161.1) 7 (4)
(161.1, 180.3) 9 (4)
(180.3, 213.5) 5 (2)
(213.5, 223.4) 3 (2)
(223.4, 300.0) 5 (2)
Korean J. Chem. Eng.(Vol. 18, No. 1)
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u : constant defined by Eq. (17)
v : constant defined by Eq. (18)
Vm : reaction rate constant

x : dimensionless length ( )

z : space coordinate

Greek Letters
α : ratio of mass transfer coefficients of oxygen to uric

acid ( )

β : ratio of diffusion coefficients of oxygen to uric acid

( )

γ : dimensionless length ( )

∆ : determinant defined by Eq. (23)

ρ : dimensionless reaction rate constant ( )

τ : dimensionless time ( )

ω : eigenvalues in Eq. (21)

Superscript
~ : steady state

Subscripts
i : grid point in space
n : wave number
o : condition at the surrounding reservoir
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