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Prediction of Nonrandom Mixing in Lattice Model with Multi-references
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Abstract—A new lattice theory is proposed to describe nonrandom mixing behavior based on recently developed
lattice model theory by Aranovich and Donohue. The present theory assumes multi-references in order to take into
account interference effects on non-random mixing among pairs. The number of references was obtained from Monte
Carlo simulations for monomer+hole mixtures. Monte Carlo simulation for hole [0]+ monomer [1]+monomer [2] mix-
ture shows that this theory is more accurate than Guggenheim’s quasi-chemical theory or the Aranovich-Donohue model
in a wide range of temperatures and densities. Especially, even under the stringent condition of zero interaction energy
parametee,,=0, the present theory predicts well the extent of nhonrandom mixing. For dimer fluid the non-randomness
is calculated using the surface fraction. Here three references was used as in the case of monomer fluid with chain con-
nectivity constraints. Comparison of the theory with Monte Carlo simulation results for dimer+hole system shows a
good agreement.

Key words: Lattice Theory, Non-random Mixing, Aranovich and Donohue Lattice Model, Interference Effect, Dimer Fluid

INTRODUCTION are employed is to take into account interferences among pairs. In
real system, all other molecules around a given molecule act as re-
Recently Aranovich and Donohue (AD) developed a new ap-ferences which influence the movement of the molecule. However,
proach to predict the thermodynamic properties of lattice gas byt is impossible to consider all the influences in calculation. For the
generalizing the ideas of Ono and Kondo [Ono and Kondo, 1960kquare-well potential, the nearest neighbor molecules could be con-
to treat a lattice in three dimensions [Aranovich et al., 1996]. Theysidered as references but the calculation is nearly impossible, since
extended the theory to multi-component mixtures of monomersthese references could interference each other. Therefore, we assume
[Aranovich and Donohue, 1997]. Their expressions for local com-that these references are in positions of being independent of each
positions around each species were derived taking into account mather and being able to influence the given molecule through their
lecular interactions as well as molecular geometry and lattice strucaeighbor molecules. This is an ad hoc procedure. This assumption
ture. These expressions are simple and as accurate as Guggenheifails at low enough temperatures, at which references interfere with
guasi-chemical theory (QC) [Guggenheim, 1952] in predicting non-each other.
random mixing energy. QC theory is widely used in nonrandom Consider exchanging a molecule of typehich belongs to the
lattice fluid theory [Park et al., 1998; Shin et al., 1995, 1998, 2000ffirst shell of a reference molecule of typend also belongs to the
Kim et al., 1998; Kang et al., 1998; Yoo et al., 1997; Yoo and Lee,second shell of another reference molecule of kypéth a mo-
1996, 2000]. However, both the theories underestimate the exterécule of type located at a site infinitely distant from bgiindk.
of non-random mixing at low temperatures. It is because these the- If this exchange is assumed to occur at local equilibrium under
ories assume that different pairs do not interfere with one another. constant temperature and volume, the Helmholtz energy does not
In this work we propose a new approach which is able to prechange.
dict an accurate non-randomness in a wide range of temperatures
and densities. We consider interference among pairs through multi-
references. Also, the non-randomness for dimer fluids is obtainedvhereAU andAS are the energy and entropy changes, respectively,
by this approach with chain connectivity constraints. andT is the absolute temperature.
The entropy term is given by

AU-TAS=0 @)

NONRANDOM BEHAVIOR IN MONOMER ik
MIXTURES AS=S,-S, =k InZXL0 @)
kxe

We consider a lattice containimgdifferent kinds of monomers.  whereS, is the entropy before the excharn§ds the entropy after
Interaction energy for drj pair are designated byg;. In this study, the exchange¢'* is the probability of finding a molecule of type
unlike the AD model, molecules of typandk are considered as in the first shell of the reference molecule of typad also in the
references, whereas in the AD model only molecule of tigoeon- second shell of the reference molecule of kyndx” is the pro-
sidered as reference. The reason that in this study multi-referencdmbility of finding a molecule of typen the bulk.
Here we consider a simple cubic lattice (coordination number
"To whom correspondence should be addressed. z=6). We further assume that the compositions in the second and
E-mail: Hwayongk@snu.ac.kr the higher shells of reference molecules do not differ from those in
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the bulk.
Local energies around molecuieend! before and after the ex-
change are then written as follows:
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where the summation runs over all speciesahda is the num-

ber of references. The first two terms of Eq. (5) are energy changes
when interference is neglected and in the case of a single reference

(a=1), the above expression reduces to the AD model.
From Egs. (1), (2) and (5) it follows that

ke
Applying the following conservation law to Eg. (6),
lzvxi'k =1 ©)
we obtain expressions for local composition as
oo ®

! _Zx{"exp[AU/kT]

As we assumed that reference molecplaadk are indepen-
dent of each other, the local composition or the probability of find-
ing two molecules in the vicinity of each othdrcan be obtained
as follows:

X =3 xex ©)
k
We define nonrandomness factor by
e XXX
rij i __ITL (10)
2X°X;

The non-randomness factbr, can be calculated using Egs. (8),
(9), and (10), and it gives the correct low density limit. In the case
of a completely random mixturig; is equal to unity. Finally, internal
energyU can be written in the form as

U_z

XX &
N, ; i 2 1S

52 (1)

whereN; is the total number of lattice sites.
NON-RANDOM BEHAVIOR IN DIMER MIXTURES

For a dimer in simple cubic lattice structure, the number of ex-
ternal contact points is ten and eight of them have interference witl
segments attracted by bonded segments. A bonded segment can
regarded as a reference. As a result, these sites of dimers have ¢
more reference than that of monomer. In other words, dimer ha:
two kinds of sites. One kind has three references and the other kir
has four references. Here we regard dimer as two components b
cause of the two kinds of sites.
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Local energies around molecuieand! before and after the ex-
change are then written as follows:
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whered; is the Kronecker delta adij=1 if the site of typ¢ is in
dimer and has interference with segments attracted by bonded seg-
ments.

Following the procedure of the case of monomer, we obtain ex-
pressions for local surface fractions as

jk — 8"

As we assumed that referencandk are independent with each
other, local surface fractions between two sBesan be obtained
as follows:

68/=(1-8:) 670/ +3,6/ (16)
k
where the Kronecker delta arises from chain connectivity constraints.

COMPARISON WITH SIMULATION

A lattice gas is a binary mixture of holes [0] and molecules [1].
€, ande,, Ore, are set to zero. The number of referercéstested

with 2, 3, and 4. Comparison of the present theory with Monte Carlo

simulation of hole-monomer mixture shows tha3 is appropri-
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Pig. 1. Non-randomness factor in a lattice gas a&,/kT=0.1, 0.3,
0.5.
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ate to simple cubic structure. The predictions of the present theory For a lattice gas, Guggenheim’s quasi-chemical theory (QC) is
with a=4 deviate from Monte Carlo simulation data at low tem- nearly identical with the AD model. The present model is superior
peratures because of interferences of the references. Therefore, tm QC theory and AD model at a low temperature (Fig. 1). It is be-
this studya is set to 3. For body-centered cubic structure or face-cause the present theory considers interferences between pairs
centered cubic structure,would be above 3, since its larger co- through multi-references.

ordination number accommodates the more references without in- Fig. 2, (a) shows non-randomness wherF./€,.€,, . As one

terferences each other.
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Fig. 2. Non-randomness factors in a ternary mixture ag,/kT=
0.5,&,/kT=0.25, %=0.3.
(8) €12 =VE1E2, (D)€1,=€1, (C)€L=E,

composition is closer to zelio,, andl”,, from QC theory get to de-
viate from simulation results. Though the present model and the
AD model show the similar valueslof, andr,,, the present model
is slightly better than the AD model I, It is because the pres-
ent model is more accurate than the AD model at a low tempera-
ture. Fig. 2, (b) shows the caseegpfe,,. This is the case that 1-2
interaction is strong. It is interesting that in this case, QC theory is
more accurate than in the former case. Fig. 2, (c) shows the case of
€,=€,,. This is the case that 1-2 interaction is weak. Also in this
case, QC theory is more accurate than that in the case (a).

Fig. 3. shows non-randomness wkgnoO. It is the case that the
two components do not interact with each other. As hole density
increases, the accuracy of QC theory deteriorates. Though the pre-
sent model and the AD model show the similar valués,aind
I, the present model is better than the AD modELin

Fig. 4. shows non-randomness of dimer fluids the chain
length.N, andN, are the number of holes [0] and the number of
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Fig. 3. Non-randomness factors in a ternary mixture ag,/kT=
0.5,&,/kT=0.25,¢&,,/KT=0.
(@) %=0.1, (b) ¥=0.5
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1.5 Greek Letters
- Z%“G) a : the number of references
P ds :Kronecker delta .
A elkT=0.3 ds=1, if the molecule of typeis dimer and the site has a

neighboring bonded segment
8:=0, otherwise

: interaction energy fdr-j pair

: non-randomness factor iof]

: the number of all species

: surface fraction
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