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Abstract−−−−A new lattice theory is proposed to describe nonrandom mixing behavior based on recently developed
lattice model theory by Aranovich and Donohue. The present theory assumes multi-references in order to take into
account interference effects on non-random mixing among pairs. The number of references was obtained from Monte
Carlo simulations for monomer+hole mixtures. Monte Carlo simulation for hole [0]+monomer [1]+monomer [2] mix-
ture shows that this theory is more accurate than Guggenheim’s quasi-chemical theory or the Aranovich-Donohue model
in a wide range of temperatures and densities. Especially, even under the stringent condition of zero interaction energy
parameter ε12=0, the present theory predicts well the extent of nonrandom mixing. For dimer fluid the non-randomness
is calculated using the surface fraction. Here three references was used as in the case of monomer fluid with chain con-
nectivity constraints. Comparison of the theory with Monte Carlo simulation results for dimer+hole system shows a
good agreement.
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INTRODUCTION

Recently Aranovich and Donohue (AD) developed a new ap-
proach to predict the thermodynamic properties of lattice gas by
generalizing the ideas of Ono and Kondo [Ono and Kondo, 1960]
to treat a lattice in three dimensions [Aranovich et al., 1996]. They
extended the theory to multi-component mixtures of monomers
[Aranovich and Donohue, 1997]. Their expressions for local com-
positions around each species were derived taking into account mo-
lecular interactions as well as molecular geometry and lattice struc-
ture. These expressions are simple and as accurate as Guggenheim’s
quasi-chemical theory (QC) [Guggenheim, 1952] in predicting non-
random mixing energy. QC theory is widely used in nonrandom
lattice fluid theory [Park et al., 1998; Shin et al., 1995, 1998, 2000;
Kim et al., 1998; Kang et al., 1998; Yoo et al., 1997; Yoo and Lee,
1996, 2000]. However, both the theories underestimate the extent
of non-random mixing at low temperatures. It is because these the-
ories assume that different pairs do not interfere with one another.

In this work we propose a new approach which is able to pre-
dict an accurate non-randomness in a wide range of temperatures
and densities. We consider interference among pairs through multi-
references. Also, the non-randomness for dimer fluids is obtained
by this approach with chain connectivity constraints.

NONRANDOM BEHAVIOR IN MONOMER
MIXTURES

We consider a lattice containing νννν different kinds of monomers.
Interaction energy for an i−j pair are designated by −εεεεij. In this study,
unlike the AD model, molecules of type j and k are considered as
references, whereas in the AD model only molecule of type j is con-
sidered as reference. The reason that in this study multi-references

are employed is to take into account interferences among pair
real system, all other molecules around a given molecule act a
ferences which influence the movement of the molecule. Howe
it is impossible to consider all the influences in calculation. For 
square-well potential, the nearest neighbor molecules could be 
sidered as references but the calculation is nearly impossible, 
these references could interference each other. Therefore, we as
that these references are in positions of being independent of 
other and being able to influence the given molecule through t
neighbor molecules. This is an ad hoc procedure. This assump
fails at low enough temperatures, at which references interfere 
each other.

Consider exchanging a molecule of type i which belongs to the
first shell of a reference molecule of type j and also belongs to the
second shell of another reference molecule of type k with a mo-
lecule of type l located at a site infinitely distant from both j and k.

If this exchange is assumed to occur at local equilibrium un
constant temperature and volume, the Helmholtz energy does
change.

∆∆∆∆U−T∆∆∆∆S=0 (1)

where ∆∆∆∆U and ∆∆∆∆S are the energy and entropy changes, respectiv
and T is the absolute temperature.

The entropy term is given by

(2)

where S1 is the entropy before the exchange, S2 is the entropy after
the exchange, xi

j,k is the probability of finding a molecule of type i
in the first shell of the reference molecule of type j and also in the
second shell of the reference molecule of type k, and xi

∞∞∞∞ is the pro-
bability of finding a molecule of type i in the bulk.

Here we consider a simple cubic lattice (coordination num
z=6). We further assume that the compositions in the second 
the higher shells of reference molecules do not differ from thos

∆∆∆∆S = S2 − S1 = k ln
x i

∞∞∞∞x l
j k,,,,
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Local energies around molecules i and l before and after the ex-

change are then written as follows:

(3)

(4)

(5)

where the summation runs over all species (ν), and α is the num-
ber of references. The first two terms of Eq. (5) are energy changes
when interference is neglected and in the case of a single reference
(α=1), the above expression reduces to the AD model.

From Eqs. (1), (2) and (5) it follows that

(6)

Applying the following conservation law to Eq. (6),

(7)

we obtain expressions for local composition as

(8)

As we assumed that reference molecules j and k are indepen-
dent of each other, the local composition or the probability of find-
ing two molecules in the vicinity of each other, xi

j can be obtained
as follows:

(9)

We define nonrandomness factor by

(10)

The non-randomness factor, Γ11 can be calculated using Eqs. (8),
(9), and (10), and it gives the correct low density limit. In the case
of a completely random mixture, Γij is equal to unity. Finally, internal
energy U can be written in the form as

(11)

where Ns is the total number of lattice sites.

NON-RANDOM BEHAVIOR IN DIMER MIXTURES

For a dimer in simple cubic lattice structure, the number of ex-
ternal contact points is ten and eight of them have interference with
segments attracted by bonded segments. A bonded segment can be
regarded as a reference. As a result, these sites of dimers have one
more reference than that of monomer. In other words, dimer has
two kinds of sites. One kind has three references and the other kind
has four references. Here we regard dimer as two components be-
cause of the two kinds of sites.

Local energies around molecules i and l before and after the ex-
change are then written as follows:

(12)

(13)

(14)

where δδδδiB is the Kronecker delta and δδδδiB=1 if the site of type j is in
dimer and has interference with segments attracted by bonded
ments.

Following the procedure of the case of monomer, we obtain
pressions for local surface fractions as

(15)

As we assumed that references j and k are independent with each
other, local surface fractions between two sites, θθθθi

j can be obtained
as follows:

(16)

where the Kronecker delta arises from chain connectivity constra

COMPARISON WITH SIMULATION

A lattice gas is a binary mixture of holes [0] and molecules [
ε00 and ε10 or ε01 are set to zero. The number of references, α is tested
with 2, 3, and 4. Comparison of the present theory with Monte C
simulation of hole-monomer mixture shows that α=3 is appropri-

U1 = z − α( ) xm
∞∞∞∞ εεεεim + εεεεij  + α  − 1( ) xm

k j,,,, εεεεim
m
∑

m
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Fig. 1. Non-randomness factor in a lattice gas at εεεε11/kT=0.1, 0.3,
0.5.
March, 2001
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ate to simple cubic structure. The predictions of the present theory
with α=4 deviate from Monte Carlo simulation data at low tem-
peratures because of interferences of the references. Therefore, in
this study α is set to 3. For body-centered cubic structure or face-
centered cubic structure, α would be above 3, since its larger co-
ordination number accommodates the more references without in-
terferences each other.

For a lattice gas, Guggenheim’s quasi-chemical theory (QC
nearly identical with the AD model. The present model is supe
to QC theory and AD model at a low temperature (Fig. 1). It is 
cause the present theory considers interferences between 
through multi-references.

Fig. 2, (a) shows non-randomness when . As o
composition is closer to zero, Γ10 and Γ20 from QC theory get to de-
viate from simulation results. Though the present model and
AD model show the similar values of Γ10 and Γ12, the present model
is slightly better than the AD model in Γ10. It is because the pres
ent model is more accurate than the AD model at a low temp
ture. Fig. 2, (b) shows the case of ε12=ε11. This is the case that 1-2
interaction is strong. It is interesting that in this case, QC theor
more accurate than in the former case. Fig. 2, (c) shows the ca
ε12=ε22. This is the case that 1-2 interaction is weak. Also in t
case, QC theory is more accurate than that in the case (a).

Fig. 3. shows non-randomness when ε12=0. It is the case that the
two components do not interact with each other. As hole den
increases, the accuracy of QC theory deteriorates. Though the
sent model and the AD model show the similar values of Γ10 and
Γ20, the present model is better than the AD model in Γ12.

Fig. 4. shows non-randomness of dimer fluid. r is the chain
length. N0 and N1 are the number of holes [0] and the number 

ε12 = ε11ε22

Fig. 2. Non-randomness factors in a ternary mixture at εεεε11/kT=
0.5, εεεε22/kT=0.25, x0=0.3.
(a) , (b) ε12=ε11, (c) ε12=ε22ε12 = ε11ε22

Fig. 3. Non-randomness factors in a ternary mixture at εεεε11/kT=
0.5, εεεε22/kT=0.25, εεεε12/kT=0.
(a) x0=0.1, (b) x0=0.5
Korean J. Chem. Eng.(Vol. 18, No. 2)
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dimers [1], respectively. These non-randomnesses from the three
theories were calculated by using the surface fractions. Though these
theories show similar values at a high temperature, only the pre-
sent model is accurate at a low temperature.

CONCLUSIONS

We propose a new approach which can accurately predict the
extent of non-random mixing in a lattice fluid model. This approach
is a modification of recent lattice model theory of Aranovich and
Donohue, which employs multi-references. It has the effect of con-
sidering interferences among molecules and leads to an accurate
prediction of non-randomness even at low temperatures. Dimer fluid
has one more reference than that of monomer fluid. It is because a
neighboring segment exists. In addition, chain connectivity con-
straint is considered. Non-randomness predicted by the present mod-
el is more accurate than those from quasi-chemical theory or the
Aranovich-Donohue model.
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NOMENCLATURE

Ni : the number of species
Ns : the number of total lattice sites
r : chain length
S : the energy and entropy changes
T : temperature
U : configurational energy
xi

j, k : the probability of finding a molecule of type i in the first shell
of the reference molecule of type j and also in the second
shell of the reference molecule of type k

xi
∞∞∞∞ : the probability of finding a molecule of type i in the bulk

z : coordination number

Greek Letters
α : the number of references
δjB : Kronecker delta

δjB=1, if the molecule of type j is dimer and the site has a
neighboring bonded segment
δjB=0, otherwise

εij : interaction energy for i−j  pair
Γij : non-randomness factor of i−j
ν : the number of all species
θ : surface fraction
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