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Abstract—Numerical Solutions for the Nusselt Numbers (CHF and CWT) and the Friction Factor times Reynolds
Number have been obtained for fully developed laminar flow of a MPL (Modified Power Law) fluid within a square
duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian at low shear
rates through a transition region to power law behavior at higher shear rates. A shear rate parameter is identified, which
allows the prediction of the shear rate range for a specified set of operating conditions. Numerical results of the Nusselt
numbers (CHF and CWT) and the Friction factors times Reynolds number for the Newtonian and power law regions
are compared with previous published results, showing agreement with 0.02% in Newtonian region and 4.0% in power
law region.
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INTRODUCTION An understanding of non-Newtonian fluid flow behavior will
contribute substantially to the solution of a variety of ducts of arbi-

Because of wide applications in engineering, especially in thetrary cross-section. It is of importance to have a knowledge of the
design of compact heat exchangers, much effort has been spentdharacteristics of the pressure drop and the forced convection heat
determining the pressure drop and heat transfer characteristics tfnsfer in fully developed laminar non-Newtonian flow through a
non-circular ducts. The prediction of pressure drop and heat transsquare duct to exercise an appropriate control over the performance
fer to fluids flowing in non-circular ducts are important in many of the heat exchanger and to economize the process. Furthermore,
engineering applications. Consequently, extensive analytical andhe results provide an appropriate basis for estimating the effects of
experimental studies have been carried out on such flow systemthe reduction of fluid frictional drag and heat transfer enhancement.
The analyses of the flows in non-circular ducts such as rectanguldRecently a large number of heat exchangers are designed and manu
ducts are generally more complication than that of the circular pipdactured for the automotive and chemical process industries to heat
and the parallel plates. The investigation of the laminar flow andor cool pseudoplastic fluids. Even today, there is a general lack of
heat transfer behavior in a rectangular duct has become increasxperimental data for heat transfer coefficients which are required
ingly important as a result of the ongoing research of an advancefibr the heat exchanger designs. It is felt, however, that the rheologi-
liquid cooling module for electronic packaging by a number of rec- cal behavior can best be investigated with a well-defined geometry
tangular channels. Calculation of the friction factor for fully devel- of ten found in industry, such as a square duct.
oped laminar flow in non-circular ducts requires a two dimensional Non-Newtonian fluids usually have been assumed as power law
analysis in contrast to the usual one dimensional analyses for a ciftuids in the analysis. Many non-Newtonian fluids, however, have
cular pipe or parallel plates. The boundary condition on the velocviscous properties which are different in the various shear rate ranges.
ity for a fluid flowing through a non-circular ducts is the simple no-  Although a power law model has been used extensively for cal-
slip condition, the same as for circular pipe and parallel plates flowsculating velocity profile and heat transfer coefficient in engineer-
For fully developed laminar flow of Newtonian and non-Newto- ing, it has significant disadvantages that it only applies to the power
nian power law fluids in a square duct, the solutions are well knowrlaw region in the flow curve and the apparent viscosity at the cen-
for both the classical boundary conditions of constant wall temperiroid of the duct becomes infinite.
ature (CWT) and constant wall heat flux (CHF) and the pressure A constitutive equation is one that relates the shear stress or ap-
drop. parent viscosity in a fluid to the shear rate through the rheological

For Newtonian fluids, pressure drop and heat transfer coefficientproperties of the fluid. A convenient way to depict the constitutive
were calculated by Shah and London [1978], Rothfus et al. [1964]equation is to plot a curve of apparent viscosity against shear rate.
Yang et al. [1998] etc. For power law fluids, Chandrupatla [1977], Fig. 1 shows such a graph which is indicative of the behavior of
Wheeler and Wissler [1965], Kozicki and Tiu [1971], and Kozicki many purely viscous pseudoplastic fluids. In the lower shear rate
et al. [1966], Lee [1998] obtained those analytically and experimen+ange, the fluid is Newtonian and in the higher shear rate range the

tally. fluids acts as a power law fluid. Between these region is a transi-
tion range.

To whom correspondence should be addressed. Such a rheological behavior in the transition zone causes several
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I : Newtonian Region range in terms of the operating characteristics of the system. For a
I : Transition Region circular tube [Brewster and Irvine, 1987], and concentric annulus
[Capobianchi and Irvine, 1992], such solutions are available.

When using a particular constitutive equation, it is necessary to
log 7, determine if the equation correctly describes the relation between
I I m the apparent viscosity and the shear rate for the particular fluid being
considered. Thus it is required to measure the rheological proper-
ties in the constitutive equation and compare the equation of predic-
tions with the experimental values of the apparent viscosity vs. the
shear rate. This was done for the CMC (Sodium Carboxymethyl
Cellulose) solutions by Park [1991, 1993].

I : Power Law Region

log 7 ANALYSIS
Fig. 1. Typical flow curve of pseudoplastic fiuid. The study of fully developed laminar flow in ducts comprises
one of the fundamental and classical problems in fluid mechanics
1. It should be determined in which shear rate range the systerand heat transfer. Solutions to such problems are obtained by solv-
is operating and if either of the Newtonian or power law solutionsing the appropriate forms of the momentum and energy equations
can be applied. This is not always simple because there is not a su@ong with the associated boundary conditions.
able shear rate parameter available and also the solutions were db-Pressure Drop
tained independently. If the shear rate range falls within the transi- It is convenient to start with the conservation equations to solve
tion zone then a “transition equation” must be applied for the typea problem related to fluid flowing through duct. For steady flow of
of non-Newtonian fluid considered here. an incompressible fluid with negligible viscous dissipation, the gov-
2. If the designer, as is often the case, builds a small prototyperning equations depend on the apparent viscosity that related to
model, then the shear rate range as well as Reynolds number mukt shear stress and shear rate.
be considered in the design of the larger system for similitude to For Newtonian fluids, the following simple relatigren,, d=n,
be observed. d; has been used. But, for non-Newtonian fluids, the apparent vis-
What is required to overcome these difficulties is a solution for cosity is not a fluid property but is a function of velocity field. The
a fluid which has rheological characteristics similar to Fig. 1.  momentum equation of non-Newtonian fluid depends on the rela-
A number of constitutive equations can describe the apparenionship between the shear stress and the shear rate. For purely vis-
viscosity-shear rate relation for fluids such as shown in Fig. 1. Acous non-Newtonian fluids, the following simple relation has been
convenient and useful equation of pseudoplastic fluid is the “Mod-used [Hartnett and Kostic, 1989].
ified Power Law model” which was first proposed by Dunleavy

) - Qu ,oup
and Middleman [1966]. T =n (L1 )@xj +&:D
Na =— Mo @) The apparent viscosity is a function of three invariants of the rate
1 +”E°({,)1’” of deformation tensor, dor purely viscous non-Newtonian fluids.

For an incompressible fluid, the first invariant vanishes and for a

Inspection of Eq. (1) reveals that the apparent viscosity becomeSimple shear flow even the third invariant vanishes. The apparent
equal to zero shear rate viscosity at very low shear rates and théscosity is a function of the second invariant only as Aris [1962],
fluid is operating in the Newtonian region of Fig. 1. At the higher Bird et al. [1977], and Wheeler and Wissler [1965].
shear rates the fluid becomes a power law fluid. At intermediate ) 20
shear rates, there is a transition zone. An additional advantage of N, =n.(/11/2),where ||=2§§u% +%ED
the modified power law model over other constitutive equations y O
such as Sutterby [1966], Cross [1965], Carreau [1972], etc. is thator power law fluids, the apparent viscosity can be represented as
the familiar Newtonian and power law Reynolds numbers are reyyheeler and Wissler [1965].
tained in the analysis.

The purpose of the present study is to extend our knowledge by
presenting solutions for fluids having the rheological characteristics
illustrated in Fig. 1 and to develop the relationships between th I . . '
friction factor-Reynolds number and the heat transfer coefficient?r he. shear stresses which 'T‘C'”de gradients in both the y and z di-
for a Modified Power Law fluid. Such a solution should have the rections for a power law fluids are
characteristics that at low velocities (low shear rates) the Newto- n1

i ion i i —[Rudf , Rurf]Z du
nian solution is an asymptote while at large shear rates the power t,, _K[@yD +@ZD:| oy
law solution is an asymptote. In addition, the solution should predict -
the appropriate pressure drop and heat transfer behavior in the tran-T =K[E97LJD2 . @ﬁ}Ta_u
sition zone. Finally a parameter is needed to predict the shear rate Loyl DozU| oz

n-1
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Predictions of Heat Transfer and Pressure Drop for a MPL Fluid Flow in a Square Duct

From the power law relation=n,-y =Ky", the simple analytical
models which neglect cross coordinate terms are

ouri'ou - _ @ur]
K@yD oy Mr™ K@yD
Quri 'ou - _ @ur]
w K 0 7 Mez™ szm

The shear stresses include gradients both y and z directions for Mod-
Following dimensionless quantities may be defined

ified Power Law fluids are as following.

u
+n0[ %
g

Form the relation=n,yand Eqg. (1), the simple analytical models
are as following.
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For fully developed flow through ducts, it is possible to assume the

following conditions;
du
ox
For a non-Newtonian Modified Power Law fluid flow through a

square duct as shown in Fig. 2, the fully developed velocity field
is described by the following momentum equation.

=0,v=w=0,p=p(x),u=u(y.2)

ol

ay
with boundary conditions

our, 0

o oug_0dp
>yl 9z

*79z00 ox @

du(0, 2
ady =0

u(y, ¢) =0,

Fig. 2. Coordinate system for a rectangular duct.
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The analytical models of the apparent viscosity for Modified Power
Law fluids are as following.

SRS PR
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where the Darcy friction factor (8t,/ptf) is defined by a dimen-
sionless pressure drop angli®hydraulic diameter (B4R,={4x
cross-sectional area/wetted perimeter}=4bc/b+c).
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From Egs. (1) and (4),

asp—0,n,—~n, and Rg—Re,

asp—very largen,—K(y)™ and Rg—Re,
For a non-Newtonian modified power law fluid through a square
duct, the continuity equation can be expressed by the following equa-
tion

_ l
0= v dA, = _r_[hudydz 4
The dimensionless forms of Egs. (2) and (4) are
* 2
fiRe, =01 ©)
a r _[‘; udy'dz
0 -0u’m, 0. oug__
a az~ +[1 1 6
oy’ ™oy gz 0?9z 0 ©)

with boundary conditions
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i =g 0UT(0,7) _ The term “fully developed temperature profile” implies that there
u(y’,c) =0, =0 . : . T .
ay exists a generalized temperature profile that is invariant with duct
oyt length. The criterion for fully developed temperature profile can be
u (v, 2) =0, 200 =g i y CeVeloped Temperatie p
a7 pressed as
Thus Eq. (6) could give the complete solution for the fluids in Fig. 1 0.0 ~To O=g ®)
and the final results can be presented as the product pi/BRas oxrg =T,

the shear rate paramefer
2. Heat Transfer

When considering the fluid mechanics of non-Newtonian flow,  d.=h(T,~Tg)=constant
the velocity boundary conditions at surfaces are quite straight for-I
ward. Except for certain classes of fluids which exhibit a slip phe-
nomenon at solid boundaries, the boundary condition is normally T.,—Tg=constant
taken as a no-slip or zero velocity at all solid surfaces. For heat tran?Fom which
fer analyses however, the situation becomes more complicated. This
is because there are many different ways to heat a well which in dT1, _dT,
turn affects the type of thermal boundary conditions. dx dx

In general, the amount of heat transfer from a surface, or th
temperature difference between the wall and the fluid are calculate

Writing the convection rate equation,

f h is a constant, then

hus, from Eq. (7)

using the equation T _dT, _dT,
Qrow=hA(T,~T) Ox dx dx

where: Substituting these into Eqg. (8)
Qnw=heat transferred from the wall to the fluid [W] k@ﬂ- . PTO dT,
h=convective heat transfer coefficient [Wkh Chy? gm‘p%u&

A=heat transfer area fin o ' 3 .
Tw—T,=temperature difference between wall and fluid [K] The following dimensionless quantities may now be defined

Heat transfer coefficients are normally given in terms of Nusselt +=T "Tw o2 T
number (Nu=hL/k) where L is a characteristic length in a particu- Te~ Ty NU,
Igr problem. Also, the.fluio! temperature, Vil depend. uponapar-  The dimensionless form of Eq. (7) becomes
ticular heat transfer situation. Both the characteristic length and the
appropriate fluid temperature will be identified in the following pres-  9°T™  0°T"™
entations. ay”?  0z”

Since the heat transfer coefficient can vary considerably for dif- . .
ferent thermal boundary conditions especially for non-circular duct,WIth boundary conditions
i‘ I|ﬂsq (l)rSportant that the boundary conditions be s'plecmgd .corr('ectlly. (') =0, oT(0.7)

gh the number of thermal boundary conditions is in princi- dy’

ple infinite, several classical types have been identified and are in 0T (y".0)
common use. T (') =Ty =22 =0
2-1. Energy Equation (CHF, H1) 0z

Consider the case of constant heat fly) gr unit area at wall ~ Considering the definition of bulk temperaturg;, T
in a square duct. Technically, constant heat flux problems occur in
a plenty of situations: electric resistance heating, radiant heating, T _Ju UTdA

. . == 10
nuclear heating, and in counter flow heat exchangers. A (10)

The energy eqqatlon for.thg thgrmally developed flow in a squqrqzor the square duct geometry, Eq. (10) may be rewritten in dimen-
duct neglecting viscous dissipation and rate of energy generation.

=-4u 9)

[Incropera and DeWitt, 1996] with constant heat flux (CHF) can sionless from
be written as * 4 1)?
:(01(: I — 1)
5 5 a« u+-|-+ y+ Z+
KL+ paudl ) kL
y oz Introducing the definition of T and solving for the Nusselt num-
with boundary conditions ber gives
0T(0,2) _ * 2
T(b.2) =T, T22 = Nu, =@ 1 12)
y 160« u+-|-++d +dZ+
L fouTdy

_ OT(y,0) _
T(:0) =Tw, FER 2-2. Energy Equation (CWT, T)
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Next consider the case where the surface temperagiis ¢bn-

281

10<p<10

stant. This is another very common convection application, which Step 2 : Assume a velocity profile starting with"dyt, z)=0

occurs in such heat exchangers as evaporators, condensers.

for a Newtonian fluid. The Newtonian velocity profile may then

The energy equation for the thermally developed flow in a squardoe used as the initial velocity profile for the non-Newtonian MPL

duct neglecting viscous dissipation and rate of energy generatio
[Incropera and DeWitt, 1996] with constant wall temperature (CWT)
can be written as

T T
Dy? 0220

with boundary conditions

T(b,2) =T, 0_(_2T68, =g

oT

pCpU& (13)

1.0 =T, T =g

For constant wall temperature, Aconstant)

dT, _
X =0
and Eq. (7) reduces to

dT_T,-TdT,
dx T,-Tgdx

substituting in Eq. (13),

kﬂ + az_TD:
Dy? 0220

Defining the following dimensionless quantities.

T,-TdT,
T,—Tgdx

pC,u

_T-T,

T=
TB_Tw

The dimensionless form of Eq. (13) becomes
T 0T
ay+2 az+2

with boundary conditions

=—4U'T'Nu, (14)

) =O’0Ta(0+,z) o

Ty, ey =0, ST 010 o4
Egs. (12) and (14) were solved numerically to obtain the relation-
ship of Nusselt number vs. the shear rate parafidterconstant
heat flux and constant wall temperature with the dimensionless ve
locity distribution, G calculated from the solution of the previous
momentum equation.

NUMERICAL ANALYSIS

The numerical formulation and solution were relatively straight-
forward. An Alternating Direction Implicit method was used with
successive overrelaxation. The algorithm was as follows:

Step 1 : Specify values of @, andp.
n=1.0,0.9,0.8,0.7,0.6,0.5,0.4
a"=1.0 (for square duct)

nalculation.

Step 3 : Calculatg?, ,, 3 , fields by using the assumed velocity
field.

Step 4 : Solve for'tru™(y*, Z) by using ADI (Altemating Di-
rection Implicit) method and obtain fRiey Simpson’s rule. TDMA
(Tri-Diagonal Matrix Algorithm) may be used for obtaining the ve-
locity profile.

Step 5 : Calculate newy, ,, 0’ , from the new value of the ve-
locity field.

Step 6 : Calculate a new{y*, Z) and f-Re.

Step 7 : Compare the f-Realue with the value calculated in
step 4.

Step 8 : Use the new f-Ri calculate a new tand f-Rg until
convergence.

Step 9 : Obtain the"Ufield and f-Rg.

Step 10 : Use the"Ufield and f-Rg to obtain temperature pro-
file by TDMA.

Step 11 : Use the'uf-Re,, and T* to calculate Nusselt number
by Simpson’s rule.

RESULTS AND DISCUSSION

A number of modified power law numetical solutions have been
obtained, which for fully developed laminar duct flows include fric-
tion factors and Nusselt numbers for a square duct. In the follow-
ing, the results of these analyses will be presented in graphical form.
These results are shown in Fig. 3 to Fig. 5.

1. Friction Factors for Fully Developed Flows

A numerical solution to Eq. (5) for a square duct are shown in
Fig. 3. The figure illustrates that in a quantitative sebsizfines
the three regions as follows.

Region | - Newtonia3<10*®

]

804

plt )

40}

FRen

30

a0

0
1 -4

0
logf
Fig. 3. f-Re, for a MPL fluid in a square duct.

3 -2 -1
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Region Il - Transition 10<B<1C
Region IlI - Power Lav>10

Fig. 3 also illustrates several important features of modified powel
law system. First, for complete similarity modeling, the modified
Reynolds number Reand the paramet@rmust both be consid-
ered. Also, a considerable difference exists if it is assumed that th
system is operating in region lll when it actually is operating in Re-
gion |. Simple calculations show that errors in pressure drop predic
tions can be as large as several hundred percent if such an unc
tainty exists in correct operating region.

As the shear rate parameter increases, the Reynolds number i
creases. As the power law flow index(n) increases, the tendenc
increases to retain Newtonian characteristics at low Reynolds nurr
bers. As the flow index decreases, the tendency increases to rete
the characteristics of power law fluid at high Reynolds numbers.

The numerical results of the friction factor and Reynolds num-

bers relations and the Nusselt numbers for the Newtonian and thieig. 4. Nu,, for a MPL fluid in a square duct.

power law region were compared with other previously published
asymptotic results [Shah and London, 1978; Rothfus et al., 1964
Chandrupatla, 1977; Wheeler and Wissler, 1965; Kozicki and Tiu,
1971; Kozicki et al., 1966]. For Newtonian fluid flow through a
square duct, the differences of the friction factors times the Rey
nolds numbers between the results of Shah and London [1978] ar
the present results are less than 0.02%.
2. Fully Developed Laminar Heat Transfer

For Newtonian fluid flow through a square duct, the differences
of the Nusselt number (CHF and CWT) between of the results o
Shah and London [1978] and the present results are less than 0.02
These results are shown in Table 1.

For power law fluids which various flow indices (n=0.4, 0.5,
1.0) the differences of the friction factors times the generalized Reyn
olds numbers between the results of Kozicki et al. [1966] and the
present results witB=10" are less than 0.9%. The differences of
the friction factors times the generalized Reynolds numbers betwee

Table 1. Comparison of f-Rs,, Nu.;, and Nu; of Newtonian fluid

4.3
4.21
4.1
4.0
zg a.8

3.8

3.7

3.6

3.6

3.5

3.4

3.8

=4
3.2

3.1

3.0

2.9

logg

-4

-3

=

-1

)
logg

Fig. 5. Nu; for a MPL fluid in a square duct.

f-Re, Nu,,, Nu;
@ 56.9083 3.6079 2.9760
2 56.9184 3.6070 2.9760

(1) Shah and London [1978].

(2) Present calculation

Table 2. Comparison of f-Rgof power law fluids

n 1) ) ®)
1.0 56.912 56.876 56.910
0.9 47.640 47.620 47.887
0.8 39.692 40.244 40.293
0.7 33.080 33.804 33.894
0.6 27.540 28.356 28.489
0.5 22.932 23.740 23.909
0.4 - 19.816 20.008

(1) Wheeler and Wissler [1965].

(2) Kozicki et al. [1966].
(3) Present calculation

May, 2001

the results of Wheeler and Wissler [1965] and the present results
with B=10" are less than 4.0%. These results are shown in Table 2.

Figs. 4 and 5 show the fully developed Nusselt numbers versus
the shear rate parameter for a square duct for the thermal boundary
conditions of constant wall temperature (CWT) and constant heat
flux (CHF). It is interesting to note that the effect of the shear rate
parametef is much less for the fully developed Nusselt numbers
than for the product f-ReThus it would appear that the effect of
[3 on the hydrodynamic design is much more critical for the thermal
design.

For power law fluid flow through a square duct, the differences
of the Nusselt numbers (CHF and CWT) between the results of the
results of Chandrupatura [1977] and the present results are less than
4.0%. These results are shown in Table 3.

The shear rate parameter defines the transition region (approxi-
mately 107°<B<10G") and is useful to estimating whether the fluid
is a fully developed Newtonian flui@£1029) or a fully developed
Power Law fluid B=10>9. Thus the shear rate param@ean be
used to determine in which of the three regions (Fig. 1) a particular
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Table 3. Comparison of Nu of power law fluids

mal boundary conditions (CHF and CWT) a non-Newtonian fluid
with flow behavior index less than one gives a higher heat transfer
coefficient than a Newtonian fluid. Due to the reduction in friction
power requirement and the augmentation in heat transfer rates, mod-
ified power law fluids seem to be better working fluids in heat ex-
changer compared to Newtonian fluids. On the other hand, the use
of appropriate modified power law fluids may lead to heat transfer
enhancement without the handling difficulties.

The feasibility of application of this friction factor and Reynolds
number relation will be valid for the determination of cross-sec-
tional shapes and tortuosities of creviced channels in packed beds
and porous media; and the heat transfer augmentation for modified
power law fluids in a square duct can be applied for the design of a

liquid cooling module in electronic packaging, where uneven ther-

mal boundary conditions with non-circular ducts are commonly em-

n N th(“ NuT(l) Nqu(Z) NUT(Z)
1.0 3.612 3.607 2.975 2.976
0.9 3.648 3.657 2.997 3.027
0.8 3.689 3.718 3.030 3.087
0.8 3.741 3.793 3.070 3.155
0.6 3.804 3.887 3.120 3.227
0.5 3.889 4.010 3.184 3.317
0.4 - 4.175 - 3.436

(1) Chandrupatla [1977].

(2) Present calculation

system is operating.

CONCLUSION ployed.

Fluids which are called “power law” sometimes follow that con-
stitutive equation, but depending upon operating shear rate they can
also act as Newtonian or Transitional fluids. A

By using a more general constitutive equation, the modified poweA
law equation, solutions are possible which take this shear rate déd>
pendence into account and through a dimensionless shear rate péar-
ameter enable an appropriate choice of the pressure drop and heat
transfer solutions. c

This situation has been examined for forced laminar convectiorC,
in ducts and it is illustrated that serious errors can results if the inb,,
correct shear rate solution is used. Of particular concern are duct
flows operating at low Reynolds nhumbers. d

Numerical solutions for laminar fully developed flow were ob- f
tained for friction factor times Reynolds number for MPL fluid flow h
through square duct. By using the MPL constitutive equation, weK
obtained solutions which are applicable over a wide shear rate rande
of pseudoplastic fluids from Newtonian behavior to the higher sheaiNu
rate range. A shear rate parameter was identified which specifiellu,,
whether a particular system for a typical pseudoplastic fluid is operNu;
ating in the Newtonian, transition, or power law region. The numer-n
ical results of the pressure drop and heat transfer augmentation f@;,.,
the Newtonian and power law regions were compared with othery,
previously published asymptotic results as discussed earlier. R,

As the shear rate increases, the tendency increases to retain power
law fluid characteristics at high Reynolds numbers. As the sheaRg,
rate decreases, the tendency increases to retain Newtonian fluid chite,
acteristics at low Reynolds numbers. Re,

During the analysis, the shear rate paranfet&n be usedto T
determine that the particular system is operating in one of the thre&"
regions (Figs. 1 and 3). ™

For pseudoplastic non-Newtonian fluid, the Modified Power Law T,
model is recommended to use because the fluid properties have big
discrepancies between the power law model and the actual valuég,
in low and medium range of shear rates. u

The numerical solution makes possible the conservation of similu
itude when designing duct systems for such fluids as modified powea"
law fluids since both the appropriate Reynolds number and the shear*
rate ranges are considered. X, Y, Z

From a comparison of the numerical calculations between New-

ij

NOMENCLATURE

. heat transfer area fin

: cross-sectional area of ductm

: one half of duct width [m]

: dimensionless duct width [-]

: one half of duct height [m]

: dimensionless duct height [-]

: specific heat [J/kg-K]

: hydraulic diameter [4xcross-sectional area/wetted pe-

rimeter= 4bc/(b+c)] [m]

: shear rate tensor [1/s]

: Darcy friction factor £2(dp/dx)D/pu] [-]

: convective heat transfer coefficient W]

: power law consistency [Nsn]

: thermal conductivity [W/m-K]

: Nusselt number [-]

: Nusselt number of CHF [-]

: Nusselt number of CWT [-]

: power law flow index [-]

. heat transferred from the will to the fluid [W]
- heat flux at wall [J/s-fh

: hydraulic radius (cross-sectional area/wetted perimeter=

be/(b+c)) [m]

: Newtonian Reynolds numbesuD,/no) [-]

: power law Reynolds numbgo¢"D;/K) [-]

: modified power law Reynolds numb@uD,/n") [-]
: temperature [K]

: dimensionless temperature [-]

: dimensionless temperature [-]

: bulk temperature [K]

: fluid temperature [K]

: wall temperature [K]

: velocity in flow direction [m/s]

: mean velocity in flow direction [m/s]

: dimensionless velocity in x-direction (W]

: dimensionless velocity in x-direction (2uRe,) [-]
: coordinates
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