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Abstract−−−−Numerical Solutions for the Nusselt Numbers (CHF and CWT) and the Friction Factor times Reynolds
Number have been obtained for fully developed laminar flow of a MPL (Modified Power Law) fluid within a square
duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian at low shear
rates through a transition region to power law behavior at higher shear rates. A shear rate parameter is identified, which
allows the prediction of the shear rate range for a specified set of operating conditions. Numerical results of the Nusselt
numbers (CHF and CWT) and the Friction factors times Reynolds number for the Newtonian and power law regions
are compared with previous published results, showing agreement with 0.02% in Newtonian region and 4.0% in power
law region.
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INTRODUCTION

Because of wide applications in engineering, especially in the
design of compact heat exchangers, much effort has been spent in
determining the pressure drop and heat transfer characteristics of
non-circular ducts. The prediction of pressure drop and heat trans-
fer to fluids flowing in non-circular ducts are important in many
engineering applications. Consequently, extensive analytical and
experimental studies have been carried out on such flow systems.
The analyses of the flows in non-circular ducts such as rectangular
ducts are generally more complication than that of the circular pipe
and the parallel plates. The investigation of the laminar flow and
heat transfer behavior in a rectangular duct has become increas-
ingly important as a result of the ongoing research of an advanced
liquid cooling module for electronic packaging by a number of rec-
tangular channels. Calculation of the friction factor for fully devel-
oped laminar flow in non-circular ducts requires a two dimensional
analysis in contrast to the usual one dimensional analyses for a cir-
cular pipe or parallel plates. The boundary condition on the veloc-
ity for a fluid flowing through a non-circular ducts is the simple no-
slip condition, the same as for circular pipe and parallel plates flows.
For fully developed laminar flow of Newtonian and non-Newto-
nian power law fluids in a square duct, the solutions are well known
for both the classical boundary conditions of constant wall temper-
ature (CWT) and constant wall heat flux (CHF) and the pressure
drop.

For Newtonian fluids, pressure drop and heat transfer coefficients
were calculated by Shah and London [1978], Rothfus et al. [1964],
Yang et al. [1998] etc. For power law fluids, Chandrupatla [1977],
Wheeler and Wissler [1965], Kozicki and Tiu [1971], and Kozicki
et al. [1966], Lee [1998] obtained those analytically and experimen-
tally.

An understanding of non-Newtonian fluid flow behavior wi
contribute substantially to the solution of a variety of ducts of a
trary cross-section. It is of importance to have a knowledge of
characteristics of the pressure drop and the forced convection
transfer in fully developed laminar non-Newtonian flow through
square duct to exercise an appropriate control over the perform
of the heat exchanger and to economize the process. Furtherm
the results provide an appropriate basis for estimating the effec
the reduction of fluid frictional drag and heat transfer enhancem
Recently a large number of heat exchangers are designed and 
factured for the automotive and chemical process industries to 
or cool pseudoplastic fluids. Even today, there is a general lac
experimental data for heat transfer coefficients which are requ
for the heat exchanger designs. It is felt, however, that the rheo
cal behavior can best be investigated with a well-defined geom
of ten found in industry, such as a square duct.

Non-Newtonian fluids usually have been assumed as power
fluids in the analysis. Many non-Newtonian fluids, however, ha
viscous properties which are different in the various shear rate ran

Although a power law model has been used extensively for 
culating velocity profile and heat transfer coefficient in engine
ing, it has significant disadvantages that it only applies to the po
law region in the flow curve and the apparent viscosity at the c
troid of the duct becomes infinite.

A constitutive equation is one that relates the shear stress o
parent viscosity in a fluid to the shear rate through the rheolog
properties of the fluid. A convenient way to depict the constitut
equation is to plot a curve of apparent viscosity against shear 
Fig. 1 shows such a graph which is indicative of the behavior
many purely viscous pseudoplastic fluids. In the lower shear 
range, the fluid is Newtonian and in the higher shear rate range
fluids acts as a power law fluid. Between these region is a tra
tion range.

Such a rheological behavior in the transition zone causes se
problems.
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1. It should be determined in which shear rate range the system
is operating and if either of the Newtonian or power law solutions
can be applied. This is not always simple because there is not a suit-
able shear rate parameter available and also the solutions were ob-
tained independently. If the shear rate range falls within the transi-
tion zone then a “transition equation” must be applied for the type
of non-Newtonian fluid considered here.

2. If the designer, as is often the case, builds a small prototype
model, then the shear rate range as well as Reynolds number must
be considered in the design of the larger system for similitude to
be observed.

What is required to overcome these difficulties is a solution for
a fluid which has rheological characteristics similar to Fig. 1.

A number of constitutive equations can describe the apparent
viscosity-shear rate relation for fluids such as shown in Fig. 1. A
convenient and useful equation of pseudoplastic fluid is the “Mod-
ified Power Law model” which was first proposed by Dunleavy
and Middleman [1966].

(1)

Inspection of Eq. (1) reveals that the apparent viscosity becomes
equal to zero shear rate viscosity at very low shear rates and the
fluid is operating in the Newtonian region of Fig. 1. At the higher
shear rates the fluid becomes a power law fluid. At intermediate
shear rates, there is a transition zone. An additional advantage of
the modified power law model over other constitutive equations
such as Sutterby [1966], Cross [1965], Carreau [1972], etc. is that
the familiar Newtonian and power law Reynolds numbers are re-
tained in the analysis.

The purpose of the present study is to extend our knowledge by
presenting solutions for fluids having the rheological characteristics
illustrated in Fig. 1 and to develop the relationships between the
friction factor-Reynolds number and the heat transfer coefficients
for a Modified Power Law fluid. Such a solution should have the
characteristics that at low velocities (low shear rates) the Newto-
nian solution is an asymptote while at large shear rates the power
law solution is an asymptote. In addition, the solution should predict
the appropriate pressure drop and heat transfer behavior in the tran-
sition zone. Finally a parameter is needed to predict the shear rate

range in terms of the operating characteristics of the system. F
circular tube [Brewster and Irvine, 1987], and concentric annu
[Capobianchi and Irvine, 1992], such solutions are available

When using a particular constitutive equation, it is necessar
determine if the equation correctly describes the relation betw
the apparent viscosity and the shear rate for the particular fluid b
considered. Thus it is required to measure the rheological pro
ties in the constitutive equation and compare the equation of pre
tions with the experimental values of the apparent viscosity vs.
shear rate. This was done for the CMC (Sodium Carboxyme
Cellulose) solutions by Park [1991, 1993].

ANALYSIS

The study of fully developed laminar flow in ducts compris
one of the fundamental and classical problems in fluid mecha
and heat transfer. Solutions to such problems are obtained by 
ing the appropriate forms of the momentum and energy equat
along with the associated boundary conditions.
1. Pressure Drop

It is convenient to start with the conservation equations to so
a problem related to fluid flowing through duct. For steady flow 
an incompressible fluid with negligible viscous dissipation, the g
erning equations depend on the apparent viscosity that relate
the shear stress and shear rate.

For Newtonian fluids, the following simple relation τij=ηa dij=η0

dij has been used. But, for non-Newtonian fluids, the apparent 
cosity is not a fluid property but is a function of velocity field. Th
momentum equation of non-Newtonian fluid depends on the r
tionship between the shear stress and the shear rate. For pure
cous non-Newtonian fluids, the following simple relation has be
used [Hartnett and Kostic, 1989].

The apparent viscosity is a function of three invariants of the 
of deformation tensor dij for purely viscous non-Newtonian fluids
For an incompressible fluid, the first invariant vanishes and fo
simple shear flow even the third invariant vanishes. The appa
viscosity is a function of the second invariant only as Aris [196
Bird et al. [1977], and Wheeler and Wissler [1965].

For power law fluids, the apparent viscosity can be represente
Wheeler and Wissler [1965].

The shear stresses which include gradients in both the y and 
rections for a power law fluids are

ηa = 
η0

1 + 
η0

K
----- γ·( )1 − n

--------------------------

τij  = ηa I II III, ,( ) ∂ui

∂xj

-------  + 
∂uj

∂x i

------- 
 

ηa = ηa II 2⁄( ) where II = 2
∂u
∂y
------ 

 
2

 + 
∂u
∂z
------ 

 
2

 
 
 

,

ηa = K γ·( )n − 1
 = K

II
2
---- 

 
n − 1

2
----------

τyx = K
∂u
∂y
------ 

 
2

 + 
∂u
∂z
------ 

 
2

n − 1
2

----------∂u
∂y
------

τzx = K
∂u
∂y
------ 

 
2

 + 
∂u
∂z
------ 

 
2

n − 1
2

----------∂u
∂z
------

Fig. 1. Typical flow curve of pseudoplastic fluid.
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From the power law relation τ=ηa·γ· =Kγ· n, the simple analytical
models which neglect cross coordinate terms are

The shear stresses include gradients both y and z directions for Mod-
ified Power Law fluids are as following.

Form the relation τ=ηaγ· and Eq. (1), the simple analytical models
are as following.

For fully developed flow through ducts, it is possible to assume the
following conditions;

For a non-Newtonian Modified Power Law fluid flow through a
square duct as shown in Fig. 2, the fully developed velocity field
is described by the following momentum equation.

(2)

with boundary conditions

The analytical models of the apparent viscosity for Modified Pow
Law fluids are as following.

Following dimensionless quantities may be defined

where the Darcy friction factor (f=−8τω/ρu2) is defined by a dimen-
sionless pressure drop and Dh is hydraulic diameter (Dh=4Rh={4×
cross−sectional area/wetted perimeter}=4bc/b+c).

(3)

From Eqs. (1) and (4),
as β�0, ηa�η0 and Rem�ReDh

as β�very large, ηa�K(γ· )n−1 and Rem�Reg

For a non-Newtonian modified power law fluid through a squa
duct, the continuity equation can be expressed by the following e
tion

(4)

The dimensionless forms of Eqs. (2) and (4) are

(5)

(6)

with boundary conditions

τyx = K
∂u
∂y
------ 

 
n − 1∂u

∂y
------, ηa y,  = K

∂u
∂y
------ 

 
n − 1

τzx = K
∂u
∂z
------ 

 
n − 1∂u

∂z
------ ηa z,  = K

∂u
∂z
------ 

 
n − 1

τyx = 
η0

1 + 
η0

K
----- ∂u

∂y
------ 

 
2

 + 
∂u
∂z
------ 

 
2

n − 1
2

----------
-------------------------------------------------------- ∂u

∂y
------⋅

τzx = 
η0

1 + 
η0

K
----- ∂u

∂y
------ 

 
2

 + 
∂u
∂z
------ 

 
2

n − 1
2

----------
-------------------------------------------------------- ∂u

∂z
------⋅

τyx = 
η0

1 + 
η0

K
----- ∂u

∂y
------ 

 
1 − n

-------------------------------∂u
∂y
------

τzx = 
η0

1 + 
η0

K
----- ∂u

∂z
------ 

 
1 − n

-------------------------------∂u
∂z
------

∂u
∂x
------ = 0 v= w= 0 p= p x( ) u= u y z,( ), , ,

∂
∂y
------ ηa y,

∂u
∂y
------ 

 
 + 

∂
∂z
----- ηa z,

∂u
∂z
------ 

 
 = 

∂p
∂x
------

u y c,( )  = 0, 
∂u 0 z,( )

∂y
------------------ = 0

u b z,( ) = 0, 
∂u y 0,( )

∂z
------------------  = 0

ηa y,  = 
η0

1 + 
η0

K
----- ∂u

∂y
------ 

 
1 − n

------------------------------- ηa z,  = 
η0

1 + 
η0

K
----- ∂u

∂z
------ 

 
1 − n

-------------------------------,

α*
 = 

c
b
---, b+= 

α* + 1

4α*
------------, c+ = 

α*
 + 1
4

-------------

y+
 = 

y
Dh

------, z+
 = 

z
Dh

------, f = − 

2Dh

dp
dx
------

ρu2
---------------

ηa
+

 = 
ηa

η*
-----, u+

 = 
u
u
---, η*

 = 
η0

1 + 
η0

K
----- u

Dh

------ 
 

1 − n
-------------------------------

ReDh
 = 

ρuDh

η0

------------, Reg = 
ρu2 − nDh

n

K
------------------

Rem = 
ρuDh

η*
------------, η*

 = 
η0

1 + β
-----------

β  = 
Reg

ReDh

----------  = 
η0

K
----- u

Dh

------ 
 

1 − n

, u++
 = 

u+

1
2
---f Rem⋅
-----------------

Rem = ReDh
 + Reg = 

ρuDh

η0

------------ + 
ρu2 − nDh

n

K
------------------  = 

ρuDh

η0

------------ 1 + β( )

ηa y,
+

 = 
1 + β

1 + β 1
2
---f Rem⋅ 

 
1 − n du++

dy+
--------- 

 
1 − n

-------------------------------------------------------------

ηa z,
+

 = 
1 + β

1 + β 1
2
---f Rem⋅ 

 
1 − n du++

dz+
--------- 

 
1 − n

-------------------------------------------------------------

u = 
1
A c

----- u dAc = 
1
bc
----- udydz

0

b∫0

c∫Ac
∫

f Rem = 
α*

 + 1( )2

8α*
------------------- 1

u++dy+dz+

0

b
+

∫0

c
+

∫
----------------------------------⋅

∂
∂y+
-------- ηa y,

+ ∂u++

∂y+
--------- 

 
 + 

∂
∂z+
------- ηa z,

+ ∂u++

∂z+
--------- 

 
 = − 1

Fig. 2. Coordinate system for a rectangular duct.
Korean J. Chem. Eng.(Vol. 18, No. 3)
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Thus Eq. (6) could give the complete solution for the fluids in Fig. 1
and the final results can be presented as the product of f·Rem versus
the shear rate parameter β.
2. Heat Transfer

When considering the fluid mechanics of non-Newtonian flow,
the velocity boundary conditions at surfaces are quite straight for-
ward. Except for certain classes of fluids which exhibit a slip phe-
nomenon at solid boundaries, the boundary condition is normally
taken as a no-slip or zero velocity at all solid surfaces. For heat trans-
fer analyses however, the situation becomes more complicated. This
is because there are many different ways to heat a well which in
turn affects the type of thermal boundary conditions.

In general, the amount of heat transfer from a surface, or the
temperature difference between the wall and the fluid are calculated
using the equation

QTotal=hA(TW−Tf)

where:
QTotal=heat transferred from the wall to the fluid [W]
h=convective heat transfer coefficient [W/m2K]
A=heat transfer area [m2]
TW−Tf=temperature difference between wall and fluid [K]

Heat transfer coefficients are normally given in terms of Nusselt
number (Nu=hL/k) where L is a characteristic length in a particu-
lar problem. Also, the fluid temperature, Tf, will depend upon a par-
ticular heat transfer situation. Both the characteristic length and the
appropriate fluid temperature will be identified in the following pres-
entations.

Since the heat transfer coefficient can vary considerably for dif-
ferent thermal boundary conditions especially for non-circular duct,
it is important that the boundary conditions be specified correctly.
Although the number of thermal boundary conditions is in princi-
ple infinite, several classical types have been identified and are in
common use.
2-1. Energy Equation (CHF, H1)

Consider the case of constant heat flux (qw) per unit area at wall
in a square duct. Technically, constant heat flux problems occur in
a plenty of situations: electric resistance heating, radiant heating,
nuclear heating, and in counter flow heat exchangers.

The energy equation for the thermally developed flow in a square
duct neglecting viscous dissipation and rate of energy generation
[Incropera and DeWitt, 1996] with constant heat flux (CHF) can
be written as

(7) 

with boundary conditions

The term “fully developed temperature profile” implies that the
exists a generalized temperature profile that is invariant with d
length. The criterion for fully developed temperature profile can
expressed as

(8)

Writing the convection rate equation,

qω=h(Tw−TB)=constant

If h is a constant, then

Tω−TB=constant

from which

Thus, from Eq. (7)

Substituting these into Eq. (8)

The following dimensionless quantities may now be defined

The dimensionless form of Eq. (7) becomes

(9)

with boundary conditions

Considering the definition of bulk temperature, TB:

(10)

For the square duct geometry, Eq. (10) may be rewritten in dim
sionless from

(11)

Introducing the definition of T++ and solving for the Nusselt num
ber gives

(12)

2-2. Energy Equation (CWT, T)

u++ y+ c+,( )  = 0, 
∂u++ 0 z+,( )

∂y+
------------------------ = 0

u++ b+ z+,( )  = 0, 
∂u++ y+ 0,( )

∂z+
------------------------ = 0

k
∂2T
∂y2
-------- + 

∂2T
∂z2
-------- 

 
 = ρcpu

∂T
∂x
------

T b z,( )  = TW, 
∂T 0 z,( )

∂y
-------------------  = 0

T y c,( )  = TW, 
∂T y 0,( )

∂z
-------------------  = 0

∂
∂x
------ T  − Tω

TB − Tω
---------------- 

 
 = 0

dTω

dx
---------  = 

dTB

dx
--------

∂T
∂x
------  = 

dTω

dx
---------  = 

dTB

dx
--------

k
∂2T

∂y2
--------  + 

∂2T

∂z2
-------- 

 
 = ρcpu

dTB

dx
--------

T+
 = 

T  − TW

TB − TW

-----------------, T++
 = 

T+

NuH1

-----------

∂2T++

∂y+2
------------  + 

∂2T++

∂z+2
------------  = − 4u+

T++ b+ z+,( )  = 0, 
∂T++ 0 z+,( )

∂y+
------------------------  = 0

T++ y+ c+,( )  = TW, 
∂T++ y+ 0,( )

∂z+
------------------------- = 0

TB = 

uTdAcAc
∫

A cu
---------------------

1 = 
α*

 + 1( )2

16α*
------------------- 1

u+T+dy+ z+d
0

b
+

∫0

c
+

∫
-------------------------------------

NuH1 = 
α*

 + 1( )2

16α*
------------------- 1

u+T++dy+ z+d
0

b
+

∫0

c
+

∫
---------------------------------------
May, 2001



Predictions of Heat Transfer and Pressure Drop for a MPL Fluid Flow in a Square Duct 281

n
L

y

e-

r

en
c-
ow-
orm.

 in
Next consider the case where the surface temperature (Tω) is con-
stant. This is another very common convection application, which
occurs in such heat exchangers as evaporators, condensers.

The energy equation for the thermally developed flow in a square
duct neglecting viscous dissipation and rate of energy generation
[Incropera and DeWitt, 1996] with constant wall temperature (CWT)
can be written as

(13)

with boundary conditions

For constant wall temperature (Tω=constant)

and Eq. (7) reduces to

substituting in Eq. (13),

Defining the following dimensionless quantities.

The dimensionless form of Eq. (13) becomes

(14)

with boundary conditions

Eqs. (12) and (14) were solved numerically to obtain the relation-
ship of Nusselt number vs. the shear rate parameter β for constant
heat flux and constant wall temperature with the dimensionless ve-
locity distribution, u+ calculated from the solution of the previous
momentum equation.

NUMERICAL ANALYSIS

The numerical formulation and solution were relatively straight-
forward. An Alternating Direction Implicit method was used with
successive overrelaxation. The algorithm was as follows:

Step 1 : Specify values of n, α* and β.
n=1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4
α* =1.0 (for square duct)

10−4≤β≤104

Step 2 : Assume a velocity profile starting with a u++(y+, z+)=0
for a Newtonian fluid. The Newtonian velocity profile may the
be used as the initial velocity profile for the non-Newtonian MP
calculation.

Step 3 : Calculate η+
a, y, η+

a, z fields by using the assumed velocit
field.

Step 4 : Solve for u++=u++(y+, z+) by using ADI (Alternating Di-
rection Implicit) method and obtain fRem by Simpson’s rule. TDMA
(Tri-Diagonal Matrix Algorithm) may be used for obtaining the v
locity profile.

Step 5 : Calculate new η+
a, y, η+

a, z from the new value of the ve-
locity field.

Step 6 : Calculate a new u++(y+, z+) and f·Rem.
Step 7 : Compare the f·Rem value with the value calculated in

step 4.
Step 8 : Use the new f·Rem to calculate a new u++ and f·Rem until

convergence.
Step 9 : Obtain the u++ field and f·Rem.
Step 10 : Use the u++ field and f·Rem to obtain temperature pro-

file by TDMA.
Step 11 : Use the u++, f·Rem, and T++ to calculate Nusselt numbe

by Simpson’s rule.

RESULTS AND DISCUSSION

A number of modified power law numerical solutions have be
obtained, which for fully developed laminar duct flows include fri
tion factors and Nusselt numbers for a square duct. In the foll
ing, the results of these analyses will be presented in graphical f
These results are shown in Fig. 3 to Fig. 5.
1. Friction Factors for Fully Developed Flows

A numerical solution to Eq. (5) for a square duct are shown
Fig. 3. The figure illustrates that in a quantitative sense, β defines
the three regions as follows.

Region I - Newtonian β<10−3

k
∂2T
∂y2
-------- + 

∂2T
∂z2
-------- 

 
 = ρcpu

∂T
∂x
------

T b z,( )  = TW, 
∂T 0 z,( )

∂y
-------------------  = 0

T y c,( )  = TW, 
∂T y 0,( )

∂z
-------------------  = 0

dTω

dx
--------- = 0

dT
dx
------  = 

Tω  − T
Tω  − TB

----------------dTB

dx
--------

k
∂2T
∂y2
-------- + 

∂2T
∂z2
-------- 

 
 = ρCpu

Tω  −  T
Tω  − TB

----------------dTB

dx
--------

T+
 = 

T − Tω

TB − Tω
----------------

∂2T+

∂y+2
----------  + 

∂2T+

∂z+2
----------  = − 4u+T+NuT

T+ b+ z+,( ) = 0, 
∂T+ 0 z+,( )

∂y+
----------------------  = 0

T+ y+ c+,( ) = 0, 
∂T+ y+ 0,( )

∂z+
-----------------------  = 0

Fig. 3. f·Rem for a MPL fluid in a square duct.
Korean J. Chem. Eng.(Vol. 18, No. 3)
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Region II - Transition 10−3<β<103

Region III - Power Law β>103

Fig. 3 also illustrates several important features of modified power
law system. First, for complete similarity modeling, the modified
Reynolds number Rem and the parameter β must both be consid-
ered. Also, a considerable difference exists if it is assumed that the
system is operating in region III when it actually is operating in Re-
gion I. Simple calculations show that errors in pressure drop predic-
tions can be as large as several hundred percent if such an uncer-
tainty exists in correct operating region.

As the shear rate parameter increases, the Reynolds number in-
creases. As the power law flow index(n) increases, the tendency
increases to retain Newtonian characteristics at low Reynolds num-
bers. As the flow index decreases, the tendency increases to retain
the characteristics of power law fluid at high Reynolds numbers.

The numerical results of the friction factor and Reynolds num-
bers relations and the Nusselt numbers for the Newtonian and the
power law region were compared with other previously published
asymptotic results [Shah and London, 1978; Rothfus et al., 1964;
Chandrupatla, 1977; Wheeler and Wissler, 1965; Kozicki and Tiu,
1971; Kozicki et al., 1966]. For Newtonian fluid flow through a
square duct, the differences of the friction factors times the Rey-
nolds numbers between the results of Shah and London [1978] and
the present results are less than 0.02%.
2. Fully Developed Laminar Heat Transfer

For Newtonian fluid flow through a square duct, the differences
of the Nusselt number (CHF and CWT) between of the results of
Shah and London [1978] and the present results are less than 0.02%.
These results are shown in Table 1.

For power law fluids which various flow indices (n=0.4, 0.5, …,
1.0) the differences of the friction factors times the generalized Reyn-
olds numbers between the results of Kozicki et al. [1966] and the
present results with β=104 are less than 0.9%. The differences of
the friction factors times the generalized Reynolds numbers between

the results of Wheeler and Wissler [1965] and the present re
with β=104 are less than 4.0%. These results are shown in Tabl

Figs. 4 and 5 show the fully developed Nusselt numbers ve
the shear rate parameter for a square duct for the thermal boun
conditions of constant wall temperature (CWT) and constant h
flux (CHF). It is interesting to note that the effect of the shear r
parameter β is much less for the fully developed Nusselt numbe
than for the product f·Rem. Thus it would appear that the effect o
β on the hydrodynamic design is much more critical for the therm
design.

For power law fluid flow through a square duct, the differenc
of the Nusselt numbers (CHF and CWT) between the results o
results of Chandrupatura [1977] and the present results are less
4.0%. These results are shown in Table 3.

The shear rate parameter defines the transition region (app
mately 10−2.5≤β≤102.5) and is useful to estimating whether the flui
is a fully developed Newtonian fluid (β≤10−2.5) or a fully developed
Power Law fluid (β≥102.5). Thus the shear rate parameter β can be
used to determine in which of the three regions (Fig. 1) a partic

Table 1. Comparison of f·ReDh, NuH1, and NuT of Newtonian fluid

 f·ReDh
 NuH1  NuT

(1) 56.9083 3.6079 2.9760
(2) 56.9184 3.6070 2.9760

(1) Shah and London [1978].
(2) Present calculation

Table 2. Comparison of f·Reg of power law fluids

n (1) (2) (3)

1.0 56.912 56.876 56.910
0.9 47.640 47.620 47.887
0.8 39.692 40.244 40.293
0.7 33.080 33.804 33.894
0.6 27.540 28.356 28.489
0.5 22.932 23.740 23.909
0.4 - 19.816 20.008

(1) Wheeler and Wissler [1965].
(2) Kozicki et al. [1966].
(3) Present calculation

Fig. 4. NuH1 for a MPL fluid in a square duct.

Fig. 5. NuT for a MPL fluid in a square duct.
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system is operating.

CONCLUSION

Fluids which are called “power law” sometimes follow that con-
stitutive equation, but depending upon operating shear rate they can
also act as Newtonian or Transitional fluids.

By using a more general constitutive equation, the modified power
law equation, solutions are possible which take this shear rate de-
pendence into account and through a dimensionless shear rate par-
ameter enable an appropriate choice of the pressure drop and heat
transfer solutions.

This situation has been examined for forced laminar convection
in ducts and it is illustrated that serious errors can results if the in-
correct shear rate solution is used. Of particular concern are duct
flows operating at low Reynolds numbers.

Numerical solutions for laminar fully developed flow were ob-
tained for friction factor times Reynolds number for MPL fluid flow
through square duct. By using the MPL constitutive equation, we
obtained solutions which are applicable over a wide shear rate range
of pseudoplastic fluids from Newtonian behavior to the higher shear
rate range. A shear rate parameter was identified which specifies
whether a particular system for a typical pseudoplastic fluid is oper-
ating in the Newtonian, transition, or power law region. The numer-
ical results of the pressure drop and heat transfer augmentation for
the Newtonian and power law regions were compared with other
previously published asymptotic results as discussed earlier.

As the shear rate increases, the tendency increases to retain power
law fluid characteristics at high Reynolds numbers. As the shear
rate decreases, the tendency increases to retain Newtonian fluid char-
acteristics at low Reynolds numbers.

During the analysis, the shear rate parameter β can be used to
determine that the particular system is operating in one of the three
regions (Figs. 1 and 3).

For pseudoplastic non-Newtonian fluid, the Modified Power Law
model is recommended to use because the fluid properties have big
discrepancies between the power law model and the actual values
in low and medium range of shear rates.

The numerical solution makes possible the conservation of simil-
itude when designing duct systems for such fluids as modified power
law fluids since both the appropriate Reynolds number and the shear
rate ranges are considered.

From a comparison of the numerical calculations between New-
tonian and non-Newtonian fluid flow it is obvious that for the ther-

mal boundary conditions (CHF and CWT) a non-Newtonian flu
with flow behavior index less than one gives a higher heat tran
coefficient than a Newtonian fluid. Due to the reduction in frictio
power requirement and the augmentation in heat transfer rates, 
ified power law fluids seem to be better working fluids in heat e
changer compared to Newtonian fluids. On the other hand, the
of appropriate modified power law fluids may lead to heat trans
enhancement without the handling difficulties.

The feasibility of application of this friction factor and Reynold
number relation will be valid for the determination of cross-se
tional shapes and tortuosities of creviced channels in packed 
and porous media; and the heat transfer augmentation for mod
power law fluids in a square duct can be applied for the design
liquid cooling module in electronic packaging, where uneven th
mal boundary conditions with non-circular ducts are commonly e
ployed.

NOMENCLATURE 

A : heat transfer area [m2]
Ac : cross-sectional area of duct [m2]
b : one half of duct width [m]
b+ : dimensionless duct width [-]
c : one half of duct height [m]
c+ : dimensionless duct height [-]
Cp : specific heat [J/kg·K]
Dh : hydraulic diameter [4×cross-sectional area/wetted p

rimeter= 4bc/(b+c)] [m]
dij : shear rate tensor [1/s]
f : Darcy friction factor [−2(dp/dx)Dh/ρu] [-]
h : convective heat transfer coefficient [W/m2·K]
K : power law consistency [Nsn/m2]
k : thermal conductivity [W/m·K]
Nu : Nusselt number [-]
NuH1 : Nusselt number of CHF [-]
NuT : Nusselt number of CWT [-]
n : power law flow index [-]
QTotal : heat transferred from the will to the fluid [W]
·qW : heat flux at wall [J/s·m2]
Rh : hydraulic radius (cross-sectional area/wetted perimet

bc/(b+c)) [m]
ReDh

: Newtonian Reynolds number (ρuDh/η0) [-]
Reg : power law Reynolds number (ρu2−nDh

n
/K) [-]

Rem : modified power law Reynolds number (ρuDh/η*) [-]
T : temperature [K]
T+ : dimensionless temperature [-]
T++ : dimensionless temperature [-]
TB : bulk temperature [K]
Tf : fluid temperature [K]
TW : wall temperature [K]
u : velocity in flow direction [m/s]
u : mean velocity in flow direction [m/s]
u+ : dimensionless velocity in x-direction (u/u) [-]
u++ : dimensionless velocity in x-direction (2u+/f·Rem) [-]
x, y, z : coordinates

Greek Letters

Table 3. Comparison of Nu of power law fluids

n N uH1
(1) NuT

(1) NuH1
(2) NuT

(2)

1.0 3.612 3.607 2.975 2.976
0.9 3.648 3.657 2.997 3.027
0.8 3.689 3.718 3.030 3.087
0.8 3.741 3.793 3.070 3.155
0.6 3.804 3.887 3.120 3.227
0.5 3.889 4.010 3.184 3.317
0.4 - 4.175 - 3.436

(1) Chandrupatla [1977].
(2) Present calculation
Korean J. Chem. Eng.(Vol. 18, No. 3)
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α* : aspect ratio (c/b) [-]
β : shear rate parameter [(η0/K)(u/Dh)

1−n] [-]
·γ : shear rate [1/s]
ηa : apparent viscosity (τ/γ· ) [Ns/m2]
η0 : zero shear rate viscosity [Ns/m2]
η* : reference viscosity (η0/(1+β)) [Ns/m2]
η+ : dimensionless viscosity (ηa/η*) [-]
ρ : fluid density [kg/m3]
τ : shear stress [Ns/m2]
I, II, III : invariants of shear rate tensor [-]
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