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Abstract−−−−A fixed-grid finite volume numerical approach is developed to simulate the melting during the solid-liquid
phase-change driven by convection as well as by conduction. This approach adopts the enthalpy-porosity method
augmented with the front-layer predictor-corrector and the pseudo Newton-Raphson algorithms that were devised to
track the phase front efficiently in the conduction-driven phase-change problems. The computational results compare
well with experimental data and transformed-grid results in the literature. Also, the effect of the delayed heat-up at a
heated wall on the melting process is investigated.
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INTRODUCTION

Solid-liquid phase-change processes have been receiving much
interest from many engineering fields such as thermal energy stor-
age systems using latent heat and material processes [Choi et al.,
1995; Voller, 1997]. Convection as well as conduction drives the
solid-liquid phase-change processes. The temperature difference in
the melt can give rise to natural convection, and the flow structure
initiated by the convection can significantly affect the phase-change
process. The convection has a great influence on the morphology
of the solid-liquid interface, which can alter the flow structure in
the melt. Hence, the effect of natural convection in the melt on the
phase change has been paid considerable attention for the past sev-
eral decades.

In general, the usual numerical methods for phase-change prob-
lems are the fixed-grid [Brent et al., 1988; Desai and Vafai, 1993;
Viswanath and Jaluria, 1993; Rady and Mohanty, 1996; Kim et al.,
2001] and the transformed-grid methods [Beckermann and Vis-
kanta, 1989; Desai and Vafai, 1993; Viswanath and Jaluria, 1993].
In the fixed-grid method, a single set of conservation equations and
boundary conditions is used for the whole domain comprising the
solid and liquid phases, while the transformed-grid method consid-
ers the governing equations on the basis of the classical Stefan for-
mulation. In the transformed-grid method, the interface conditions
are easily and explicitly imposed on the governing equations; how-
ever, in the fixed-grid method, they are absorbed into the govern-
ing equations as suitable source terms.

The fixed-grid method requires velocity suppression because the
zero-velocity condition should be satisfied as a liquid region turns
to solid. Velocity suppression can be accomplished by the large vis-
cosity of the solid phase or by the suitable source term in the mo-
mentum equation driven to model the two-phase domain as a porous
medium. The fixed-grid method combined with the porous medium

method is usually referred to as the enthalpy-porosity metho
In this study, an enthalpy-porosity model for the convection-do

inated melting is developed. The related numerical model is inc
porated with the front-layer predictor-corrector algorithm, a mu
dimensional version of the single-point predictor-corrector algorit
that was proposed to solve heat conduction-driven phase-ch
problems effectively [Kim et al., 2001]. The computational resu
are compared with experimental and numerical data availabl
the literatures. The effect of the delayed heat-up at the heated
on the prediction of the phase-change process is also investig
In most cases, the phase change problems have been solved
the assumption of constant wall temperatures that should be 
denly reached to the desired temperatures; however, the real
the experiments could be a time delay in the heat-up [Gau and
kanta, 1986]. Such a delayed heat-up will affect the natural c
vection in the melt during the phase-change process conside
and may be a cause of the mismatch between the analytic an
experimental results.

The spatial and temporal discretizations are achieved in the 
text of the finite volume scheme and the fully implicit (backwar
Euler scheme, respectively. The flow field is expressed in term
primitive variables and solved by adopting the SIMPLE algorith
[Patankar, 1980].

MATHEMATICAL MODEL

Two-dimensional melting in a rectangular cavity can be su
marized, as shown in Fig. 1. The melting will be driven by natu
convection as well as by conduction in a rectangular cavity. 
phase changing material is contained in a cavity, whose horizo
walls are insulated. Initially, the phase changing material in the c
ity is kept at uniform temperature Ti below or at Tm. The tempera-
ture at the right wall, TC, is maintained at Ti. Most of the previous
numerical simulations assumed that the sudden elevation of the 
ed wall (the left wall) temperature above the Tm initiates the melt-
ing. Then, the temperature difference between the hot wall and
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melting temperatures causes natural convection in the melt. In fact,
the sudden temperature rise cannot be carried out in real experi-
ment; however, it is possible in the imaginary experiment. The time
delayed heat-up occurs in a real experiment and it delays the in-
itiation of natural convection and affects the melting process. Now,
we derive a simplified model to account for the delayed heat-up.
In many experiments, the constant wall temperature condition is
attained by flowing liquid coming from a constant temperature re-
servoir. Hence, consider the heat transfer from the hot water reser-
voir to the hot wall and assume that the temperature of the hot re-
servoir is kept at a constant, TH0. Then, the hot wall, which is initially
cool at Ti, will be heated by the liquid flow from the reservoir. The
water temperature, which is TH0 at the inlet of the flow path, decreases
due to the heat transfer to the wall. The rate of change of the wall
temperature is proportional to the temperature difference between
the outlet and the inlet flow temperatures, and also to the tempera-
ture difference between the average flow temperature and the wall
temperature. The proportional constants are dependent on many
variables: specific heats of the wall and the liquid, mass of the wall,
heat transfer area, mass flow rate of the liquid and heat transfer co-
efficient between the liquid flow and the wall. Hence, one can easily
show that the wall temperature can be expressed as an exponential
function of time. In other words, simplifying the heat exchange pro-
cess between the hot reservoir and the wall, it is reasonable to take
account of a time constant in TH:

TH=TH0−(TH0−Ti)e
−t/τ (1)

where TH, TH0 (>Tm) and τ represent hot wall temperature, prede-
termined temperature to be reached and time constant, respectively.
Neglecting the time delay in heating implies τ=0.

The momentum field is subjected to no-slip boundary conditio
at the walls. The flow is assumed to be two-dimensional, lami
and incompressible. The thermophysical properties of the ma
als are constant but those of the liquid and the solid phases ar
ferent. But here the density difference between the solid and the
uid phases is neglected except when the Boussinesq approx
tion is invoked.

In the fixed-grid method, the absorption and evolution of the 
tent heat during the phase change leads to the modification o
energy equation because the interface is not tracked, and the
interface conditions are not imposed explicitly. The fixed-grid meth
is basically relying on the enthalpy formulation, which introduce
(the ratio of the liquid mass to the total mass in a given comp
tional cell). If hs and Tm are set to the reference enthalpy and te
perature, respectively, the specific enthalpy will simply be

h=fL+cT, (2)

where L and c represent latent heat and specific heat capacit
spectively. The liquid mass fraction can be obtained from the 
thalpy:

(3)

In isothermal phase change, finally, we can obtain the entha
based governing equations [Viswanath and Jaluria, 1993; Rady
Mohanty, 1996]:

(4)

(5)

(6)

where , ρ, , β and k are the velocity vector, density, gravita
tional acceleration, thermal expansion coefficient and therm
conductivity, respectively. During the solution process of t
momentum field, the velocity at the computational cell locat
in the solid phase should be suppressed while the velocit
the liquid phase remains unaffected. One of the popular mo
for the velocity switch-off is to introduce a Darcy-like term
[Viswanath and Jaluria, 1993; Rady and Mohanty, 1996]:

(7)

which are easily incorporated into the momentum equation as sh
in Eq. (5). The constant C has a big value to suppress the vel
as a cell becomes solid and b is a small number used to preve
division-by-zero when a cell is fully located in the solid region, nam
ly f=0. The choice of the constants is arbitrary. However, the c
stants should ensure sufficient suppression of the velocity in the 
region and also they do not influence the numerical results sig
cantly. In this work, C=1×109 kg/m3s and b=0.005 are used [Vis
wanath and Jaluria, 1993].

f = 

0    if h 0<
h L⁄    if 0 h L≤ ≤

1    if L h<





.

∇ u = 0,⋅

ρ ∂u
∂t
------  + u ∇u⋅ 

 
 = − ∇p + µ∇2u − ρgβ T − Tm( )  + S,

ρ ∂
∂t
---- cT( )  + u ∇ cT( )⋅  = k∇2T  − ρL

∂f
∂t
-----,

u g

S = − C
1− f( )2

f3
 + b( )

----------------u

Fig. 1. Schematics of gallium melting problems: (a) Beckermann
and Viskanta [1989]: Ra=3.166×105, Ste=0.04854; (b) Gau
and Viskanta [1986]: Ra=6.057×105, Ste=0.03912.
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NUMERICAL MODEL

For effective calculation, the numerical procedure adopts the front-
layer predictor-corrector algorithm, which was devised for, and suc-
cessfully applied to, the heat conduction phase change problems
by Kim et al. [2001]. The detailed numerical procedure is well de-
scribed in their work, where several illustrative examples can also
be found. This study introduces the pseudo Newton-Raphson al-
gorithm in addition to the front-layer predictor-corrector algorithm.
The idea of the pseudo Newton-Raphson algorithm is straightfor-
ward. The discretized energy equation in the finite volume formu-
lation [Patankar, 1980] can be expressed as

(8)

where subscripts ‘P’ and ‘nb’ mean the value of present and neigh-
boring cell, respectively. Superscript ‘*’ denotes the value at previ-
ous time step. The detailed expressions of the influence coefficients
aP, anb, aP

0 and source term SP can be found without difficulty (refer
to Patankar [1980]). The terms relating to the liquid fraction sepa-
rate the non-linear behavior associated with the phase change into
a source term. During the iterative predictor-corrector procedure, in
order to expedite the temperature convergence from the non-linear
relations, we could resort to the Newton-Raphson method. The prob-
lem is to find the temperature minimizing the objective function Φ:

(9)

The updated temperature could be written as

(10)

If the Jacobian ∂Φ/∂TP is known, the Newton-Raphson method sure-
ly guarantees faster convergence. However, the Jacobian cannot be
given without any cost. Now, we assume that the neighboring tem-
peratures are constant during the predictor-corrector procedure and
f does not have terms explicitly related to TP. Also if thermophysi-
cal properties are not to be strongly dependent on temperature, the
Jacobian could be fairly approximated as  Now, the
updated temperature can be readily obtained:

(11)

We call this algorithm the pseudo Newton-Raphson since we do
not strictly calculate the Jacobian.

The SIMPLE algorithm [Patankar, 1980] is employed to find the
velocity and pressure field. The interpolation scheme for the con-
vection term is known to be very important in the prediction of con-
vection-dominated processes. In the context of the spatial discreti-
zation, introducing the central difference scheme as a second order
scheme is quite natural but it is often baffling due to its well-known
oscillatory behavior. As a simple way to detour such oscillatory be-
havior, the upwind difference scheme is referred to. It is, however,
prone to false diffusion especially in the multi-dimensional prob-
lem. The power law scheme based on the exact solution of the one-
dimensional convection problem is preferred in many engineering

purposes. Of course, numerous interpolation schemes have 
devised and used. Some of them are as simple as the interpo
schemes stated above, but most of them are more complicated, h
to implement, and even more time-consuming. These adverse
tures make the aforementioned classical interpolation schemes v

One of the simple but effective schemes is the deferred cor
tion method [Ferziger and Peric, 1999]. The lower-order flux a
proximation (the upwind difference scheme is often used) is imp
itly imposed while the higher-order approximation is explicitly o
tained from the previous iteration. For example, the flux throu
the east control surface Fe is given as

(12)

where γ is the blending factor, and the superscripts H and L rep
sent higher- and lower-order approximation of the convection te
respectively. Normally, the explicit part is so small that it may n
affect the convergence significantly. In this study, as the lower- 
the higher-order scheme, the upwind difference scheme (UDS)
the central difference scheme (CDS) are chosen, respectively.
case with γ=0.5 is called the mixed difference scheme (MDS)

NUMERICAL RESULTS AND DISCUSSION

The proposed algorithm is applied to simulate the convecti
dominated melting of a pure gallium. The numerical predictio
are compared with the experimental data and numerical results
termined by the transformed-grid method in the previous wor
The gallium melting experiments of Viskanta and his cowork
[Gau and Viskanta, 1986; Beckermann and Viskanta, 1989] are
lected as references because they have been widely cited fo
verification of recently developed numerical models [Brent et 
1988; Desai and Vafai, 1993; Viswanath and Jaluria, 1993; R
and Mohanty, 1996]. The experimental configurations are sketc
in Fig. 1. The thermophysical properties used in the calculation
adopted from Brent et al. [1988].
1. Example 1

Experiment 1 of Beckermann and Viskanta [1989] is simula
with the proposed method. Rady and Mohanty [1996] used a n
uniform 35×35 grid for the fixed-grid calculation after a grid refin
ment test. Hence, this study simply adopts a non-uniform 40
grid for Example 1. As the interpolation scheme for the convec
transport term, the mixed difference scheme is adopted becau
gives satisfactory results for the prediction of the flow structure
the melt and the evolution of the front location. The effect of 
interpolation model for the convection term on the numerical res
will be discussed later.

The predicted temperature profiles at 3, 10, and 50 min are sh
in Fig. 2, where the experimental data and the transformed-grid
sults obtained by Beckermann and Viskanta [1989] are also g
for the comparison. The calculated temperature distributions s
a better agreement with the experimental data than those by the 
formed-grid.

In this melting experiment, Beckermann and Viskanta repor
that it took about 20 sec for the hot wall to reach the desired t
perature, and the time delay in heating is small enough. Bec
the calculation also shows its effect to be negligible, the comp
tional results with the delayed heat-up are not presented in Fig.

aPTP = anbTnb + SP − aP
0 fP − fP

*( )
nb
∑

Φ = aPTP − anbTnb + SP − aP
0 fP − fP

*( )
nb
∑ .

TP
n + 1( )

 = TP
n( )

 − Φ n( ) ∂Φ n( )

∂TP

-----------
− 1

.

∂Φ n( ) ∂TP aP
n( )≅⁄ .

TP
n + 1( )

 = TP
n( )

 − 
Φ n( )

aP
n( )

--------.

Fe = Fe
L

 + γ Fe
H

 − Fe
L( )old,
Korean J. Chem. Eng.(Vol. 18, No. 5)
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2. Example 2
In order to verify the predictability of the evolution of the phase

front, Gau and Viskanta’s [1986] melting experiment conducted
a rectangular cavity with H/W=0.714 is chosen. A uniformly spac
50×36 grid is used for our calculations, while Viswanath and Jal
[1993] used a uniform 50×30 grid for the fixed-grid calculation af
a grid refinement test.

As for the interpolation schemes of the convection term, we te
four schemes preliminarily; UDS (γ=0.0), CDS (γ=1.0) and MDS
(γ=0.5) and a power law scheme (PLS). During preliminary cal
lations, the delayed heat-up at the heated wall is not considered
front locations predicted by the UDS, the MDS and the PLS 
similar to each other, but the phase change front by the CDS is s
what distorted. An interesting point to note is that the flow stru
tures obtained in many researches [Brent et al., 1988; Viswa
and Jaluria, 1993; Voller, 1997] show only a single cell in the m
region. Viswanath and Jaluria [1993] observed a secondary r
culation cell in the lower part of the melt region with the tran
formed grid. However, they also were not able to capture the 
ondary eddies with the fixed-grid based on the enthalpy meth
even with a finer resolution (60×50) than the transformed-grid c
culation (40×40). Our calculations show that the CDS and the M
predict the streamlines that are obviously distorted due to the sec
ary flow structure, as shown in Fig. 3 while the UDS and the P
generate only a single cell. The results support that the upwindin
gorithm tends to be overly diffusive and suppresses the secon
structure as Ferziger and Peric [1999] criticized. The tested re
show that the MDS has good predictability of the front location a
the flow structure in the melt. The MDS, hence, is adopted as a
terpolation scheme of the convection term throughout the calcula

As shown in Fig. 4, the measured phase fronts are plotted to
ify the proposed model with the transformed-grid solutions ba
on the finite element method [Desai and Vafai, 1993] and the fi
volume method [Viswanath and Jaluria, 1993]. Of course, in b
studies, the heated wall condition was treated as ideal sudden
perature elevation and the time delay in heating up the heated
was not considered.

When comparing solid-liquid interfaces of two methods at 6 a
10 min, the transformed-grid method gives good agreement w
the experimental data. But the predicted solid-liquid interfaces
the proposed method without taking the delayed heat-up into
count show some discrepancy with the experimental data. Such
crepancy is, in fact, more reasonable because the impulsive 
perature rise is very difficult in the experiment and the heated w
should be heated up with time delay. The actual amount of en
transferred to the gallium through the hot wall should be less t
the energy imposed in the idealized simulation, so that the reta
tion of the front evolution in the experiments is probable. The me
urement of the reliance of the actual temperature at the heated
is required to account for the delayed heat-up. However, a det
history of the temperatures at the hot wall is not available in 
problem. Therefore, we introduce the time constant as show
Eq. (1) because we may approximate the temperature at the ho
to be exponentially growing with a suitable time constant. We 
sume τ=67.89 sec, which corresponds to TH (4 min)=37.71oC and
TH (8 min)=37.99oC. This temperature history is close to the mea
ured data in a similar experimental condition (See Fig. 5 in G
and Viskanta [1986]). As can be seen in Fig. 4, the inclusion of
delayed heat-up improves the numerical prediction considera

Fig. 2. Temperature profile for Example 1, where θθθθl and θθθθs repre-
sent dimensionless temperatures of liquid and solid phase,
respectively: (a) at 3 min; (b) at 10 min; (c) at 50 min.
September, 2001
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The predicted phase fronts with the consideration of time delay are
retarded due to less heat transfer from the heated wall, and they are
in excellent agreement with the experimental results.

The effect of delayed heat-up at the hot wall is less significant at
19 min; on the contrary, the interfaces obtained by Viswanath and
Jaluria [1993] with the transformed-grid deviate much more from
the experimental data than those with the proposed model. The finite
element results by Desai and Vafai [1993] do not present the front
location at 19 min, so that these are not compared in Fig. 4. It should
be noted that all numerical results at 19 min presented in Fig. 4 show
much discrepancy with the experimental data than those at 6 or 10
min. Even though the proposed model gives better prediction than
the previous models, our results still have an obvious discrepancy

with the experiment. Some part of the discrepancy can be expla
by considering the experimental condition at the cooled wall. A
cording to Fig. 5 in Gau and Viskanta [1986], the cold wall temp
ature was gradually increased from the initial temperature to the
sion temperature. Hence, as time proceeded, less heat was rem
through the cold wall. The inaccurate modeling of the thermoph
ical properties such as the anisotropic nature of the thermal 
ductivity as well as the numerical modeling error, of course, can
another reason for the discrepancy.

CONCLUSIONS

The melting driven by conduction as well as convection in a r

Fig. 3. Streamlines for Example 2 at 19 min: (a) UDS; (b) CDS; (c) MDS; (d) PLS.

Fig. 4. Evolution of phase front for Example 2: (a) at 6 min; (b) at 10 and 19 min.
Korean J. Chem. Eng.(Vol. 18, No. 5)
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tangular enclosure is investigated numerically. The mathematical
model based on the enthalpy-porosity method is developed to de-
scribe the phase change accompanied with natural convection. This
study adopts the front-layer predictor-corrector and the pseudo New-
ton-Raphson algorithms, whose effectiveness is verified through
solving the conduction-driven phase-change problems. Results of
the proposed model show excellent agreement with experimental
data and transformed-grid results available in the literature.

The effect of the time delay in heating a hot wall on the melting
is studied. The computational results indicate that the delayed heat-
up will affect the phase-change process if the time constant of the
heat-up at the heated wall is not small enough. They also imply the
delayed heat-up causes the discrepancy between the numerical and
the experimental results.

NOMENCLATURE

c : specific heat capacity
CDS : central difference scheme
f : liquid mass fraction
Fe : flux through the east face
hs : saturation enthalpy of solid
L : latent heat
MDS : mixed difference scheme
PLS : power law scheme

: source vector to account for velocity suppression
Ti : initial temperature
Tm : fusion temperature
TC : temperature at the right wall (cold wall)
TH : temperature at the left wall (hot wall)
TH0 : predetermined temperature to be reached
UDS : upwind difference scheme

Greek Letters
α : thermal diffusivity
β : thermal expansion coefficient of liquid
γ : blending factor used in deferred correction method
∆T : temperature difference (TH0− Tm)
ρ : density
τ : time constant
Pr : Prandtl number (=νl /α)

Ra : Rayleigh number (=gβ∆TH3/ανl)
Ste : Stefan number (=c∆T/L)

Superscript
H, L : higher- and lower-order approximation of the conve

tion term
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