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Abstract—A fixed-grid finite volume numerical approach is developed to simulate the melting during the solid-liquid
phase-change driven by convection as well as by conduction. This approach adopts the enthalpy-porosity method
augmented with the front-layer predictor-corrector and the pseudo Newton-Raphson algorithms that were devised to
track the phase front efficiently in the conduction-driven phase-change problems. The computational results compare
well with experimental data and transformed-grid results in the literature. Also, the effect of the delayed heat-up at a
heated wall on the melting process is investigated.
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INTRODUCTION method is usually referred to as the enthalpy-porosity method.
In this study, an enthalpy-porosity model for the convection-dom-
Solid-liquid phase-change processes have been receiving mudhated melting is developed. The related numerical model is incor-
interest from many engineering fields such as thermal energy stoiporated with the front-layer predictor-corrector algorithm, a multi-
age systems using latent heat and material processes [Choi et @imensional version of the single-point predictor-corrector algorithm
1995; \oller, 1997]. Convection as well as conduction drives thethat was proposed to solve heat conduction-driven phase-change
solid-liquid phase-change processes. The temperature difference problems effectively [Kim et al., 2001]. The computational results
the melt can give rise to natural convection, and the flow structur@re compared with experimental and numerical data available in
initiated by the convection can significantly affect the phase-changehe literatures. The effect of the delayed heat-up at the heated wall
process. The convection has a great influence on the morphologgn the prediction of the phase-change process is also investigated.
of the solid-liquid interface, which can alter the flow structure in In most cases, the phase change problems have been solved under
the melt. Hence, the effect of natural convection in the melt on thehe assumption of constant wall temperatures that should be sud-
phase change has been paid considerable attention for the past sdenly reached to the desired temperatures; however, the reality in
eral decades. the experiments could be a time delay in the heat-up [Gau and Vis-
In general, the usual numerical methods for phase-change prolikanta, 1986]. Such a delayed heat-up will affect the natural con-
lems are the fixed-grid [Brent et al., 1988; Desai and Vafai, 1993yvection in the melt during the phase-change process considerably
Viswanath and Jaluria, 1993; Rady and Mohanty, 1996; Kim et al.and may be a cause of the mismatch between the analytic and the
2001] and the transformed-grid methods [Beckermann and Visexperimental results.
kanta, 1989; Desai and Vafai, 1993; Viswanath and Jaluria, 1993]. The spatial and temporal discretizations are achieved in the con-
In the fixed-grid method, a single set of conservation equations antext of the finite volume scheme and the fully implicit (backward)
boundary conditions is used for the whole domain comprising theEuler scheme, respectively. The flow field is expressed in terms of
solid and liquid phases, while the transformed-grid method considprimitive variables and solved by adopting the SIMPLE algorithm
ers the governing equations on the basis of the classical Stefan fdPatankar, 1980].
mulation. In the transformed-grid method, the interface conditions

are easily and explicitly imposed on the governing equations; how- MATHEMATICAL MODEL
ever, in the fixed-grid method, they are absorbed into the govern-
ing equations as suitable source terms. Two-dimensional melting in a rectangular cavity can be sum-

The fixed-grid method requires velocity suppression because thenarized, as shown in Fig. 1. The melting will be driven by natural
zero-velocity condition should be satisfied as a liquid region turnsconvection as well as by conduction in a rectangular cavity. The
to solid. Velocity suppression can be accomplished by the large visphase changing material is contained in a cavity, whose horizontal
cosity of the solid phase or by the suitable source term in the mowalls are insulated. Initially, the phase changing material in the cav-
mentum equation driven to model the two-phase domain as a porolity is kept at uniform temperature 3elow or at T. The tempera-
medium. The fixed-grid method combined with the porous mediumture at the right wall, I is maintained at;. TMost of the previous

numerical simulations assumed that the sudden elevation of the heat-
To whom correspondence should be addressed. ed wall (the left wall) temperature above theinitiates the melt-
E-mail: mckim@cheju.cheju.ac.kr ing. Then, the temperature difference between the hot wall and the
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insulated The momentum field is subjected to no-slip boundary conditions
at the walls. The flow is assumed to be two-dimensional, laminar,
liquid (@) and incompressible. The thermophysical properties of the materi-
el — solid o als are constant but those of the liquid and the solid phases are dif-
§ § @ ferent. But here the density difference between the solid and the lig-
2% T ] T,22078°C | uid phases is neglected except when the Boussinesg approxima-
1|2 et flo e tion is invoked.

—> T=24.98°C In the fixed-grid method, the absorption and evolution of the la-
tent heat during the phase change leads to the modification of the
energy equation because the interface is not tracked, and then the

W=0.0476m interface conditions are not imposed explicitly. The fixed-grid method
insulated is basically relying on the enthalpy formulation, which introduces f
(the ratio of the liquid mass to the total mass in a given computa-
iqud  [—> solid  (b) tional cell). If h and T, are set to the reference enthalpy and tem-
elo | perature, respectively, the specific enthalpy will simply be
E 1§
2 | T j o o h=fL+cT, @)
s | T,%29.78°C N 3 .
T 7| et flow = where L and c represent latent heat and specific heat capacity, re-
> T228.3°C spectively. The liquid mass fraction can be obtained from the en-
thalpy:
4 74
! W=0.0889m 00 if h<0
Fig. 1. Schematics of gallium melting problems: (a) Beckermann f=p0hvL ifO<shsL. )
and Viskanta [1989]: Ra=3.166x10 Ste=0.04854; (b) Gau % 1 ifL<h

and Viskanta [1986]: Ra=6.057x17) Ste=0.03912.

In isothermal phase change, finally, we can obtain the enthalpy-
ased governing equations [Viswanath and Jaluria, 1993; Rady and

melting temperatures causes natural convection in the melt. In fac
g femp Ylohanty, 1996]:

the sudden temperature rise cannot be carried out in real experi-

ment; however, it is possible in the imaginary experiment. The time 4 =0, @)
delayed heat-up occurs in a real experiment and it delays the in-

itiation of natural convection and affects the melting process. Now, 9 Y a2

we derive a simplified model to account for the delayed heat-up. Py ~UIUG="Dp THDU PGB(T ~T.) *$, ©)

In many experiments, the constant wall temperature condition is
attained by flowing liquid coming from a constant temperature re- p[Q(CT) +0 DD(cT)} =K[2T _pL‘ﬂ, (6)
servoir. Hence, consider the heat transfer from the hot water reser- ot ot
voir to the hot wall and assume that the temperature of the hot re- S . . .
- S whereu ,p, g, B and k are the velocity vector, density, gravita-
servoir is kept at a constant, TThen, the hot wall, which is initially . . . L
. o . tional acceleration, thermal expansion coefficient and thermal
cool at T, will be heated by the liquid flow from the reservoir. The - . ) .
L . conductivity, respectively. During the solution process of the
water temperature, which ig Bt the inlet of the flow path, decreases ' . .
omentum field, the velocity at the computational cell located
due to the heat transfer to the wall. The rate of change of the wall" . . L
: : : in the solid phase should be suppressed while the velocity in
temperature is proportional to the temperature difference betweep .~ = .
. e liquid phase remains unaffected. One of the popular models
the outlet and the inlet flow temperatures, and also to the temper'?\- ; . . ; :
. r the velocity switch-off is to introduce a Darcy-like term
ture difference between the average flow temperature and the wall . . , .
. iswanath and Jaluria, 1993; Rady and Mohanty, 1996]:
temperature. The proportional constants are dependent on many
variables: specific heats of the wall and the liquid, mass of the wall, - (1-f)°,
heat transfer area, mass flow rate of the liquid and heat transfer co- ‘_C(fa +b) @)
efficient between the liquid flow and the wall. Hence, one can easily
show that the wall temperature can be expressed as an exponentelich are easily incorporated into the momentum equation as shown
function of time. In other words, simplifying the heat exchange pro-in Eg. (5). The constant C has a big value to suppress the velocity
cess between the hot reservoir and the wall, it is reasonable to takes a cell becomes solid and b is a small number used to prevent the
account of a time constant i T division-by-zero when a cell is fully located in the solid region, name-
ly f=0. The choice of the constants is arbitrary. However, the con-
stants should ensure sufficient suppression of the velocity in the solid
where T, T, (>T,) andt represent hot wall temperature, prede- region and also they do not influence the numerical results signifi-
termined temperature to be reached and time constant, respectiveantly. In this work, C=1x2&g/n’s and b=0.005 are used [Vis-
Neglecting the time delay in heating implies0. wanath and Jaluria, 1993].

Tu=Tuo~ (Tro=T)E” @)
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NUMERICAL MODEL purposes. Of course, numerous interpolation schemes have been
devised and used. Some of them are as simple as the interpolation
For effective calculation, the numerical procedure adopts the frontschemes stated above, but most of them are more complicated, harder
layer predictor-corrector algorithm, which was devised for, and sucto implement, and even more time-consuming. These adverse fea-
cessfully applied to, the heat conduction phase change problenisres make the aforementioned classical interpolation schemes viable.
by Kim et al. [2001]. The detailed numerical procedure is well de- One of the simple but effective schemes is the deferred correc-
scribed in their work, where several illustrative examples can alsdion method [Ferziger and Peric, 1999]. The lower-order flux ap-
be found. This study introduces the pseudo Newton-Raphson alroximation (the upwind difference scheme is often used) is implic-
gorithm in addition to the front-layer predictor-corrector algorithm. itly imposed while the higher-order approximation is explicitly ob-
The idea of the pseudo Newton-Raphson algorithm is straightfortained from the previous iteration. For example, the flux through
ward. The discretized energy equation in the finite volume formu-the east control surfaceiB given as
lation [Patankar, 1980] can be expressed as F =R +y(F )™, 12)
& Tr :ZbehanﬁSp ~ap(fp ) @) wherey is the blending factor, and the superscripts H and L repre-
’ sent higher- and lower-order approximation of the convection term,
where subscripts ‘P’ and ‘nb’ mean the value of present and neighrespectively. Normally, the explicit part is so small that it may not
boring cell, respectively. Superscript ** denotes the value at previ-affect the convergence significantly. In this study, as the lower- and
ous time step. The detailed expressions of the influence coefficientthe higher-order scheme, the upwind difference scheme (UDS) and
3 ay & and source term,$an be found without difficulty (refer  the central difference scheme (CDS) are chosen, respectively. The
to Patankar [1980]). The terms relating to the liquid fraction sepa-case withy=0.5 is called the mixed difference scheme (MDS).
rate the non-linear behavior associated with the phase change into
a source term. During the iterative predictor-corrector procedure, in NUMERICAL RESULTS AND DISCUSSION
order to expedite the temperature convergence from the non-linear
relations, we could resort to the Newton-Raphson method. The prob- The proposed algorithm is applied to simulate the convection-
lem is to find the temperature minimizing the objective funeion ~ dominated melting of a pure gallium. The numerical predictions
are compared with the experimental data and numerical results de-

O =3a.T, —[Z%Tnﬁsp —a(fp —f;)}. 9) termined by the transformed-grid method in the previous works.
" The gallium melting experiments of Viskanta and his coworkers
The updated temperature could be written as [Gau and Viskanta, 1986; Beckermann and Viskanta, 1989] are se-
lected as references because they have been widely cited for the
T = _q)(n)[di(“)rl (10) verification of recently developed numerical models [Brent et al.,
i i T, 1988; Desai and Vafai, 1993; Viswanath and Jaluria, 1993; Rady

and Mohanty, 1996]. The experimental configurations are sketched

ly quarantees faster convergence. However, the Jacobian cannot in Fig. 1. The thermophysical properties used in the calculation are

. ) ) . (aopted from Brent et al. [1988].
given without any cost. Now, we assume that the neighboring temy - ample 1

peratures are constant during the predictor-corrector procedure and Experiment 1 of Beckermann and Viskanta [1989] is simulated

I::IOSrsoSg:tir;ivzr;e:gtstgxbpe“Cslilr)grzeg;l;t?jdegéﬂjsgnltf ;:e:érr]r:)g:g:re tr\{u\é]ith the proposed method. Rady and Mohanty [1996] used a non-
Jacobian could be fairly approximatecas”/aT, (a. Now, the iform 35%35 grid for the fixed-grid calculation after a grid refine-

: P ment test. Hence, this study simply adopts a non-uniform 40x40
updated temperature can be readily obtained: grid for Example 1. As the interpolation scheme for the convective
ot e DO transport term, the mixed difference scheme is adopted because it
Te 7 =Te Pk (11)  gives satisfactory results for the prediction of the flow structure in
the melt and the evolution of the front location. The effect of the
We call this algorithm the pseudo Newton-Raphson since we danterpolation model for the convection term on the numerical results
not strictly calculate the Jacobian. will be discussed later.

The SIMPLE algorithm [Patankar, 1980] is employed to find the  The predicted temperature profiles at 3, 10, and 50 min are shown
velocity and pressure field. The interpolation scheme for the conin Fig. 2, where the experimental data and the transformed-grid re-
vection term is known to be very important in the prediction of con-sults obtained by Beckermann and Viskanta [1989] are also given
vection-dominated processes. In the context of the spatial discretior the comparison. The calculated temperature distributions show
zation, introducing the central difference scheme as a second orderbetter agreement with the experimental data than those by the trans-
scheme is quite natural but it is often baffling due to its well-known formed-grid.
oscillatory behavior. As a simple way to detour such oscillatory be- In this melting experiment, Beckermann and Viskanta reported
havior, the upwind difference scheme is referred to. It is, howeverthat it took about 20 sec for the hot wall to reach the desired tem-
prone to false diffusion especially in the multi-dimensional prob- perature, and the time delay in heating is small enough. Because
lem. The power law scheme based on the exact solution of the onéle calculation also shows its effect to be negligible, the computa-
dimensional convection problem is preferred in many engineeringional results with the delayed heat-up are not presented in Fig. 2.

If the Jacobiad®/dT, is known, the Newton-Raphson method sure-

Korean J. Chem. Eng.(Vol. 18, No. 5)
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Fig. 2. Temperature profile for Example 1, wheref, and 6, repre-
sent dimensionless temperatures of liquid and solid phase,
respectively: (a) at 3 min; (b) at 10 min; (c) at 50 min.

2. Example 2

front, Gau and Viskanta's [1986] melting experiment conducted in
a rectangular cavity with H\W=0.714 is chosen. A uniformly spaced
50x36 grid is used for our calculations, while Viswanath and Jaluria
[1993] used a uniform 50x30 grid for the fixed-grid calculation after

a grid refinement test.

As for the interpolation schemes of the convection term, we tested
four schemes preliminarily; UD$<0.0), CDS ¥=1.0) and MDS
(y=0.5) and a power law scheme (PLS). During preliminary calcu-
lations, the delayed heat-up at the heated wall is not considered. The
front locations predicted by the UDS, the MDS and the PLS are
similar to each other, but the phase change front by the CDS is some-
what distorted. An interesting point to note is that the flow struc-
tures obtained in many researches [Brent et al., 1988; Viswanath
and Jaluria, 1993; Voller, 1997] show only a single cell in the melt
region. Viswanath and Jaluria [1993] observed a secondary recir-
culation cell in the lower part of the melt region with the trans-
formed grid. However, they also were not able to capture the sec-
ondary eddies with the fixed-grid based on the enthalpy method,
even with a finer resolution (60x50) than the transformed-grid cal-
culation (40x40). Our calculations show that the CDS and the MDS
predict the streamlines that are obviously distorted due to the second-
ary flow structure, as shown in Fig. 3 while the UDS and the PLS
generate only a single cell. The results support that the upwinding al-
gorithm tends to be overly diffusive and suppresses the secondary
structure as Ferziger and Peric [1999] criticized. The tested results
show that the MDS has good predictability of the front location and
the flow structure in the melt. The MDS, hence, is adopted as an in-
terpolation scheme of the convection term throughout the calculation.

As shown in Fig. 4, the measured phase fronts are plotted to ver-
ify the proposed model with the transformed-grid solutions based
on the finite element method [Desai and Vafai, 1993] and the finite
volume method [Viswanath and Jaluria, 1993]. Of course, in both
studies, the heated wall condition was treated as ideal sudden tem-
perature elevation and the time delay in heating up the heated wall
was not considered.

When comparing solid-liquid interfaces of two methods at 6 and
10 min, the transformed-grid method gives good agreement with
the experimental data. But the predicted solid-liquid interfaces by
the proposed method without taking the delayed heat-up into ac-
count show some discrepancy with the experimental data. Such dis-
crepancy is, in fact, more reasonable because the impulsive tem-
perature rise is very difficult in the experiment and the heated wall
should be heated up with time delay. The actual amount of energy
transferred to the gallium through the hot wall should be less than
the energy imposed in the idealized simulation, so that the retarda-
tion of the front evolution in the experiments is probable. The meas-
urement of the reliance of the actual temperature at the heated wall
is required to account for the delayed heat-up. However, a detailed
history of the temperatures at the hot wall is not available in this
problem. Therefore, we introduce the time constant as shown in
Eqg. (1) because we may approximate the temperature at the hot wall
to be exponentially growing with a suitable time constant. We as-
sumet=67.89 sec, which corresponds tp(# min)=37.72C and
T, (8 min)=37.99C. This temperature history is close to the meas-
ured data in a similar experimental condition (See Fig.5 in Gau
and Viskanta [1986]). As can be seen in Fig. 4, the inclusion of the

In order to verify the predictability of the evolution of the phase delayed heat-up improves the numerical prediction considerably.
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Fig. 4. Evolution of phase front for Example 2: (a) at 6 min; (b) at 10 and 19 min.

The predicted phase fronts with the consideration of time delay argvith the experiment. Some part of the discrepancy can be explained

retarded due to less heat transfer from the heated wall, and they dog considering the experimental condition at the cooled wall. Ac-

in excellent agreement with the experimental results. cording to Fig. 5 in Gau and Viskanta [1986], the cold wall temper-
The effect of delayed heat-up at the hot wall is less significant aature was gradually increased from the initial temperature to the fu-

19 min; on the contrary, the interfaces obtained by Viswanath angion temperature. Hence, as time proceeded, less heat was removed

Jaluria [1993] with the transformed-grid deviate much more from through the cold wall. The inaccurate modeling of the thermophys-

the experimental data than those with the proposed model. The finitieal properties such as the anisotropic nature of the thermal con-

element results by Desai and Vafai [1993] do not present the frontluctivity as well as the numerical modeling error, of course, can be

location at 19 min, so that these are not compared in Fig. 4. It shoulenother reason for the discrepancy.

be noted that all numerical results at 19 min presented in Fig. 4 show

much discrepancy with the experimental data than those at 6 or 10 CONCLUSIONS

min. Even though the proposed model gives better prediction than

the previous models, our results still have an obvious discrepancy The melting driven by conduction as well as convection in a rec-

Korean J. Chem. Eng.(Vol. 18, No. 5)
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tangular enclosure is investigated numerically. The mathematicaRa : Rayleigh number (BATHYav,)
model based on the enthalpy-porosity method is developed to deste : Stefan number (AG/L)
scribe the phase change accompanied with natural convection. This
study adopts the front-layer predictor-corrector and the pseudo NewBuperscript
ton-Raphson algorithms, whose effectiveness is verified throughH, L : higher- and lower-order approximation of the convec-
solving the conduction-driven phase-change problems. Results of tion term
the proposed model show excellent agreement with experimental
data and transformed-grid results available in the literature. REFERENCES
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