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Abstract—A chaotic system with measurable state variables fewer than the degrees of freedom of the system is
identified with the Artificial Neural Network (ANN) method combined with dynamic training. Instead of using the
usual method of Sum of Square Errors (SSE), the identified models are validated with the return maps (embedded
trajectories), the largest Lyapunov exponent, and the correlation dimension when there is no exogenous input, and
bifurcation diagram when there is an exogenous input. This method is demonstrated for nonisothermal, irreversible,
first-order, series reaction’AB —C in a CSTR.
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INTRODUCTION It can even describe steady state multiplicity and oscillatory behav-
ior of the state variables of the system, and also provide the pa-
Complicated dynamic behavior occurs in many chemical pro-rameter ranges that lead to these types of behavior. This inherent
cesses involving chemical reactions, heat and mass transfer, sepaapability of ANN is due mainly to the combination of nonlinear
rations and fluid flow because of their strong nonlinearity. Procesdransfer functions used for each node. In many actual industrial pro-
engineers usually want to keep process conditions stable and undeesses, it is usually impossible to measure all state variables of the
control to obtain a product with desired specifications of uniform system. Reconstruction method [Packard et al., 1980; Takens, 1981,
properties. Very often in industrial processes, however, unexpecte8auer et al., 1991] can be applied to alleviate this physical limita-
complex dynamic behavior is encountered even without externation. From reconstructed state vectors of the system, we can recon-
disturbances because of the inherent nonlinearity of the processestruct an attractor that is topologically equivalent to the attractor com-
In the past, a considerable number of studies have been carried qubsed of the original state vectors of the system, and the recon-
for processes showing multiple steady states, oscillatory behaviostructed attractor will retain the dynamical invariants of the original
and chaos [Jorgensen and Aris, Coworkers, 1983, 1986; Doedeittractor such as Lyapunov exponents, fractal dimension and entropy,
and Coworkers, 1986; Hudson and Coworkers, 1984, 1986, 1991f the embedding dimension is larger than twice the box-counting
Lynch, 1992, 1993; Elnashaie et al., 1994, 1995; Ray and Coworkdimension of the original attractor [Sauer et al., 1991]. When ANN
ers, 1981, 1984, 1989, 1992, 1995, 1996]. Most of the studies aris combined with the dynamic training method based on the histori-
based on the mathematical models of systems derived from gowal database of available state variables, it can also serve as a pow-
erning physical laws. In actual industrial processes, however, it ierful tool to describe and predict the original dynamic behavior of
usually very difficult to obtain suitable physical models of pro- the system, even in the case that the humber of measurable state
cesses because of both the complexity of the processes and the lackriables is less than the degrees of freedom of the system.
or inaccuracy of the system parameters. Even if obtained, the mod- In the black-box model approach, regardless of the structure of
els derived from first principles are too mathematically involved basis models and the identification method used to get model para-
and acquires too excessive computation to be performed online faneters, the validation of an estimated model is one of the most im-
many industrial applications such as in control and optimization.portant steps. The validation criteria to be satisfied depend on the
Another recourse is to use black box models determined by systertharacteristics of the system and also on the final application ob-
identification techniques. Once models are obtained, they can bgctive of the model. A trivial way of validating an identified model
used as the surrogate models for prediction, control and optimizatiois to compare the time series of the original system with the time
of the processes. Well-known stochastic difference equation modelseries generated by the model and to calculate the mean square errors
such as (N) ARMAX model, Artificial Neural Network (ANN) mod-  between them. However, this criterion is just a necessary condition
el and continuous-time model (i.e., set of ordinary differential equafor an identified model to capture the dynamical properties of the
tions) are used as basis models in this approach. Recently, ANN modystem; it is definitely not sufficient. In case of a chaotic system,
el has been widely used in process identification and control bealthough the initial prediction of an identified model can be very
cause of its ability to describe nonlinear systems. It generally showaccurate, predicted values diverge from the original time series at
better prediction than linear stochastic difference equation modelanuch later prediction time no matter how good the model is. This
is due to the inaccuracies in the model and the existence of positive
To whom correspondence should be addressed. Lyapunov exponents. Because nearby trajectories diverge locally
E-mail: kschang@postech.ac.kr in state-space for a chaotic system, the initial error due to the model-
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ing error, however small, is magnified. The model generated time 10

series thus becomes completely different from the original time se unstable periodic branch — S“‘i“‘bft"é"y statfm
ries in the long run. Consequently, for a chaotic system, mere com ~ °7 | N\ T able ;ﬁf;g’{.,fan:h
parison of time series and calculation of the mean square error dot " . E.Z??E.'Ef’é’é‘i‘?f prenen
not necessarily give useful information for the validation of an iden- ) Y 4 period doubling

tified model. Therefore, more sophisticated criteria are required .
One of the criteria is to compare the reconstructed attractors. Be »
‘A stable periodic branch

cause there exists a smooth invertible transformation between t-™
original states and the reconstructed states with appropriately cht

sen delay time and embedding dimension, we can check if anider 4 |
tified model captures the original dynamic behavior of the systerr e

by comparing the reconstructed attractor from the time series of th 4 "

original system with that from the model-generated by time series

In many cases, however, although the location and the overall shey s 10— —(

of the reconstructed attractors look similar and thus the dynami -2 -1 00 1 2 3 4 & 6 7 & 9 10

behavior of the system seems to have been reasonably captureu, u

detailed characteristics such as the density of trajectories in somgig. 1. Bifurcation diagram of the system.

region of the attractor and the local divergence rate of nearby tra-

jectories are somewhat different. Therefore, other criteria like Ly-

apunov exponent and correlation dimension that quantify numeritions of species A and B, is the dimensionless temperature in the
cally the matching between the dynamic behavior are also requiredeactor, Da is the Damkd&hler numtags the dimensionless activa-

In nonlinear control systems, it is of primary importance to predicttion energy, S is the ratio of the two rate constaritsthe ratio of
qualitative changes in the system behavior as a control parameterctivation energies, B is the dimensionless adiabatic temperature
is varied. Because a bifurcation diagram is the plotting of steadyise,a is the ratio of heat effecfsjs the dimensionless heat transfer
state solutions of a system over a range of parameter values, it givesefficient, and is the dimensionless coolant bath temperature and
needed information on the systems nonlinear dynamical phenomean be viewed as an externally manipulatable variable. The bifur-
ena. Therefore, in case an identified model is used for control pureation analysis of the system equation is carried out by using numer-
poses, checking whether the model reproduces the bifurcation paieal continuation techniques which are implemented in the software
tem of the original system or not can be a useful validation criterionpackage AUTO [Doedel, 1986]. From the analysis, we can obtain
There are many related papers available in the literature (some difie bifurcation diagram in Fig. 1 which classifies the parameter space
the papers are listed in Reference, from Abarbanel et al. to Wolf einto regions where qualitatively different dynamic behavior is ob-
al.). served.

In this paper, we identify a chaotic system with measurable state \When the system parameter values are Da=3:0f), S=0.5¢=
variable fewer than the degrees of freedom of the system and valt.0, B=57.770=0.42, an@3=7.9999, the bifurcation diagram is ob-
date the identified models with the criteria used for nonlinear dy-tained with control inputi as the bifurcation parameter. The hori-
namics instead of SSE. We do this through the following example.zontal axis is the bifurcation parametend the vertical axis is state

variable x itself for stationary solutions and the maximum value
PROCESS MODEL of state variable Xor periodic solutions. There is a Hopf bifurca-
tion point indicated by solid square at u=0.5027. It represents the

To show how the technique applies to real processes, and also fssible onset of oscillatory behavior along a branch of solutions.
show the step-by-step procedure involved and the various compuAt this point, the Jacobian matrix of the system equations has a pair
tational techniques used, we consider the dynamic behavior ocef purely imaginary eigenvalues. Solid triangles denote period dou-
curring in a nonisothermal CSTR with two irreversible consecutive bling bifurcation points. These points are characterized by a Flo-
first-order reactions, A~B—C: the first exothermic, the second quet multiplier leaving or entering the unit circle &t When the
endothermic. We pick the reaction system described by the followperiodic branch is traced, it loses stability at this point, and a new
ing dimensionless differential equations used by Kahlert et al. [1981]periodic branch with double period emerges. This period doubling
Although we assume that these equations represent the system wan occur repeatedly and lead to deterministic chaos. This is the
study, we are not supposed to know these equations explicitly. period-doubling route to chaos and provides a possible scenario lead-

ing to chaos. In Fig. 1, only the first few members of the periodic

dd—);l =1-x, —Daxlex;{ 1:(;)( } doubling cascade are shown. Although AUTO based on humerical

¢ continuation technigques can locate period doubling bifurcation points,
A% - tDaxex F{ X }—DanEex F{ KXs } it cannot be uged to detect the exact location of chaoﬁc. oscillat.ion.
dt z T 1+ex, 1+ex, It can still provide, however, useful bounds for the domain of exist-

ence of chaos. From Fig. 1, we can infer that chaos may emerge
X, +Dan1ex;{ X3 } -DaBanzex;{ KXg } —B(x;—u) somewhere around=0.0. To check this, we simulated the system
1+ex, 1+ex, .
equations when the system parameter values are Das628,
where the variables xand x denote the dimensionless concentra- S=0.5,k=1.0, B=57.770=0.42,3=7.9999 as before, and-Q.0,

dt
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Fig. 3. Schematic representation of ANN in case of ho exogenous
Fig. 2. 3-D phase portrait of the system. input.

that is, when there is no control action. The simulation was carriedvhile the linear activation function is used for the output layer. The
out on IBM RS6000/370 using the IMSL subroutine ode_adams_biases of the neurons in the input layer are assumed to be zero. The
gear. Fig. 2 shows the 3-D phase portrait of the system. dynamic training method reviewed by Bhat and McAvoy [1990]

In Fig. 2, we see that the system demonstrates deterministic chaosith Levenberg-Marquardt optimization algorithm is used to train
However, mere inspection of the attractor does not provide concluthe network, and the training was carried out on DEC Alpha Serv-
sive evidence on the existence of chaos since an orbit with larger2100 using MATLAB.
period can look similar in the phase plane. We can check the det. In Case of No Exogenous Input
terministic chaos by calculating the largest Lyapunov exponent and We now determine the optimal ANN model which best describes
correlation dimension. The calculation was carried out for the timethe chaotic behavior of the system itself at specified parameter values
series data of the system using in-house implementations of thevhen there is no control action (u=0). Test ANN models used can
Wolf’s algorithm [Wolf et al., 1985] for the largest Lyapunov ex- be expressed as follows and the schematic representation of the mod-
ponent and the Grassberger and Procaccia algorithm [Grassbergels is shown in Fig. 3:
and Procaccia, 1983] for correlation dimension. The obtained val- X KI=F(x K= 1], K=2], ... %[k —mi])
ues are 0.00446 for the largest Lyapunov exponent and 1.535 for ™ : 1 n

correlation dimension as summarized in Table 1. where m is the number of delayed inputs, i.e., embedding dimen-
sion.

SYSTEM IDENTIFICATION AND To train the test ANN models, a data set is generated from the

MODEL VALIDATION system equation in section 2 with sampling period of 0.001 dimen-

sionless time when only state variablétemperature) is measur-

In ANN, important steps are in the selection of appropriate num-able. This corresponds to the time delay between delayed inputs in
ber of layers and of neurons in each layer, and the choice of the trarthie test ANN models. SSE is used to train the ANN models. First
fer function used for each neuron and the training algorithm in ordekve check if the identified models capture the dynamic behavior of
to obtain a good identified model. Usually, a trial and error proce-the original system by return maps. The time series data are assumed
dure based on the criterion of minimization of sum of squares ofo lie on Poincaré section. Among an enormous number of candi-
ANN training errors is used for this purpose. For chaotic systemsgdates having roughly the same SSE, we found three candidates by
however, this criterion may not provide useful information since trial and error which seem to describe the return maps of the ori-
identified models can show different dynamical behavior even thougtginal system closely. The number of delayed inputs(m) is 8 for all
the training errors are roughly the same. Therefore, we validate ider

tified models with the criteria such as return maps, the largest Ly 9
apunov exponent, correlation dimension and bifurcation diagran
instead of SSE. Then we determine the optimal ANN model describ 8

ing the systems nonlinear dynamical behavior.
In this paper, we assume that not all state variables are meast
able, which is often the case in many actual industrial processe:

We assume only one state variabl@emperature) is measurable. ?_4. °

We try the three layer feed forward neural network combined with R 5t

the dynamic training method based on the phase space reconstrt

tion method to describe the chaotic system, and determine the opt 4t

mal model by adapting only both the number of inputs to the ANN 3l

and the number of neurons in the hidden layer. The inputs to th

ANN consist of historical database of the state variablehen 2 5 ; . 5 0

there is no exogenous input (u), and those of both the state variab
X; and control input (u) in case exogenous input (u) exists. Eact,
neuron in the hidden layer has the sigmoidal activation function,Fig. 4. Second return map of the original system.

x3(K]
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X3[k+2]

x3[K]
Fig. 5. Second return map of the ANN with h=3.

X3[k+2]

x3[K]
Fig. 6. Second return map of the ANN with h=4.

x3[K]
Fig. 7. Second return map of the ANN with h=5.

candidates, but the number of hidden nodes(h) is 3, 4 and 5, r¢
spectively. Fig. 4 denotes the second return map of the original sy:
tem reconstructed from the time series of the state variglaladk

Table 1. Summary of the largest Lyapunov exponent and corre-
lation dimension

The largest Correlation

Lyapunov exponent dimension

Original system 0.00446 1.535
ANN with h=3 0.03824 2.127
ANN with h=4 0.002247 1.157
ANN with h=5 0.0197 1.078

In the figures, we find that the overall shape and the location of
the return maps of the ANN with 4 and 5 hidden nodes are close
to those of the return map of the original system. However, because
the detailed characteristics of the return maps are somewhat differ-
ent, we also calculate the largest Lyapunov exponent and correlation
dimension to check the matching between the dynamics quantita-
tively. The calculations were carried out by using the previous meth-
od, and the obtained values are summarized in Table 1. From the
results, we can conclude that the ANNs with 8 delayed inputs and
4 or 5 hidden nodes are the possible models to describe the chaotic
behavior of the original system.
2.In Case of Exogenous Input

In this case, we validate identified models by checking if the mod-
els can predict the qualitative changes in the nonlinear behavior of
the original system as the control input is varied. This can be done
by bifurcation analysis. By checking where and how to bifurcate
in bifurcation diagrams, we can determine the number of delayed
inputs, delayed exogenous (control) inputs and hidden nodes of the
optimal model which reproduces most faithfully the bifurcation pat-
tern of the original system. Test ANN models can be expressed as
follows and a schematic representation of the models is shown in
Fig. 8.

K= (X gk~ 1], %[K—2], .., %[k—m], u[k-1], uk=2], ..., u[k-n])

where m is the number of delayed inputs, aiglthe number of
delayed exogenous inputs.

To identify the test ANN models, the input/output data set in Fig.
9 and 10 is generated from the system equation in section 2. The
sampling time from the equation is 0.001 dimensionless time, cor-
responding to the time delay between two successive data points in

Figs. 5-7 show the second return maps of the time series generategh. 8. Schematic representation of ANN in case of exogenous in-

from the candidate models.
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Fig. 9. Input data used in the identification in case of exogenous
input.
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Fig. 10. Output data used in the identification in case of exogenous
input.
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Fig. 11. Original system’s bifurcation diagram.

the above test ANN models. The input used is composed of rar.-

mensionless time.

Among an enormous number of candidates, we found three can-
didates by trial and error which seem to reproduce the bifurcation
pattern of the original system closely. Fig. 11 shows the bifurcation
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Fig. 12. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 7).
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Fig. 13. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 8).
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dom numbers between 0 and 1 that are held constant for 0.01 dig. 14. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 9).
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diagram of the original system and Figs. 12-14 denote the bifurca- In: Neural NetworksBiological computers or electronic brains
tion diagrams generated from the time series of the candidate mod- Springer Verlag, Paris, 87 (1990).
els when the number of delayed inputs (m) is 8 and the number ohguirre, L. A. and Billings, S. A., “Validating Identified Nonlinear Mod-
delayed exogenous inputs(n) is 5, but the number of hidden nodes(h) els with Chaotic Dynamicsiit. J. Bifurcation and Chag4(1), 109
is 7, 8 and 9, respectively. We observe that the overall shape, the (1994).
scale and the location of bifurcation of the ANN model with 8 hid- Bhat, N. and McAvoy, T. J., “Use of Neural Nets for Dynamic Model-
den nodes are the closest to those of the original system. Note that ing and Control of Chemical Process Syste@mhp. Chem. Eng.
the bifurcation diagrams show somewhat different behavior although  14(4/5), 573 (1990).
the SSEs in ANN training are roughly 0.002 for all cases. Casdagli, M., “Nonlinear Prediction of Chaotic Time Serfélsysica
D, 35, 335 (1989).
Chang, K. S., Kim, J. Y. and Rhee, H. K., “Intricate CSTR Dynamic;
Korean J. Chem. Eng, 69 (1989).
The identification and validation issues occurring in the chaoticChang, K. S., Kim, H. J. and Lee, J. S., “Process Systems Engineering
system with observable state variable less than the degrees of free- and Chaos{Chemical Industry and Technoled$, 2 (1997).
dom of the system are considered. ANN models are used as badi®edel, E. J. and Heinemann, R. F.,, “Numerical Computation of Peri-
models. The technique is demonstrated through the nonisothermal, odic Solution Branches and Oscillatory Dynamics of the Stirred Tank
irreversible, first-order, series reactiom—C in a CSTR. In Reactor with A~>B— C ReactionsChem. Eng. S¢i389), 1493
chaotic systems, because of the inaccuracies in models and the exist-(1983).
ence of positive Lyapunov exponents, the direct comparison of timéoedel, E. J., “AUTO: Software for Continuation and Bifurcation Prob-
series and calculation of SSE does not give much information for lems in Ordinary Differential Equations; AUTO 86 User Manual,
validation purposes. Therefore, more sophisticated criteria, such as CALTECH (1986).
return maps, Lyapunov exponents and correlation dimension in casBlnashaie, S. S. E. H. and Abashar, M. E., “Chaotic Behavior of Peri-
of no exogenous input, and bifurcation diagram in case of exoge- odically Forced Fluidized-Bed Catalytic Reactors with Consecutive

CONCLUSIONS

nous input, should be used to validate the identified models. Then Exothermic Chemical Reaction§hem. Eng. S¢id9(15), 2483
from the results, we can determine the optimal number of delayed (1994).
(exogenous) inputs and hidden nodes, leading to the validation dElnashaie, S. S. E. H., Abashar, M. E. and Teymour, F. A., “Chaotic Be-

the dynamic model.
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NOMENCLATURE
X, :dimensionless concentrations of species A
X, :dimensionless concentrations of species B
X; :dimensionless temperature in the reactor
Da : Damkohler number
€ : dimensionless activation energy
S :ratio of the two rate constants
K : ratio of activation energies
B  :dimensionless adiabatic temperature rise
a  :ratio of heat effects
B : dimensionless heat transfer coefficient
u : dimensionless coolant bath temperature
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