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Abstract −−−−A chaotic system with measurable state variables fewer than the degrees of freedom of the system is
identified with the Artificial Neural Network (ANN) method combined with dynamic training. Instead of using the
usual method of Sum of Square Errors (SSE), the identified models are validated with the return maps (embedded
trajectories), the largest Lyapunov exponent, and the correlation dimension when there is no exogenous input, and
bifurcation diagram when there is an exogenous input. This method is demonstrated for nonisothermal, irreversible,
first-order, series reaction A�B �C in a CSTR.
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INTRODUCTION

Complicated dynamic behavior occurs in many chemical pro-
cesses involving chemical reactions, heat and mass transfer, sepa-
rations and fluid flow because of their strong nonlinearity. Process
engineers usually want to keep process conditions stable and under
control to obtain a product with desired specifications of uniform
properties. Very often in industrial processes, however, unexpected
complex dynamic behavior is encountered even without external
disturbances because of the inherent nonlinearity of the processes.
In the past, a considerable number of studies have been carried out
for processes showing multiple steady states, oscillatory behavior
and chaos [Jorgensen and Aris, Coworkers, 1983, 1986; Doedel
and Coworkers, 1986; Hudson and Coworkers, 1984, 1986, 1991;
Lynch, 1992, 1993; Elnashaie et al., 1994, 1995; Ray and Cowork-
ers, 1981, 1984, 1989, 1992, 1995, 1996]. Most of the studies are
based on the mathematical models of systems derived from gov-
erning physical laws. In actual industrial processes, however, it is
usually very difficult to obtain suitable physical models of pro-
cesses because of both the complexity of the processes and the lack
or inaccuracy of the system parameters. Even if obtained, the mod-
els derived from first principles are too mathematically involved
and acquires too excessive computation to be performed online for
many industrial applications such as in control and optimization.
Another recourse is to use black box models determined by system
identification techniques. Once models are obtained, they can be
used as the surrogate models for prediction, control and optimization
of the processes. Well-known stochastic difference equation models
such as (N) ARMAX model, Artificial Neural Network (ANN) mod-
el and continuous-time model (i.e., set of ordinary differential equa-
tions) are used as basis models in this approach. Recently, ANN mod-
el has been widely used in process identification and control be-
cause of its ability to describe nonlinear systems. It generally shows
better prediction than linear stochastic difference equation models.

It can even describe steady state multiplicity and oscillatory beh
ior of the state variables of the system, and also provide the
rameter ranges that lead to these types of behavior. This inh
capability of ANN is due mainly to the combination of nonline
transfer functions used for each node. In many actual industrial 
cesses, it is usually impossible to measure all state variables o
system. Reconstruction method [Packard et al., 1980; Takens, 1
Sauer et al., 1991] can be applied to alleviate this physical lim
tion. From reconstructed state vectors of the system, we can re
struct an attractor that is topologically equivalent to the attractor c
posed of the original state vectors of the system, and the re
structed attractor will retain the dynamical invariants of the origi
attractor such as Lyapunov exponents, fractal dimension and ent
if the embedding dimension is larger than twice the box-coun
dimension of the original attractor [Sauer et al., 1991]. When AN
is combined with the dynamic training method based on the his
cal database of available state variables, it can also serve as a
erful tool to describe and predict the original dynamic behavior
the system, even in the case that the number of measurable
variables is less than the degrees of freedom of the system.

In the black-box model approach, regardless of the structur
basis models and the identification method used to get model p
meters, the validation of an estimated model is one of the most
portant steps. The validation criteria to be satisfied depend on
characteristics of the system and also on the final application
jective of the model. A trivial way of validating an identified mod
is to compare the time series of the original system with the t
series generated by the model and to calculate the mean square
between them. However, this criterion is just a necessary cond
for an identified model to capture the dynamical properties of 
system; it is definitely not sufficient. In case of a chaotic syste
although the initial prediction of an identified model can be ve
accurate, predicted values diverge from the original time serie
much later prediction time no matter how good the model is. T
is due to the inaccuracies in the model and the existence of po
Lyapunov exponents. Because nearby trajectories diverge lo
in state-space for a chaotic system, the initial error due to the mo
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ing error, however small, is magnified. The model generated time
series thus becomes completely different from the original time se-
ries in the long run. Consequently, for a chaotic system, mere com-
parison of time series and calculation of the mean square error does
not necessarily give useful information for the validation of an iden-
tified model. Therefore, more sophisticated criteria are required.
One of the criteria is to compare the reconstructed attractors. Be-
cause there exists a smooth invertible transformation between the
original states and the reconstructed states with appropriately cho-
sen delay time and embedding dimension, we can check if an iden-
tified model captures the original dynamic behavior of the system
by comparing the reconstructed attractor from the time series of the
original system with that from the model-generated by time series.
In many cases, however, although the location and the overall shape
of the reconstructed attractors look similar and thus the dynamic
behavior of the system seems to have been reasonably captured,
detailed characteristics such as the density of trajectories in some
region of the attractor and the local divergence rate of nearby tra-
jectories are somewhat different. Therefore, other criteria like Ly-
apunov exponent and correlation dimension that quantify numeri-
cally the matching between the dynamic behavior are also required.
In nonlinear control systems, it is of primary importance to predict
qualitative changes in the system behavior as a control parameter
is varied. Because a bifurcation diagram is the plotting of steady
state solutions of a system over a range of parameter values, it gives
needed information on the systems nonlinear dynamical phenom-
ena. Therefore, in case an identified model is used for control pur-
poses, checking whether the model reproduces the bifurcation pat-
tern of the original system or not can be a useful validation criterion.
There are many related papers available in the literature (some of
the papers are listed in Reference, from Abarbanel et al. to Wolf et
al.).

In this paper, we identify a chaotic system with measurable state
variable fewer than the degrees of freedom of the system and vali-
date the identified models with the criteria used for nonlinear dy-
namics instead of SSE. We do this through the following example.

PROCESS MODEL

To show how the technique applies to real processes, and also to
show the step-by-step procedure involved and the various compu-
tational techniques used, we consider the dynamic behavior oc-
curring in a nonisothermal CSTR with two irreversible consecutive
first-order reactions, A�B�C: the first exothermic, the second
endothermic. We pick the reaction system described by the follow-
ing dimensionless differential equations used by Kahlert et al. [1981].
Although we assume that these equations represent the system we
study, we are not supposed to know these equations explicitly.

where the variables x1 and x2 denote the dimensionless concentra-

tions of species A and B, x3 is the dimensionless temperature in th
reactor, Da is the Damköhler number, ε is the dimensionless activa-
tion energy, S is the ratio of the two rate constants, κ is the ratio of
activation energies, B is the dimensionless adiabatic tempera
rise, α is the ratio of heat effects, β is the dimensionless heat transfe
coefficient, and u is the dimensionless coolant bath temperature a
can be viewed as an externally manipulatable variable. The b
cation analysis of the system equation is carried out by using nu
ical continuation techniques which are implemented in the softw
package AUTO [Doedel, 1986]. From the analysis, we can ob
the bifurcation diagram in Fig. 1 which classifies the parameter sp
into regions where qualitatively different dynamic behavior is o
served.

When the system parameter values are Da=0.26, ε=0.0, S=0.5, κ=
1.0, B=57.77, α=0.42, and β=7.9999, the bifurcation diagram is ob
tained with control input u as the bifurcation parameter. The hor
zontal axis is the bifurcation parameter u and the vertical axis is state
variable x3 itself for stationary solutions and the maximum valu
of state variable x3 for periodic solutions. There is a Hopf bifurca
tion point indicated by solid square at u=0.5027. It represents
possible onset of oscillatory behavior along a branch of solutio
At this point, the Jacobian matrix of the system equations has a
of purely imaginary eigenvalues. Solid triangles denote period d
bling bifurcation points. These points are characterized by a 
quet multiplier leaving or entering the unit circle at “−1.” When the
periodic branch is traced, it loses stability at this point, and a n
periodic branch with double period emerges. This period doub
can occur repeatedly and lead to deterministic chaos. This is
period-doubling route to chaos and provides a possible scenario 
ing to chaos. In Fig. 1, only the first few members of the perio
doubling cascade are shown. Although AUTO based on nume
continuation techniques can locate period doubling bifurcation po
it cannot be used to detect the exact location of chaotic oscilla
It can still provide, however, useful bounds for the domain of ex
ence of chaos. From Fig. 1, we can infer that chaos may em
somewhere around u=0.0. To check this, we simulated the syste
equations when the system parameter values are Da=0.26, ε=0.0,
S=0.5, κ=1.0, B=57.77, α=0.42, β=7.9999 as before, and u=0.0,

dx1

dt
------- = 1− x1 − Dax1exp

x3

1+ εx3

--------------

dx2

dt
------- = − x2 + Dax1exp

x3

1+ εx3

--------------  − DaSx2exp
κx3

1+ εx3

--------------

dx3

dt
------- = − x3 + DaBx1exp

x3

1+ εx3

--------------  − DaBαSx2exp
κx3

1+ εx3

--------------  − β x3 − u( )

Fig. 1. Bifurcation diagram of the system.
September, 2001
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that is, when there is no control action. The simulation was carried
out on IBM RS6000/370 using the IMSL subroutine ode_adams_
gear. Fig. 2 shows the 3-D phase portrait of the system.

In Fig. 2, we see that the system demonstrates deterministic chaos.
However, mere inspection of the attractor does not provide conclu-
sive evidence on the existence of chaos since an orbit with large
period can look similar in the phase plane. We can check the de-
terministic chaos by calculating the largest Lyapunov exponent and
correlation dimension. The calculation was carried out for the time
series data of the system using in-house implementations of the
Wolf’s algorithm [Wolf et al., 1985] for the largest Lyapunov ex-
ponent and the Grassberger and Procaccia algorithm [Grassberger
and Procaccia, 1983] for correlation dimension. The obtained val-
ues are 0.00446 for the largest Lyapunov exponent and 1.535 for
correlation dimension as summarized in Table 1.

SYSTEM IDENTIFICATION AND
MODEL VALIDATION

In ANN, important steps are in the selection of appropriate num-
ber of layers and of neurons in each layer, and the choice of the trans-
fer function used for each neuron and the training algorithm in order
to obtain a good identified model. Usually, a trial and error proce-
dure based on the criterion of minimization of sum of squares of
ANN training errors is used for this purpose. For chaotic systems,
however, this criterion may not provide useful information since
identified models can show different dynamical behavior even though
the training errors are roughly the same. Therefore, we validate iden-
tified models with the criteria such as return maps, the largest Ly-
apunov exponent, correlation dimension and bifurcation diagram
instead of SSE. Then we determine the optimal ANN model describ-
ing the systems nonlinear dynamical behavior.

In this paper, we assume that not all state variables are measur-
able, which is often the case in many actual industrial processes.
We assume only one state variable x3 (temperature) is measurable.
We try the three layer feed forward neural network combined with
the dynamic training method based on the phase space reconstruc-
tion method to describe the chaotic system, and determine the opti-
mal model by adapting only both the number of inputs to the ANN
and the number of neurons in the hidden layer. The inputs to the
ANN consist of historical database of the state variable x3 when
there is no exogenous input (u), and those of both the state variable
x3 and control input (u) in case exogenous input (u) exists. Each
neuron in the hidden layer has the sigmoidal activation function,

while the linear activation function is used for the output layer. T
biases of the neurons in the input layer are assumed to be zero
dynamic training method reviewed by Bhat and McAvoy [199
with Levenberg-Marquardt optimization algorithm is used to tra
the network, and the training was carried out on DEC Alpha Se
er2100 using MATLAB.
1. In Case of No Exogenous Input

We now determine the optimal ANN model which best describ
the chaotic behavior of the system itself at specified parameter va
when there is no control action (u=0). Test ANN models used 
be expressed as follows and the schematic representation of the
els is shown in Fig. 3:

x3[k]=f(x 3[k− 1], x3[k−2], …, x3[k −m])

where m is the number of delayed inputs, i.e., embedding dim
sion.

To train the test ANN models, a data set is generated from
system equation in section 2 with sampling period of 0.001 dim
sionless time when only state variable x3 (temperature) is measur-
able. This corresponds to the time delay between delayed inpu
the test ANN models. SSE is used to train the ANN models. F
we check if the identified models capture the dynamic behavio
the original system by return maps. The time series data are ass
to lie on Poincaré section. Among an enormous number of ca
dates having roughly the same SSE, we found three candidate
trial and error which seem to describe the return maps of the
ginal system closely. The number of delayed inputs(m) is 8 for

Fig. 2. 3-D phase portrait of the system.
Fig. 3. Schematic representation of ANN in case of no exogenou

input.

Fig. 4. Second return map of the original system.
Korean J. Chem. Eng.(Vol. 18, No. 5)
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candidates, but the number of hidden nodes(h) is 3, 4 and 5, re-
spectively. Fig. 4 denotes the second return map of the original sys-
tem reconstructed from the time series of the state variable x3, and
Figs. 5-7 show the second return maps of the time series generated
from the candidate models.

In the figures, we find that the overall shape and the location
the return maps of the ANN with 4 and 5 hidden nodes are c
to those of the return map of the original system. However, bec
the detailed characteristics of the return maps are somewhat d
ent, we also calculate the largest Lyapunov exponent and correl
dimension to check the matching between the dynamics quan
tively. The calculations were carried out by using the previous m
od, and the obtained values are summarized in Table 1. From
results, we can conclude that the ANNs with 8 delayed inputs 
4 or 5 hidden nodes are the possible models to describe the ch
behavior of the original system.
2. In Case of Exogenous Input

In this case, we validate identified models by checking if the m
els can predict the qualitative changes in the nonlinear behavio
the original system as the control input is varied. This can be d
by bifurcation analysis. By checking where and how to bifurc
in bifurcation diagrams, we can determine the number of dela
inputs, delayed exogenous (control) inputs and hidden nodes o
optimal model which reproduces most faithfully the bifurcation p
tern of the original system. Test ANN models can be expresse
follows and a schematic representation of the models is show
Fig. 8.

x3[k]=f(x 3[k−1], x3[k−2], …, x3[k−m], u[k−1], u[k−2], …, u[k−n])

where m is the number of delayed inputs, and n is the number of
delayed exogenous inputs.

To identify the test ANN models, the input/output data set in F
9 and 10 is generated from the system equation in section 2.
sampling time from the equation is 0.001 dimensionless time, 
responding to the time delay between two successive data poin

Table 1. Summary of the largest Lyapunov exponent and corre-
lation dimension

The largest
Lyapunov exponent

Correlation
dimension

Original system 0.00446 1.535
ANN with h=3 0.03824 2.127
ANN with h=4 0.002247 1.157
ANN with h=5 0.0197 1.078

Fig. 5. Second return map of the ANN with h=3.

Fig. 6. Second return map of the ANN with h=4.

Fig. 7. Second return map of the ANN with h=5.

Fig. 8. Schematic representation of ANN in case of exogenous in
put.
September, 2001



A Method of Model Validation for Chaotic Chemical Reaction Systems Based on NN 627

can-
tion
tion
the above test ANN models. The input used is composed of ran-
dom numbers between 0 and 1 that are held constant for 0.01 di-

mensionless time.
Among an enormous number of candidates, we found three 

didates by trial and error which seem to reproduce the bifurca
pattern of the original system closely. Fig. 11 shows the bifurca

Fig. 9. Input data used in the identification in case of exogenous
input.

Fig. 10. Output data used in the identification in case of exogenous
input.

Fig. 11. Original system’s bifurcation diagram.

Fig. 12. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 7).

Fig. 13. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 8).

Fig. 14. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 9).
Korean J. Chem. Eng.(Vol. 18, No. 5)
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diagram of the original system and Figs. 12-14 denote the bifurca-
tion diagrams generated from the time series of the candidate mod-
els when the number of delayed inputs (m) is 8 and the number of
delayed exogenous inputs(n) is 5, but the number of hidden nodes(h)
is 7, 8 and 9, respectively. We observe that the overall shape, the
scale and the location of bifurcation of the ANN model with 8 hid-
den nodes are the closest to those of the original system. Note that
the bifurcation diagrams show somewhat different behavior although
the SSEs in ANN training are roughly 0.002 for all cases.

CONCLUSIONS

The identification and validation issues occurring in the chaotic
system with observable state variable less than the degrees of free-
dom of the system are considered. ANN models are used as basis
models. The technique is demonstrated through the nonisothermal,
irreversible, first-order, series reaction A�B�C in a CSTR. In
chaotic systems, because of the inaccuracies in models and the exist-
ence of positive Lyapunov exponents, the direct comparison of time
series and calculation of SSE does not give much information for
validation purposes. Therefore, more sophisticated criteria, such as
return maps, Lyapunov exponents and correlation dimension in case
of no exogenous input, and bifurcation diagram in case of exoge-
nous input, should be used to validate the identified models. Then
from the results, we can determine the optimal number of delayed
(exogenous) inputs and hidden nodes, leading to the validation of
the dynamic model.
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NOMENCLATURE

x1 : dimensionless concentrations of species A
x2 : dimensionless concentrations of species B
x3 : dimensionless temperature in the reactor
Da : Damköhler number
ε : dimensionless activation energy
S : ratio of the two rate constants
κ : ratio of activation energies
B : dimensionless adiabatic temperature rise
α : ratio of heat effects
β : dimensionless heat transfer coefficient
u : dimensionless coolant bath temperature
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