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Abstract−−−−Nonlinear kinetic parameter estimation plays an essential role in kinetic study in reaction engineering. In
the present study, the feasibility and reliability of the simultaneous parameter estimation problem is investigated for a
multi-component photocatalytic process. The kinetic model is given by the L-H equation, and the estimation prob-
lem is solved by a hybrid genetic-simplex optimization method. Here, the genetic algorithm is applied to find out,
roughly, the location of the global optimal point, and the simplex algorithm is subsequently adopted for accurate con-
vergence. In applying this technique to a real system and analyzing its reliability, it is shown that this approach results in
a reliable estimation for a rather wide range of parameter value, and that all parameters can be estimated simultaneously.
Using this approach, one can estimate kinetic parameters for all components from data measured in only one time
experiment.
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INTRODUCTION

Photocatalysis is a promising approach to efficient destruction
of environmental pollutants [Alberici and Jardim, 1997; Herrmann,
1999; Ollis, 2000; Chai et al., 2000], and many experimental inves-
tigations have been reported in this field [Anpo et al., 1997; Sirisuk
et al., 1999]. Because an experimental approach is usually costly
and time consuming, some other investigations with computer sim-
ulations have also been carried out, which are based on a mathe-
matical kinetic model for the photocatalytic oxidizing process. Re-
searches have shown that most photocatalytic reactions follow the
L-H (Langmuir-Hinshelwood) equation [Fox and Dulay, 1993]. In
fact, numerical simulation of the L-H equations is not a difficult
task in itself, and here various numerical integral methods can be
applied to the equation to solve concentration profiles of each reac-
tant and product with time. The obstacle is that kinetic parameters
in the L-H equations, that is, reaction rate constants and adsorption
equilibrium constants, are not measurable, and there is no way to
deduce an analytical formula to theoretically estimate its value. The
only feasible approach to obtaining their values is to estimate them
based on experimental data. The reason is that the L-H equations
are a set of implicit nonlinear differential equations that are cou-
pled with each other since some reactants are the resultants of others
in a multi-component system.

During a long period, kinetic parameters have been estimated
by the so-called initial rate method [Levenspiel, 1972], which uses
linear regression method, based on the reciprocal form of a single
L-H equation. But, this method cannot yield satisfying results owing
to the fact that a nonlinear equation is merely replaced by a linear-
ized equation in this method [Mehrab et al., 2000]. When more than
one component is being oxidized simultaneously and the L-H equa-

tions are coupled with each other, which is very often encounte
in photocatalytic reactions, this method is no longer applicable 
cause reciprocals of the L-H equations are still nonlinear.

Taking into account the nonlinearity of the L-H equations, s
eral approaches have been suggested for nonlinear paramete
mation in reaction engineering [Biegler et al., 1986; Kim et al., 19
Farza et al., 1997; Park and Froment, 1998; Oh et al., 1999; Ba
et al., 2000]. For kinetic model governed by the L-H equations, F
ment [1987] has shown that nonlinear regression can be appli
perform nonlinear parameter estimation. Mehrab et al. [2000] h
adopted the Box-Draper nonlinear regression method to find
best point estimates, in which a variable metric algorithm is e
ployed with an improved gradient calculation. Although the loc
convergence methods mentioned above do have a potential to
a better estimation of kinetic parameters and are expected to b
able in multi-component systems, there is still a rigorous limitat
that a rather good initial parameter value should be given. Bec
an objective function for nonlinear model often contains more t
one optimum, a local-convergence method is highly prone to
into non-global optima [Press, 1986] owing to their downhill (hi
climbing) algorithm. To protect the parameter estimation from 
garding a local optimum as a global one, Belohlav et al. [1997] h
applied a random search method in nonlinear regression. This
proach does work, but is computationally less efficient becaus
its random search algorithm. Especially when more than one c
ponent is oxidized, it hardly results in a satisfying estimation.

To locate the global optimum confidently, various approach
under the term “evolutionary algorithm” have been also inve
gated recently. Wolf and Moros [1997] have estimated rate c
stants in oxidizing methane to C2 hydrocarbons by the Genetic Al-
gorithm (GA); Park and Froment [1998] have used the GA e
mated kinetic parameters and tested a heterogeneous catalytic
tion; Balland et al. [2000] have estimated kinetic and energetic
rameters in the saponification process of ethyl acetate using the
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Although, the kinetic models studied in these works are not given
by the L-H equation, their nonlinearities are not as strong as that of
the L-H equation, and their final results are not so accurate as those
of local convergence method, these works do show us that the GA
has a potential to find out, roughly, the location of the real global
optimum for the nonlinear estimation problem.

In the present study, we will show it is feasible and reliable to
estimate simultaneously all kinetic parameters in the L-H equations
by a hybrid genetic-simplex optimization method, even when sev-
eral oxidation processes are coupled with each other in the reac-
tion. The proposed hybrid optimization method is set up in mating
the modified GA with the simplex algorithm. The role of the mod-
ified GA is to find a rough estimation for kinetic parameters, and
this assures us that subsequent local search will converge to the glo-
bal optimum when the result of the rough estimation is used as a
starting point of the simplex algorithm. The simplex algorithm is a
local convergence method used to refine the rough estimation and
to make the estimation more accurate. By analyzing the sensitivity
of the simulated concentrations with respect to the estimated param-
eter values, we will show that the hybrid optimization method is
able to estimate parameters accurately and reliably. By applying it
to a process about which previously published results are available,
we will show the hybrid method gives a more accurate estimation.

PARAMETER ESTIMATION OF
MULTICOMPONENT SYSTEM

In the present study, a process of photocatalytic purification of
three VOC components, which has been extensively investigated
by Turchi and Rabago [1995], Turchi et al. [1996] and Wolfrum et
al. [1997], will be adopted for discussion. In the system, there are
three kinetic-significant reactants (acetone, isopropanol and metha-
nol) and one product (carbon dioxide), where acetone is also the
product of isopropanol oxidation. The three reactants existing in
the same contaminated air stream, say, representing exhaust stream
from semiconductor plants, are oxidized simultaneously. The reac-
tion stoichiometry can be depicted as [Turchi et al., 1996]:

Acetone→3 CO2+xH2O
Isopropanol→acetone→3 CO2+xH2O
Methanol→CO2+xH2O

The L-H equations for this process can be expressed as:

(1)

where subscript 1 denotes acetone, 2 isopropanol, 3 methanol and
4 carbon dioxide. c is the concentration, k the reaction rate con-

stants and K the adsorption equilibrium constants.
In the previous literature [Turchi et al., 1996; Wolfrum et al., 199

ki and Ki, i=1, 2, 3, have been estimated separately from exp
ments with each individual reactant having its various initial co
centrations. In the present study, with only one set of data, the ki
parameters in the above equations will be estimated by a hy
optimization method.

To fulfill the nonlinear estimation, let’s construct object fun
tions for four components in the system as follows:

(2)

where vector k={k1, k2, …, km, …} denotes all reaction rate con
stants and vector K={K 1, K2, …, Km, …} denotes all adsorption
equilibrium constants. ci(m) is experimental concentration of the i-
th component at the m-th instance with time, while  is the sim
ulated concentration of the i-th component at the m-th instance. Ap-
parently, the object function is a square summation of difference
tween the simulated and experimental concentrations (Least Sq
Estimation). To make the problem solvable, it is convenient to co
bine all object functions into a single total object function by t
following weighted average (or summation) method.

(3)

where wi is the weight for the i-th component. Thus, the kinetic pa
rameter estimation problem is expressed as a nonlinear optim
tion problem as follows:

(4)

Apparently, since the L-H equations are a set of implicit nonlin
ordinary differential equations, the object function must be a mu
peak function. Therefore, the only practical way to solve this pr
lem is numerical search method.

HYBRID OPTIMIZATION METHOD

It has been understood that the GA has the potential to locat
global optimum but its final result may not be accurate enough, w
the local-convergence method has the potential to locate the 
optimum accurately but is highly prone to fall into non-global o
timum. Therefore, it is natural to expect that a hybrid algorithm 
up by mating the GA with the local convergence method sho
be a promising approach for nonlinear kinetic parameter esti
tion. In the following paragraph a brief description will be give
about the GA and the simplex algorithm, which are hybridized
the present study. Detailed information about these algorithms
be found in many previous investigations [Cheney and Kinca
1985; Winston, 1991; Gen and Cheng, 1997].

The GA maintains a population of individuals, say P(n), for ge
eration n and each individual consists of a set of genes, where 
gene stands for a parameter to be estimated. One individual r
sents one potential solution to the problem at hand. Each indivi
is evaluated to give some measure of its fitness. Some individ

r1 = 
dc1

dt
-------  = − 

k1K1c1 − k2K2c2

1+ K ici
i = 1

3

∑
------------------------------------

r2 = 
dc2

dt
-------  = − 

k2K2c2

1+ K ici
i = 1

3

∑
----------------------

r3 = 
dc3

dt
-------  = − 

k3K3c3

1+ K ici
i = 1

3

∑
----------------------

r4 = 
dc4

dt
-------  = 

3k1K1c1 + k3K3c3

1+ K ici
i = 1

3

∑
---------------------------------------

Ji k K,( )  = ci m( ) − ĉi m( )[ ]2

m= 1

p

∑

ĉi m( )

J = wiJi  
i = 1

n

∑ wi
i = 1

n

∑⁄

min J

dci

dt
------ = f i k1 K1 c1 k2 K2 c2 Λ, , , , , ,( )







(k, K)
Korean J. Chem. Eng.(Vol. 18, No. 5)
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undergo stochastic transformation by means of genetic operations
to form new individuals. There are two transformations: crossover,
which creates new individuals by combining parts from two indi-
viduals, and mutation, which creates a new individual by making
changes in a single individual. New individuals, called offspring
S(n), are then evaluated. A new population is formed by selecting
fitter individuals from the parent population and the offspring popu-
lation. After some generations, the algorithm converges to the best
individual, which hopefully represents an optimal or sub-optimal
solution to the problem. A general structure of the GA is as follows:

begin
n=0;
initialize P(n);
evaluate P(n);
while (not termination condition) do
begin

recombine P(n) to yield S(n);
evaluate S(n);
select P(n+1) from P(n) and S(n);
n=n+1;

end
end
To be applied to this concrete problem, some operations of the

GA are modified here.
1. Modified Genetic Algorithm

In the present study, variables to be optimized are reaction rate
constants k={k1, k2, …, km, …}, and adsorption equilibrium con-
stants K={K 1, K2, …, Km, …}, which are all float values, and this
fact makes the coding procedure different from that of the tradi-
tional GA, whose individuals are all coded by binary figures.
1-1. Representation

Using real possible values of the reaction rate constants and the
adsorption equilibrium constants as its gene, the jth individuals Vj

can be encoded as:

V j: {k1
j, k2

j, …, kn
j, K1

j, K2
j, …, Kn

j}

lk≤ki
j≤uk; lK≤Ki

j≤uK

where ki
j is the j-th possible value of reaction rate constant of the

ith component, while Ki
j is the j-th possible value of adsorption

equilibrium constant of i-th component in the current generation. lk
and uk are the lower and upper limit, respectively, for reaction rate
constants, and lK and uK are the lower and upper limit, respec-
tively, for adsorption equilibrium constants. It is also feasible to set
different limits for each variable.
1-2. Crossover and Mutation

In order to explore the search space, some randomly chosen in-
dividual pairs are recombined by crossover operation, which is clear-
ly sketched by the following two in- dividuals

V j: {k1
j, k2

j, …, kn
j, K1

j, K2
j, …, Kn

j}

V j+1: {k1
j+1, k2

j+1, …, kn
j+1, K1

j+1,K2
j+1, …, Kn

j+1}

New individuals resulting from the above may be:

V j
*: {k 1

j, k2
j, …, kn

j, K1
j, K2

j+1, …, Kn
j+1}

V*
j+1: {k 1

j+1, k2
j+1, …, kn

j+1, K1
j+1, K2

j, …, Kn
j}

The position where an individual is cut off for recombination is ran-

domly chosen, and the number of individuals chosen to be rec
bined is set by crossover probability. After crossover, all entr
(genes) in all individuals are given a chance of undergoing m
tion operation with a certain mutation probability. If a gene is 
lected for mutation operation, it will be assigned a random valu
the given range.
1-3. Evaluation and Selection

The evaluation function plays the role of the environment in na
ral evolution, and it rates individuals in terms of their fitness. F
the minimization problem here, the fitness of each individual is 
fined over object function values as:

(5)

where Fj is the fitness of the j-th individual vj, m is the number of
individuals in the present generation, and J(Vj) is the object func-
tion value of the j-th individual. It is apparent that the individua
having the smallest object function value will have the highest 
ness. In constructing the next generation, the probability of the
lection of the jth individual is calculated by the following equation

(6)

The selection is implemented by adopting a roulette wheel appro
[Gen and Cheng, 1997].
2. Simplex Algorithm

From the mathematical point of view, the simplex algorithm is
relatively simple algorithm, but is effective for many optimizatio
problems, especially in case it is difficult to deduce an analyt
gradient formula [Cheney, Kincaid, 1985]. Its principle is as follow

When the simplex algorithm starts with a given starting point
an m dimensional space, it will choose arbitrarily one point diff
ent from the starting point along each dimensional axis in a sm
neighborhood of the starting point, and define a simplex in the se
space with the given point (starting point) together with the m po
chosen along each dimensional axis (m is the number of para
ters to be optimized, i.e., the dimension of search space, and the
plex has m+1 points). Then a downhill (or hill-climbing) metho
is applied to update the simplex iteratively and to make the a
rithm finally achieve the optimum. Assume that vj is the worst one
among the m+1 points v1, v2, …, vm+1, which means vj has the big-
gest object function value (in case of minimizing); a new point c
be created as follows:

(11)

where λ is the step size which can be optimized in each iterati
By replacing the worst point vj with the newly created point v*, the
simplex can be updated. In the next iteration, the new worst p
in the new simplex is identified and replaced by a new point. If t
updating operation is repeated, all the m+1 points will come clo
to the local optimum, and the step size will become smaller [W
ston, 1991]. When the step size becomes smaller than a given 
value (convergence criteria), each one of the m+1 points can

Fj  = 

J vj( )
j = 1

m

∑
J vj( )

----------------

Pj  = 
Fj

Fj
j = 1

m

∑
---------

v*
 = 1− λ( )vj  + λ

v i  − vj
i = 1

m+ 1

∑
2n

--------------------
September, 2001
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3. Solution Strategy

In the simplex algorithm, the simplex is updated by replacing the
single worst point (the current point) in the search space iteratively.
During a single iteration, a new point is selected from the neigh-
borhood of the current point. If the new point provides a smaller
value of the object function, the current point is deleted and the new
point will be used in the process of the simplex algorithm; otherwise,
another neighbor is selected and tested. It is clear that this search
strategy provides local optimum values only, and these values depend
on the selection of the starting point. Considering the fact that the
optimization problem in the present study is implicit and nonlinear,
which means that the object function generally has more than one
extrema, we have to produce a reasonable starting point to ensure
the simplex algorithm converges to a global optimum rather than a
local optimum. On the other side, the GA is a compromise between
an accurate local convergence method and a robust random meth-
od; it combines elements of directed and stochastic search. It has
been shown by many investigations that the GA will finally con-
verge to the best individual roughly with a random initial popula-
tion, but it is hard to improve its accuracy. In our hybrid method
for kinetic parameter estimation, the genetic algorithm is used not
to find the final best solution to the problem, but to yield a rough
guess of parameters, which will be used as the starting point of the
simplex algorithm; therefore. it is unnecessary to let the GA oper-
ate a long time till it finally converges to the best solution.

In our hybrid optimization method, the GA is adopted firstly with
its initial individuals created randomly in a given bound of param-
eter values. About 2000 generations are evolved, and the fittest in-
dividual in the population (from the first generation to the last gen-
eration) is chosen as the favorite point. Here, the number of genera-
tions used in the GA is an empirical value based on the experience
of the author because there is no general value for this purpose. Suc-
cessively, the simplex algorithm is started to refine the solution by
using the point given by the GA as its starting point. When the step
size of the simplex algorithm is smaller that 1.0e-6, the search pro-
cess is stopped and the optimization is regarded as converged.

PERFORMANCE OF THE HYBRID METHOD

By the hybrid optimization method mentioned in the above sec-
tion, all kinetic parameters in the system defined by Eq. (1) have
been estimated simultaneously by only one set of data, which is
read carefully from the published experimental figure [Turchi et
al., 1996]. For the sake of convenience, the units of concentration,
reaction rate constants and adsorption equilibrium constants are all
changed into SI system. In this test with the modified GA, the pop-
ulation has 200 individuals, the crossover probability is set 0.2 and
mutation probability is set 0.01. The convergence criterion for the
simplex algorithm is that its step size is smaller than 1.0×10−6, which
means all points of the final stage of the simplex algorithm come
close enough and wander in a very small region (approximated by
a polyhedron whose diameter is smaller than 1.0×10−6). With the
assumption that 0<ki<10000 and 0<Ki<10, i=1, 2, 3 (it is a rea-
sonable guess judging from our knowledge of reaction engineer-
ing, and if these bounds do not work, we can easily change these
bounds), the hybrid optimization method finally yields the esti-

mated values as follows:

k1=140.8013766138399, K1=0.02038825898700673
k2=7275.7 08194557086, K2=0.01252516703250473
k3=68.65429354582977, K3=0.2569758737264554

Comparison is made between the simulated concentrations
tained from our estimated kinetic parameters and the experim
concentrations in Fig. 1. Because the exact values of the kinetic
rameters are unknown, the only way we can show the pe
mance of the hybrid optimization method is to compare our e
mated results with those in other published investigations. Here
the comparison the estimated results made by Turchi et al. [1
and Wolfrum et al. [1997] are reproduced in Fig. 2, where their 
rameter estimation was based on single component data (sep
estimation for each component). For clarification, data are arran
in the same style in the two figures, where it is very clear that 
hybrid optimization method gives a more accurate estimation
the kinetic parameters in the system, because the simulated 
centrations based on the hybrid optimization method fit more 
curately with the experimental data than those based on sep
estimation though the mathematical kinetic models are the sa
Furthermore, only 27 experimental concentrations of each reac
are used for our estimation, while it has been reported in the p
ous literature that a series of experiments for each componen

Fig. 1. Comparison of experimental observations with the simu-
lated concentrations based on the estimated parameters by
the hybrid optimization method (All experimental data are
the same as those in Fig. 2).

Fig. 2. Comparison made by Turchi et al. [1996] between experi-
mental observations of photocatalytic process given in Eq.
(1) and simulated concentrations based on parameter esti-
mation by single component data (T denotes temperature,
RH denotes relative humidity).
Korean J. Chem. Eng.(Vol. 18, No. 5)
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This application indicates that the hybrid optimization is feasible

for simultaneous estimation of kinetic parameters in the L-H equa-
tions for a multi-component system, and this method does give a
more accurate estimation than what the separate estimation method
does.

RELIABILITY OF THE ESTIMATION

In order to show the reliability of the kinetic parameter estima-
tion, let’s analyze the sensitivity of the simulated concentrations with
respect to the estimated kinetic parameters, which determines error
transfer during the estimating process. To clarify the problem, a single
component system is used for discussion, whose L-H equation is:

(6)

where c is concentration, k is the reaction rate constants and K is
the adsorption equilibrium constants.
1. Sensitivity

It is known that there must be some measurement error intro-
duced into the measured concentration during experiments, and the
measurement error will affect the estimation results. The ratio of
error in the estimated parameters to that introduced in measurements
is determined by the sensitivity of the estimated parameter with re-
spect to the value of the object function. Because the experimental
concentration profile with time in the given system is fixed in the
process of parameter estimation (it was used as input), we can con-
sider the sensitivity of the estimated parameters with respect to the
simulated concentrations instead. It is not a difficult task to obtain
the sensitivity of simulated concentrations from the L-H equations.

(7)

(8)

where sk,m is the sensitivity of k with respect to the m-th simulated
concentrations, while sK,m is sensitivity of K with respect to the m-
th simulated concentrations.  is the simulated concentrations at
the j-th instance with time and ∆t is time interval between concen-
tration sampling.

Generally, k>>1 while K<<1; it makes sk,m>sK, m in most cases.
This fact means that error in the estimated reaction rate constant is
larger than that in the estimated adsorption equilibrium constant,
where both the errors are caused by the experimental concentra-
tions error. However, it does not mean that the estimated K is more
reliable than estimated k, because their absolute magnitudes are dif-
ferent. If “relative sensitivity” is to be used, we can easily find the
error transfer:

(9)

(10)

where rsk, m and rsK,m are the relative sensitivity of the estimated k

and K with respect to the concentrations, respectively, and cref is the
reference concentration (we use the initial concentration as the
ference here). Because K is small,  is a little larger than
and rsk,m<rsK,m, we can deduce that the estimated k has a little sma
relative error than the estimated K when the same experimental 
centrations are used, which means the estimated reaction rate
stant is a little more reliable than the estimated adsorption equ
rium constants.

Because the relative sensitivity is a function of the kinetic p
rameters (to be estimated) and the concentrations, this fact ma
difficult to abstract a general formula of sensitivity analysis for 
reaction processes. Instead, we use a concrete numerical test to
how the error introduced into the experimental concentrations 
affect the accuracy of the estimated parameters. Let k=100, K=0
and the initial concentration is c(0)=100 in the system given by 
(6). It is easy to simulate this system and the obtained conce
tions are sketched in Fig. 3. To test the reliability of kinetic para
eter estimation by the hybrid optimization method, we sample
simulated concentration at 30 different instances along time s
evenly from 0 to 9 seconds, which are marked as discrete sma
cles in the figure. Here we pretend that we know nothing about
values of k and K, and they have to be estimated with the sam
concentrations. In an ideal case (no error exists in the experim
concentrations), the estimated k and K by the hybrid optimiza
method are

k=100.0000000360223
K=0.009999999993527

The obtained parameters are almost the same as their real v
and the test indicates the hybrid optimization method has the
tential to recover kinetic parameters accurately. Now, let’s introd
a random error into the input concentrations:

cinput=cexact+ε (11)

where cexact is concentration without any error (calculated with give
parameter values), ε is the mean zero random error introduced in
the concentrations with |ε|<2 in this test, and cinput is concentration

r = 
dc
dt
-----  = 

kKc
1+ Kc
--------------

sk m,  = 1
dĉ m( )

dk
-------------- 1≈⁄ ∆t

Kĉ j( )
1+ Kĉ j( )
--------------------

j = 1

j = m

∑⁄

sK m,  = 1
dĉ m( )

dK
-------------- 1≈⁄ ∆t

kĉ j( )
1+ Kĉ j( )[ ]2

--------------------------
j = 1

j = m

∑⁄

ĉ j( )

rsk m,  = 1
dĉ m( ) cref⁄

dk k⁄
----------------------- 1≈⁄ ∆t kKĉ j( )

1+ Kĉ j( )[ ]cref

-------------------------------
j = 1

j = m

∑⁄

rsK m,  = 1
dĉ m( ) cref⁄

dK K⁄
----------------------- 1≈⁄ ∆t kKĉ j( )

1+ Kĉ j( )[ ]2cref

---------------------------------
j = 1

j = m

∑⁄

1+ Kĉ j( )

Fig. 3. Simulated concentration of the system given in Eq. (6) and
its sampling.
September, 2001
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Considering the randomness of the introduced error, we run the

estimation 500 times to abstract an approximate statistical character-
istic. The distributions of estimated reaction rate constant are marked
in Fig. 4, while distributions of estimated adsorption equilibrium
constant are in Fig. 5. It is very clear from the figures that the es-
timated k and K are distributed in small bounded regions, respec-
tively, with their average values:

k=100.5615342848486
K=0.010061512537634

Here, the estimated parameters are very close to their real values. This
result shows that the errors in the estimated parameters are bounded,
and if enough data are available, the parameters can be recovered
accurately.

If only one set of data is available, the reliability of the parame-
ter estimation can be shown by the distribution of the relative error
defined in the following equation:

(12)

where e is the relative error and x denotes either k or K.  deno
the average of x. Here, to show the reliability of the estimated
sults, we use a probability density function with respect to the rela
error of the estimated results, where the probability density fu
tion is obtained by counting the number of points and by smoo
ing the resulting probabilities to a curve. The probability dens
functions of k and K are sketched together in Fig. 6 for convenie
of comparison.

From the probability density functions, we can easily draw t
bottom lines. The first one is that each of estimated k and K h
high and narrow peak around the zero relative error point with bou
ed relative errors. It assures us that, when only one set of da
used, the estimations are reliable even though some experim
error exists in the concentration. The second one is that the r
tion rate constant can be estimated more reliably than the ad
tion equilibrium constants, because the probability density funct
of the former has a higher peak around the zero relative error p
and this agrees with the result of the qualitative sensitive ana
carried out before.
2. About the Object Function

In the kinetic parameter estimation, the role of the object fu
tion is to make the simulated concentrations as close to the e
concentrations (no experimental concentration error) as possib
the exact concentrations are available (which is not the case
we can expect), the ideal object function should be

(13)

where cexact(m) is the ideal exact concentrations while csimulated(m) is
the simulated concentrations, and m denotes m-th instance with 
Apparently, the function’s minimum is zero, which means there
no difference between the simulated and the exact concentra
when the function is minimized, and in this case the estimated
rameters should be accurate, as shown in the above numerica
But, in practice, the experimental errors always exist and are
known, which makes the exact concentrations unavailable; th
fore, the object function given by Eq. (2) is commonly used instee = x  − x( ) x⁄

x

J = cexact m( )  − csimulated m( )[ ]2

m= 1

p

∑

Fig. 4. Distribution of the estimated reaction rate constant with
500 times estimation including random error.

Fig. 5. Distribution of the estimated adsorption equilibrium con-
stants with 500 times estimation including random error.

Fig. 6. Distributions of the probabilities of the estimated parame-
ters with respect to relative error when random error is in-
troduced into the system (based on 500 estimations).
Korean J. Chem. Eng.(Vol. 18, No. 5)
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 pro-
 with

-

But, this substitution (replace) causes the simulated concentration
to deviate lightly from the exact one. To show it clearly, the object
function is rewritten here as:

(14)

in which the experimental concentration is decomposed into two
components: the one is the exact concentration and the other is the
experimental error ε(m). If the simulated concentrations and the
exact concentrations are the same, the object function defined in

Eq. (14) will have the value of . Because we cannot find

this situation in a real application, it is assumed in the estimation
algorithm that the simulated concentration is the same as the exact
one when the object function defined in Eq. (14) is minimized. In
fact, it is not what we can get in a real application.

Let’s consider the following inequality:

(15)

It indicates that the minimum of object function defined in Eq. (14)

should be smaller than , where csimulated(m) are not equal to

cexact(m). Of course, the estimated parameters are also influenced
by the errors in the experimental concentrations.

Here, we can consider the “overshoot” of the object function,
which can be defined as the value by which the minimum of the

object function defined in Eq. (14) is smaller than . Because

the overshoot of the object function is generally small, the error in
the estimated parameters is also small and tolerable. On the other
hand, the “overshoot” is not caused by the optimization algorithm
itself, but by the fact that no detailed information about the experi-
mental error is available, which forces us to use the object function
defined in Eq. (14) instead of the one defined in Eq. (13). From the
information point of view, it is reasonable that we cannot recover
the kinetic parameters exactly when some information about the
reaction is lost in the experiment.
3. Further Verification

To show further the reliability of the hybrid optimization method
for kinetic parameter estimation, here the fitness of the estimated
concentrations (calculated based on the estimated kinetic parameters)
to the given exact concentrations is tested, where the initial values
used to calculate the estimated concentrations are different from
those used to estimate kinetic parameters. Let’s consider the fol-
lowing two component system:

(16)

where subscripts A and B denote components A and B, respectively.
Given the kinetic parameters as kA=100, kB=40, KA=0.04 and KB=
0.01, the exact concentration profile with different initial values of
components A and B can be easily calculated as lines in Fig. 7, where
three sets of initial concentrations are chosen for the test. In Fig.

7(a), the initial concentrations are cA(0)=180 and cB(0)=180, in
Fig. 7(b) cA(0)=120, cB(0)=120, while in Fig. 7(c) cA(0)=60, cB(0)=
60. To estimate the kinetic parameters, the exact concentration
files are sampled evenly from the time range of 0 to 20 seconds

J = cexact m( )  + ε m( )  − csimulated m( )[ ]2

m= 1

p

∑

ε m( )2

m= 1

p

∑

cexact m( )  + ε m( )  − csimulated m( )[ ]2 ≤
m= 1

p

∑

cexact m( )  − csimulated m( )[ ]2
 + ε m( )2

m= 1

p

∑
m= 1

p

∑

ε m( )2

m = 1

p

∑

ε m( )2

m = 1

p

∑

dcA

dt
-------  = − 

kAKAcA

1+ KAcA + KBcB

-----------------------------------

dcB

dt
-------  = − 

kBKBcB − kAKAcA

1+ KAcA + KBcB

--------------------------------------

Fig. 7. An artificial experiment of a two-component system. (Exact
concentrations are denoted by lines, while sampled concen
trations with random error are denoted by discrete mark-
ers).
(a) Initial concentrations of cA(0)=180 and cB(0)=180 (mol/L).
(b) Initial concentrations of cA(0)=120 and cB(0)=120 (mol/L).
(c) Initial concentrations of cA(0)=60 and cB(0)=60 (mol/L).
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an interval of 0.5 second. A bounded random relative error, whose
maximum will not exceed 5% of the concentrations, is superposed
on the exact concentration to simulate the experiment error. For com-
parison, concentration samples are also sketched in the figure as di-
screte markers.

Choosing the concentration samples in Fig. 7(a) as input, the hy-
brid optimization method estimates the four kinetic parameters as

kA=94.64923483415211, kB=42.39506915461477
KA=0.03972790629826880, KB=0.008864935373366311

If the concentration samples in Fig. 7(b) are chosen as input, the
estimated parameters will be:

kA=111.2879861550922, kB=38.65915807659286
KA=0.03671313198303160, KB=0.001036427370199021

While the concentration samples in Fig. 7(c) are used, the estimated
result will be:

kA=98.99980578291010, kB=37.01748896537582
KA=0.04292663036394419, KB=0.001120936475488305

It is clear that all three sets of the estimated parameters are close to
the exact parameter values with a very small error, which indicates

that the hybrid optimization method is independent on the ini
concentrations.

To check the reliability of the hybrid optimization method in a
other way, one of the three sets of estimated parameters ment
above is chosen to calculate the concentration profile with diffe
initial values. Here, the estimated parameters related to the in
concentrations cA(0)=120, cB(0)=120 are chosen, but the concentr
tion profiles are calculated with the initial values cA(0)=180, cB(0)=
180 and cA(0)=60, cB(0)=60. The goodness of the approximatio
to the exact concentrations is sketched in Fig. 8, where the g
ness is denoted by a concentration difference between the exac
(given in Fig. 7(a) and (c)) and the currently calculated one. T
concentration differences shown in Fig. 8(a) are calculated withA

(0)=180, cB(0)=180, while in Fig. 8(b) initial values are cA(0)=60,
cB(0)=60.

When the initial concentrations are cA(0)=180, cB(0)=180 in this
figure, the maximal difference is only about 5; when cA(0)=60, cB
(0)=60, the maximal difference is only about 1.2. The maximal 
lative errors in both cases are less than 3%, which is less tha
relative errors introduced into the concentration samples. It is c
in Fig. 8 that the concentration differences between the exact
the estimated value are very small with both sets of initial conc
trations. The small concentration difference indicates that the 
mated kinetic parameter is a good approximation to the real e
value. Considering the fact that the initial concentrations used
comparing concentration difference are different from that use
estimate kinetic parameters, it can be concluded that the hybrid
timization method has the capability to estimate kinetic parame
reliably with only one set of concentration samples, provided t
the mathematical model is a reasonable description of a focu
reaction. Of course, when many sets of data are available, the
mation can be improved by some related statistical method.

CONCLUSION

For a photocatalytic reactions, either single component or m
component systems, it has been customary to estimate kineti
rameters separately based on single component data, even wh
L-H equations are coupled where more than one reactants a
volved. In this study, for a multi-component photocatalytic syste
it has been illustrated that simultaneous parameter estimation is
sible in solving the relevant multi-objective optimization proble
by a hybrid genetic-simplex method. In this method the genetic
gorithm is used to find roughly an optimum in a rather wide ran
while the simplex algorithm is used sequentially to refine the ro
optimum and make it accurate. Applying it to a real reaction, 
found the estimated results by the hybrid optimization method
more accurate than those of existing investigations. By sensit
analysis and numerical verification, it has been also shown tha
estimation is reliable even when only one set of experimental 
(with unknown error) is available. This investigation proposes
effective approach to abstract kinetic parameters from very few
perimental data.
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Fig. 8. (a) The concentration difference between the exact one
[given in Fig. 7(a) and (c)] and the currently calculated one.
(a) Initial concentrations of cA(0)=180 and cB(0)=180 (mol/L).
(b) Initial concentrations of cA(0)=60 and cB(0)=60 (mol/L).
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NOMENCLATURE

ci : concentration of component i [mol/L]
cexact(m) : the ideal (without error) concentration at the mth in-

stance [mol/L]
ci(m) : the mth observation of concentration of the compo-

nent i [mol/L]
csimulated(m) : the simulated concentration at the mth instance [mol/

L]
: the mth simulated concentration of component i [mol/
L]

e : the relative error
Fj : the fitness of jth chromosome
J : object function
Ji : object function of component i
k : collection of all reaction rate constant
ki : reaction rate constant of component i [mol/(L)(s)]
ki

j : the jth possible value of ki

K : collection of all adsorption equilibrium constants
K i : adsorption equilibrium constant of component i [L/

mol]
K i

j : the jth possible value of Ki
lk : lower limit of the reaction rate constant
lK : lower limit of the adsorption equilibrium constant
Pj : possibility of the jth chromosome
ri : reaction rate of component i [mol/(L)(s)]
uk : upper limit of the reaction rate constant
UK : upper limit of the adsorption equilibrium constant
Vi : the ith chromosome
wi : average weight of component i
x : one of estimated reaction rate constants or adsorption

equilibrium constants
: average of x

Greek Letter
ε(m) : random error at the mth instance
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