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Abstract—Nonlinear kinetic parameter estimation plays an essential role in kinetic study in reaction engineering. In
the present study, the feasibility and reliability of the simultaneous parameter estimation problem is investigated for a
multi-component photocatalytic process. The kinetic model is given by the L-H equation, and the estimation prob-
lem is solved by a hybrid genetic-simplex optimization method. Here, the genetic algorithm is applied to find out,
roughly, the location of the global optimal point, and the simplex algorithm is subsequently adopted for accurate con-
vergence. In applying this technique to a real system and analyzing its reliability, it is shown that this approach results in
a reliable estimation for a rather wide range of parameter value, and that all parameters can be estimated simultaneously.
Using this approach, one can estimate kinetic parameters for all components from data measured in only one time
experiment.
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INTRODUCTION tions are coupled with each other, which is very often encountered
in photocatalytic reactions, this method is no longer applicable be-
Photocatalysis is a promising approach to efficient destructioncause reciprocals of the L-H equations are still nonlinear.
of environmental pollutants [Alberici and Jardim, 1997; Herrmann, Taking into account the nonlinearity of the L-H equations, sev-
1999; Ollis, 2000; Chai et al., 2000], and many experimental inveseral approaches have been suggested for nonlinear parameter esti-
tigations have been reported in this field [Anpo et al., 1997; Sirisukmation in reaction engineering [Biegler et al., 1986; Kim et al., 1990;
et al., 1999]. Because an experimental approach is usually costliyarza et al., 1997; Park and Froment, 1998; Oh et al., 1999; Balland
and time consuming, some other investigations with computer simet al., 2000]. For kinetic model governed by the L-H equations, Fro-
ulations have also been carried out, which are based on a matheient [1987] has shown that nonlinear regression can be applied to
matical kinetic model for the photocatalytic oxidizing process. Re-perform nonlinear parameter estimation. Mehrab et al. [2000] have
searches have shown that most photocatalytic reactions follow thadopted the Box-Draper nonlinear regression method to find the
L-H (Langmuir-Hinshelwood) equation [Fox and Dulay, 1993]. In best point estimates, in which a variable metric algorithm is em-
fact, numerical simulation of the L-H equations is not a difficult ployed with an improved gradient calculation. Although the local-
task in itself, and here various numerical integral methods can beonvergence methods mentioned above do have a potential to yield
applied to the equation to solve concentration profiles of each rea@ better estimation of kinetic parameters and are expected to be us-
tant and product with time. The obstacle is that kinetic parameterable in multi-component systems, there is still a rigorous limitation
in the L-H equations, that is, reaction rate constants and adsorptidhat a rather good initial parameter value should be given. Because
equilibrium constants, are not measurable, and there is no way tan objective function for nonlinear model often contains more than
deduce an analytical formula to theoretically estimate its value. The@ne optimum, a local-convergence method is highly prone to fall
only feasible approach to obtaining their values is to estimate thenmto non-global optima [Press, 1986] owing to their downhill (hill-
based on experimental data. The reason is that the L-H equatiotimbing) algorithm. To protect the parameter estimation from re-
are a set of implicit nonlinear differential equations that are cou-garding a local optimum as a global one, Belohlav et al. [1997] have
pled with each other since some reactants are the resultants of otheqsplied a random search method in nonlinear regression. This ap-
in a multi-component system. proach does work, but is computationally less efficient because of
During a long period, kinetic parameters have been estimatedts random search algorithm. Especially when more than one com-
by the so-called initial rate method [Levenspiel, 1972], which usesponent is oxidized, it hardly results in a satisfying estimation.
linear regression method, based on the reciprocal form of a single To locate the global optimum confidently, various approaches
L-H equation. But, this method cannot yield satisfying results owingunder the term “evolutionary algorithm” have been also investi-
to the fact that a nonlinear equation is merely replaced by a lineamgated recently. Wolf and Moros [1997] have estimated rate con-
ized equation in this method [Mehrab et al., 2000]. When more tharstants in oxidizing methane tg Bydrocarbons by the Genetic Al-
one component is being oxidized simultaneously and the L-H equagorithm (GA); Park and Froment [1998] have used the GA esti-
mated kinetic parameters and tested a heterogeneous catalytic reac-
To whom correspondence should be addressed. tion; Balland et al. [2000] have estimated kinetic and energetic pa-
E-mail: cnkim@khu.ac.kr rameters in the saponification process of ethyl acetate using the GA.
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Although, the kinetic models studied in these works are not giverstants and K the adsorption equilibrium constants.
by the L-H equation, their nonlinearities are not as strong as that of In the previous literature [Turchi et al., 1996; Wolfrum et al., 1997),
the L-H equation, and their final results are not so accurate as thode and K, i=1, 2, 3, have been estimated separately from experi-
of local convergence method, these works do show us that the G&ents with each individual reactant having its various initial con-
has a potential to find out, roughly, the location of the real globalcentrations. In the present study, with only one set of data, the kinetic
optimum for the nonlinear estimation problem. parameters in the above equations will be estimated by a hybrid

In the present study, we will show it is feasible and reliable tooptimization method.
estimate simultaneously all kinetic parameters in the L-H equations To fulfill the nonlinear estimation, let's construct object func-
by a hybrid genetic-simplex optimization method, even when sev-ions for four components in the system as follows:
eral oxidation processes are coupled with each other in the reac-
tion. The proposed hybrid optimization method is set up in mating  J(k,K) = Z [c(m) —¢,(m)]? 2
the modified GA with the simplex algorithm. The role of the mod-
ified GA is to find a rough estimation for kinetic parameters, andwhere vectok={k,, k;, ..., k,, ...} denotes all reaction rate con-
this assures us that subsequent local search will converge to the glstants and vectd¢={K ,, K,, ..., K, ...} denotes all adsorption
bal optimum when the result of the rough estimation is used as aquilibrium constants;(m) is experimental concentration of fhe
starting point of the simplex algorithm. The simplex algorithm is a th component at theth instance with time, whilé(m) is the sim-
local convergence method used to refine the rough estimation andated concentration of theh component at thaeth instance. Ap-
to make the estimation more accurate. By analyzing the sensitivityparently, the object function is a square summation of difference be-
of the simulated concentrations with respect to the estimated parantween the simulated and experimental concentrations (Least Square
eter values, we will show that the hybrid optimization method is Estimation). To make the problem solvable, it is convenient to com-
able to estimate parameters accurately and reliably. By applying ibine all object functions into a single total object function by the
to a process about which previously published results are availabléollowing weighted average (or summation) method.
we will show the hybrid method gives a more accurate estimation. . .

I=Swd/ S w ?3)
PARAMETER ESTIMATION OF e
MULTICOMPONENT SYSTEM where wis the weight for theth component. Thus, the kinetic pa-
rameter estimation problem is expressed as a nonlinear optimiza-

In the present study, a process of photocatalytic purification oftion problem as follows:
three VOC components, which has been extensively investigated
by Turchi and Rabago [1995], Turchi et al. [1996] and Wolfrum et Hmin J
al. [1997], will be adopted for discussion. In the system, there are D(éé)
three kinetic-significant reactants (acetone, isopropanol and metha- = o dt =fi(ku Ky, €1 ko Ko €M)
nol) and one product (carbon dioxide), where acetone is also the
product of isopropanol oxidation. The three reactants existing inApparently, since the L-H equations are a set of implicit nonlinear
the same contaminated air stream, say, representing exhaust streandinary differential equations, the object function must be a muilti-
from semiconductor plants, are oxidized simultaneously. The reacpeak function. Therefore, the only practical way to solve this prob-
tion stoichiometry can be depicted as [Turchi et al., 1996]: lem is numerical search method.

4)

Acetone- 3 CQ+xH,0
Isopropanol- acetone» 3 CO+xH,0
Methanol- CO,+xH,0

HYBRID OPTIMIZATION METHOD

It has been understood that the GA has the potential to locate the
The L-H equations for this process can be expressed as: global optimum but its final result may not be accurate enough, while
the local-convergence method has the potential to locate the local

=46 - _kiKi6 TkaKoG, optimum accurately but is highly prone to fall into non-global op-

rn= 3
dt 1+3 Kig timum. Therefore, it is natural to expect that a hybrid algorithm set
A up by mating the GA with the local convergence method should
r =46 __ kK be a promisin h f I' kineti t tima-
2= < p g approach for nonlinear kinetic parameter estima
1+3 K tion. In the following paragraph a brief description will be given
g kllz about the GA and the simplex algorithm, which are hybridized for
s :d—Q =-— G the present study. Detailed information about these algorithms can
1+3 Kig be found in many previous investigations [Cheney and Kincaid,
- 1985; Winston, 1991; Gen and Cheng, 1997].
_dc, _3kK;c; tk;Kc, . . L2
e ) The GA maintains a population of individuals, say P(n), for gen-
1+ K¢ eration n and each individual consists of a set of genes, where each
i=1

gene stands for a parameter to be estimated. One individual repre-
where subscript 1 denotes acetone, 2 isopropanol, 3 methanol asdnts one potential solution to the problem at hand. Each individual
4 carbon dioxide. c is the concentration, k the reaction rate conis evaluated to give some measure of its fitness. Some individuals
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undergo stochastic transformation by means of genetic operationdomly chosen, and the number of individuals chosen to be recom-
to form new individuals. There are two transformations: crossoverpined is set by crossover probability. After crossover, all entries

which creates new individuals by combining parts from two indi- (genes) in all individuals are given a chance of undergoing muta-
viduals, and mutation, which creates a new individual by makingtion operation with a certain mutation probability. If a gene is se-

changes in a single individual. New individuals, called offspring lected for mutation operation, it will be assigned a random value in
S(n), are then evaluated. A new population is formed by selectinghe given range.

fitter individuals from the parent population and the offspring popu- 1-3. Evaluation and Selection

lation. After some generations, the algorithm converges to the best The evaluation function plays the role of the environment in natu-
individual, which hopefully represents an optimal or sub-optimal ral evolution, and it rates individuals in terms of their fithess. For

solution to the problem. A general structure of the GA is as follows:the minimization problem here, the fitness of each individual is de-

begin fined over object function values as:
n=0; m
initialize P(n); > v)
evaluate P(n); F :"j(v_) (5)
while (not termination conditionjlo :
begin where Fis the fitness of thith individual y, m is the number of
recombine P(n) to yield S(n); individuals in the present generation, and).g the object func-
evaluate S(n); tion value of thg-th individual. It is apparent that the individual
select P(n+1) from P(n) and S(n); having the smallest object function value will have the highest fit-
n=n+1; ness. In constructing the next generation, the probability of the se-
g end lection of thgth individual is calculated by the following equation:
en
To be applied to this concrete problem, some operations of the P :TFi_ (6)
GA are modified here. >F
=1

1. Modified Genetic Algorithm

In the present study, variables to be optimized are reaction rat®he selection is implemented by adopting a roulette wheel approach
constantk={k,, k, ..., k,, ...}, and adsorption equilibrium con-  [Gen and Cheng, 1997].
stantsK={K ;, K,, ..., K, ...}, which are all float values, and this 2. Simplex Algorithm
fact makes the coding procedure different from that of the tradi- From the mathematical point of view, the simplex algorithm is a
tional GA, whose individuals are all coded by binary figures.  relatively simple algorithm, but is effective for many optimization

1-1. Representation problems, especially in case it is difficult to deduce an analytical
Using real possible values of the reaction rate constants and thgradient formula [Cheney, Kincaid, 1985]. Its principle is as follows:
adsorption equilibrium constants as its genejtithimdividualsV; When the simplex algorithm starts with a given starting point in
can be encoded as: an m dimensional space, it will choose arbitrarily one point differ-
Vi kb K o K KL KD KD enF from the starting poipt along each dimensio_nal axig in a small
_ _ neighborhood of the starting point, and define a simplex in the search
Ikskisuk; IK<K]suK space with the given point (starting point) together with the m points

where K is thej-th possible value of reaction rate constant of the chosen along each dimensional axis (m is the number of parame-
ith component, while Kis thej-th possible value of adsorption ters to be optimized, i.e., the dimension of search space, and the sim-
equilibrium constant dfth component in the current generatien. ~ Plex has m+1 points). Then a downhill (or hill-climbing) method
and uk are the lower and upper limit, respectively, for reaction ratdS @pplied to update the simplex iteratively and to make the algo-
constants, antk and uK are the lower and upper limit, respec- fithm finally achieve the optimum. Assume tgs the worst one
tively, for adsorption equilibrium constants. It is also feasible to settMong the m+1 points, Vs, ..., Vi, Which means; has the big-

different limits for each variable. gest object function value (in case of minimizing); a new point can

1-2. Crossover and Mutation be created as follows:
In order to explore the search space, some randomly chosen in- mh

dividual pairs are recombined by crossover operation, which is clear- Zl ViV,

ly sketched by the following two in- dividuals V=LA A 11
Vidki ko K KL KL K where) is the step size which can be optimized in each iteration.
Vg (KIS K, L K KPR, K By replacing the worst poinf with the r?ewly_ created poiut, the _

o ) simplex can be updated. In the next iteration, the new worst point

New individuals resulting from the above may be: in the new simplex is identified and replaced by a new point. If this

Vi K KL K K L K updating operation is repeated, all the m+1 points will come closer

to the local optimum, and the step size will become smaller [Win-
ston, 1991]. When the step size becomes smaller than a given small
The position where an individual is cut off for recombination is ran- value (convergence criteria), each one of the m+1 points can be

Vi kI K K K K L K
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regarded as the optimum. 200 e e e T 800
3. Solution Strategy

In the simplex algorithm, the simplex is updated by replacing theQ
single worst point (the current point) in the search space |terat|velyv
During a single iteration, a new point is selected from the neigh--&
borhood of the current point. If the new point provides a smaller g
value of the object function, the current point is deleted and the nev & g
point will be used in the process of the simplex algorithm; otherwise &
another neighbor is selected and tested. It is clear that this sean”

o

-

600

& Isopropanol
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u Acetone 4400
xCO2

ntration

>

(=2
.
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COzconcentration (mol/L)

strategy provides local optimum values only, and these values depel 0 i 2 3 4 5

on the selection of the starting point. Considering the fact that the Residence time (s)

optimization problem in the present study is implicit and nonlinear, rig 1. comparison of experimental observations with the simu-
which means that the object function generally has more than one lated concentrations based on the estimated parameters by
extrema, we have to produce a reasonable starting point to ensure  the hybrid optimization method (All experimental data are
the simplex algorithm converges to a global optimum rather than a the same as those in Fig. 2).

local optimum. On the other side, the GA is a compromise between
an accurate local convergence method and a robust random metimated values as follows:
od; it combines elements of directed and stochastic search. It has
been shown by many investigations that the GA will finally con-
verge to the best individual roughly with a random initial popula-
tion, but it is hard to improve its accuracy. In our hybrid method
for kinetic parameter estimation, the genetic algorithm is used not Comparison is made between the simulated concentrations ob-
to find the final best solution to the problem, but to yield a rough tained from our estimated kinetic parameters and the experimental
guess of parameters, which will be used as the starting point of theoncentrations in Fig. 1. Because the exact values of the kinetic pa-
simplex algorithm; therefore. it is unnecessary to let the GA operrameters are unknown, the only way we can show the perfor-
ate a long time till it finally converges to the best solution. mance of the hybrid optimization method is to compare our esti-
In our hybrid optimization method, the GA is adopted firstly with mated results with those in other published investigations. Here, for
its initial individuals created randomly in a given bound of param- the comparison the estimated results made by Turchi et al. [1996]
eter values. About 20Qfknerations are evolved, and the fittest in- and Wolfrum et al. [1997] are reproduced in Fig. 2, where their pa-
dividual in the population (from the first generation to the last gen-rameter estimation was based on single component data (separate
eration) is chosen as the favorite point. Here, the number of generastimation for each component). For clarification, data are arranged
tions used in the GA is an empirical value based on the experienda the same style in the two figures, where it is very clear that our
of the author because there is no general value for this purpose. Sutybrid optimization method gives a more accurate estimation of
cessively, the simplex algorithm is started to refine the solution bythe kinetic parameters in the system, because the simulated con-
using the point given by the GA as its starting point. When the stegentrations based on the hybrid optimization method fit more ac-
size of the simplex algorithm is smaller that 1.0e-6, the search proeurately with the experimental data than those based on separate
cess is stopped and the optimization is regarded as converged.estimation though the mathematical kinetic models are the same.
Furthermore, only 27 experimental concentrations of each reactant
PERFORMANCE OF THE HYBRID METHOD are used for our estimation, while it has been reported in the previ-
ous literature that a series of experiments for each component are
By the hybrid optimization method mentioned in the above sec-
tion, all kinetic parameters in the system defined by Eq. (1) have 200 800
been estimated simultaneously by only one set of data, which i

k,=140.8013766138399,,K0.02038825898700673
k,=7275.7 08194557086 ,,K0.01252516703250473
k;=68.65429354582977,,K0.2569758737264554

_,__,*..xv_*..x..x.x. ]
. LTy ¥

read carefully from the published experimental figure [Turchi et 5 159 T X [To2HG, A% | 4600
al., 1996]. For the sake of convenience, the units of concentratiorg R alsopropanol| |

reaction rate constants and adsorption equilibrium constants are ¢ €5 100
changed into SI system. In this test with the modified GA, the pop-£
ulation has 200 individuals, the crossover probability is set 0.2 an(;
mutation probability is set 0.01. The convergence criterion for the; 0
simplex algorithm is that its step size is smaller than 1:QxgKich S
means all points of the final stage of the simplex algorithm come ¢
close enough and wander in a very small region (approximated b
gszzlr{wﬁigfr:h\é\{[hgzzgg(%eg (;soir'réalllgrit:hi nzlg’;?g't: r?ae- Fig. 2. Comparison made by Turchi et al. [1996] between experi-

Lo - ) mental observations of photocatalytic process given in Eq.
sonable guess judging from our knowledge of reaction engineer- (1) and simulated concentrations based on parameter esti-

ing, and if these bounds do not work, we can easily change these mation by single component data (T denotes temperature,
bounds), the hybrid optimization method finally yields the esti- RH denotes relative humidity).

+ Methanol
u Acetone
x CO2

'S
<
(=3

[}
<
<

CQOzconcentration (mol/L)

Residence time (s)
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necessary for their parameter estimation. 100
This application indicates that the hybrid optimization is feasible

for simultaneous estimation of kinetic parameters in the L-H equa \

tions for a multi-component system, and this method does give

more accurate estimation than what the separate estimation meth

does.

— Concentration profile
Concentration sample

L

RELIABILITY OF THE ESTIMATION

Concentration (mol/1)

PR

In order to show the reliability of the kinetic parameter estima-
tion, let's analyze the sensitivity of the simulated concentrations with " \
respect to the estimated kinetic parameters, which determines ern \
transfer during the estimating process. To clarify the problem, a singl “\

component system is used for discussion, whose L-H equation is: 0 Mo
0 2 4 6 8
(6) Residence time (s)

_dc _ kKc
Tdt 1+Kc

Fig. 3. Simulated concentration of the system given in Eg. (6) and
where c is concentration, k is the reaction rate constants and K is its sampling.

the adsorption equilibrium constants.
1. Sensitivity
It is known that there must be some measurement error introand K with respect to the concentrations, respectively, arsdtioe
duced into the measured concentration during experiments, and theference concentration (we use the initial concentration as the re-
measurement error will affect the estimation results. The ratio ofference here). Because K is smiafiKc(j) is a little larger than 1,
error in the estimated parameters to that introduced in measuremeraad rg,<rs .. we can deduce that the estimated k has a little smaller
is determined by the sensitivity of the estimated parameter with rerelative error than the estimated K when the same experimental con-
spect to the value of the object function. Because the experimentalentrations are used, which means the estimated reaction rate con-
concentration profile with time in the given system is fixed in the stant is a little more reliable than the estimated adsorption equilib-
process of parameter estimation (it was used as input), we can corieim constants.
sider the sensitivity of the estimated parameters with respect to the Because the relative sensitivity is a function of the kinetic pa-
simulated concentrations instead. It is not a difficult task to obtainrameters (to be estimated) and the concentrations, this fact makes it
the sensitivity of simulated concentrations from the L-H equations. difficult to abstract a general formula of sensitivity analysis for all
- reaction processes. Instead, we use a concrete numerical test to show
1/0I tz ﬁ% 7 how the error introduced into the experimental concentrations will
J affect the accuracy of the estimated parameters. Let k=100, K=0.01,
dc(m) ti o ke(j) @®) and the initial concentration is ¢(0)=100 in the system given by Eq.
dK S1+Kc()]? (6). It is easy to simulate this system and the obtained concentra-
tions are sketched in Fig. 3. To test the reliability of kinetic param-
where g, is the sensitivity of k with respect to the m-th simulated eter estimation by the hybrid optimization method, we sample the
concentrations, whilg g is sensitivity of K with respect to the m-  simulated concentration at 30 different instances along time span
th simulated concentratiors(j) s the simulated concentrations agvenly from 0 to 9 seconds, which are marked as discrete small cir-
the j-th instance with time arit is time interval between concen-  cles in the figure. Here we pretend that we know nothing about the
tration sampling. values of k and K, and they have to be estimated with the sampled
Generally, k>>1 while K<<1; it makeg,$s , in most cases.  concentrations. In an ideal case (no error exists in the experimental
This fact means that error in the estimated reaction rate constant éoncentrations), the estimated k and K by the hybrid optimization
larger than that in the estimated adsorption equilibrium constantmethod are
where both the errors are caused by the experimental concentra-
tions error. However, it does not mean that the estimated K is more
reliable than estimated k, because their absolute magnitudes are dif-
ferent. If “relative sensitivity” is to be used, we can easily find the  The obtained parameters are almost the same as their real values,
error transfer: and the test indicates the hybrid optimization method has the po-
tential to recover kinetic parameters accurately. Now, let's introduce

S(,m =

k=100.0000000360223
K=0.009999999993527

dC(m)/Qef kKe() . . .
[Sem= 9 a random error into the input concentrations:
S dk z[1+Kc(m © P
d ( )/ kKA ) anul:Cexacﬁ_s (11)
—.,ACcMm)C. C!
MSm™ VAt ATKE() (10)  where gis concentration without any error (calculated with given
ef

parameter values),is the mean zero random error introduced into
where rg,, and rg,, are the relative sensitivity of the estimated k the concentrations with|42 in this test, and,,, is concentration
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Fig. 4. Distribution of the estimated reaction rate constant with Fig. 6. Distributions of the probabilities of the estimated parame-
500 times estimation including random error. ters with respect to relative error when random error is in-
troduced into the system (based on 500 estimations).

0.014 : wheree is the relative error and x denotes either k ot K. denotes
' the average of x. Here, to show the reliability of the estimated re-
, B . sults, we use a probability density function with respect to the relative
0.012 oo b g o SN E error of the estimated results, where the probability density func-
P I R : ' : tion is obtained by counting the number of points and by smooth-
ST S R P N M ing the resulting probabilities to a curve. The probability density
e S E e B functions of k and K are sketched together in Fig. 6 for convenience
IR A O SRR TS S S IO N of comparison.
From the probability density functions, we can easily draw two

Estimated adsorption equilibrium constant (mol/L)

0.008 - . IR PR T B bottom lines. The first one is that each of estimated k and K has a
' ' ' ' . high and narrow peak around the zero relative error point with bound-

0 100 200 300 200 500 ed relative errors. It assures us that, when only one set of data is
Estimation time (number of estimation) used, the estimations are reliable even though some experimental

error exists in the concentration. The second one is that the reac-
tion rate constant can be estimated more reliably than the adsorp-
tion equilibrium constants, because the probability density function
of the former has a higher peak around the zero relative error point,
used for parameter estimation. and this agrees with the result of the qualitative sensitive analysis
Considering the randomness of the introduced error, we run thearried out before.

estimation 500 times to abstract an approximate statistical characte?- About the Object Function

istic. The distributions of estimated reaction rate constant are marked In the kinetic parameter estimation, the role of the object func-
in Fig. 4, while distributions of estimated adsorption equilibrium tion is to make the simulated concentrations as close to the exact
constant are in Fig. 5. It is very clear from the figures that the eseoncentrations (no experimental concentration error) as possible. If
timated k and K are distributed in small bounded regions, respeche exact concentrations are available (which is not the case that

Fig. 5. Distribution of the estimated adsorption equilibrium con-
stants with 500 times estimation including random error.

tively, with their average values: we can expect), the ideal object function should be
k=100.5615342848486 —< 2
J= CexackM) ~Coimulated M 13
K=0.010061512537634 PALELY aediT)] 3)

Here, the estimated parameters are very close to their real values. THEIEre €.{m) is the ideal exact concentrations whilg,e.{m) is
result shows that the errors in the estimated parameters are bound Simulated concentrations, and m denotes m-th instance with time.
and if enough data are available, the parameters can be recoverégParently, the function’s minimum is zero, which means there is
accurately. no difference between the simulated and the exact concentrations
If only one set of data is available, the reliability of the parame-When the function is minimized, and in this case the estimated pa-
ter estimation can be shown by the distribution of the relative errof@meters should be accurate, as shown in the above numerical test.

defined in the following equation: But, in practice, the experimental errors always exist and are un-
known, which makes the exact concentrations unavailable; there-
e=(x —X)/X (12) fore, the object function given by Eq. (2) is commonly used instead.
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But, this substitution (replace) causes the simulated concentratio (5, 300 — ‘ : :
to deviate lightly from the exact one. To show it clearly, the object ﬁ;"“‘;;-\- = ComponentA
function is rewritten here as: ,,' 3 ‘: Gomponent p(vith error) |
’,é \ _®_Component B (with error)
P ~ ] N
J :mzzl[cexac(m) +£(m) _(:simulelt<e[(n1):|2 (14) ég 200‘/‘ -“l!
= "
in which the experimental concentration is decomposed into twc g "\
components: the one is the exact concentration and the other is tl & A\ : l\
experimental erroe(m). If the simulated concentrations and the g 100 n
exact concentrations are the same, the object function defined i \\ 'x“
p
Eq. (14) will have the value Jf £(m)* . Because we cannot find \ "‘-u‘m
this situation in a real applicgffon, it is assumed in the estimatior o : A "‘-k..“
algorithm that the simulated concentration is the same as the exa 0 o ) 1 6 20
one when the object function defined in Eq. (14) is minimized. In Residence fime (s)
fact, it is not what we can get in a real application. ®) B
Let's consider the following inequality: e —— |
A Comsoncm A (with error)
p == Component i
z [Cexac(m) +£(m) _Csimulatec(m)]ZS o :\\ - Comgonentg(with error)
m=1 ~ ” N H
. L2 5 Y
z [Cexac(m) _Csimulate[(m)] + z E(m) (15) é 120 L
m=1 m=1 a i q‘
It indicates that the minimum of object function defined in Eq. (14) ;‘E; \‘m,,
D 2 80 ’ . M
should be smaller thaly e(m)* , whetg, £.{m) are not equal to 5 "\
m=1 j
CoadM). Of course, the estimated parameters are also influence 20 \ : '\"\
by the errors in the experimental concentrations. '\ i ‘nn_‘
Here, we can consider the “overshoot” of the object function, .
which can be defined as the value by which the minimum of the 0 o ; —— ‘S oAk ‘12‘“ “‘16’“ ﬂ‘l;(l)

p
object function defined in Eq. (14) is smaller tas(m)® . Because Residence time (5)
the overshoot of the object function is gene?éjlly small, the error in ¢y 100 T 5

the estimated parameters is also small and tolerable. On the oth ?;\"\ = Component A ]
hand, the “overshoot” is not caused by the optimization algorithm % e | & Somponen Awithemon ||
itself, but by the fact that no detailed information about the experi- H 5 ®_Component B (with error)
mental error is available, which forces us to use the object functior 3 / v
defined in Eq. (14) instead of the one defined in Eq. (13). From the ‘Z‘ 60 § i y
information point of view, it is reasonable that we cannot recover % : LY
the kinetic parameters exactly when some information about the § " & "4\__
reaction is lost in the experiment. § X Y
3. Further Verification \ “

To show further the reliability of the hybrid optimization method 20 \ '\‘
for kinetic parameter estimation, here the fitness of the estimate: Tu ;

. . . Sy

concentrations (calculated based on the estimated kinetic paramete 0 )\h HIATTU TS ST PN il TR s
to the given exact concentrations is tested, where the initial value 0 4 8 12 16 20
used to calculate the estimated concentrations are different fror Residence time (s)
thog;e used to estimate kinetic parameters. Let's consider the foi:ig. 7. An artificial experiment of a two-component system. (Exact
lowing two component system: concentrations are denoted by lines, while sampled concen-

de, KK LG trations with random error are denoted by discrete mark-

ers).

(@) Initial concentrations of,©)=180 and g£0)=180 (mol/L).
(b) Initial concentrations of,()=120 and g0)=120 (mol/L).
(¢) Initial concentrations of,(0)=60 and g0)=60 (mol/L).

dt 1+K,Ch TKgCy

d_CB - KeKsCs ~KaKACa

1
dt 1+KaCs TKgCy (16)

where subscripts A and B denote components A and B, respectively.

Given the kinetic parameters ask00, k=40, K,=0.04 and k= 7(a), the initial concentrations arg3)=180 and £0)=180, in

0.01, the exact concentration profile with different initial values of Fig. 7(b) ¢(0)=120, ¢(0)=120, while in Fig. 7(c) £0)=60, g(0)=
components A and B can be easily calculated as lines in Fig. 7, whe®@9. To estimate the kinetic parameters, the exact concentration pro-
three sets of initial concentrations are chosen for the test. In Fidiles are sampled evenly from the time range of 0 to 20 seconds with

September, 2001
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an interval of 0.5 second. A bounded random relative error, whos¢hat the hybrid optimization method is independent on the initial
maximum will not exceed 5% of the concentrations, is superposedoncentrations.
on the exact concentration to simulate the experiment error. For com- To check the reliability of the hybrid optimization method in an-
parison, concentration samples are also sketched in the figure as dither way, one of the three sets of estimated parameters mentioned
screte markers. above is chosen to calculate the concentration profile with different
Choosing the concentration samples in Fig. 7(a) as input, the hyinitial values. Here, the estimated parameters related to the initial
brid optimization method estimates the four kinetic parameters as concentrations,{0)=120, g0)=120 are chosen, but the concentra-
tion profiles are calculated with the initial valug®}3=180, ¢(0)=
180 and g0)=60, ¢(0)=60. The goodness of the approximation
to the exact concentrations is sketched in Fig. 8, where the good-
If the concentration samples in Fig. 7(b) are chosen as input, thaess is denoted by a concentration difference between the exact one
estimated parameters will be: (given in Fig. 7(a) and (c)) and the currently calculated one. The
concentration differences shown in Fig. 8(a) are calculated with ¢
(0)=180, ¢(0)=180, while in Fig. 8(b) initial values arg(@)=60,

k,=94.64923483415211,+42.39506915461477
K,=0.03972790629826880,%0.008864935373366311

k,=111.2879861550922,%38.65915807659286
K,=0.03671313198303160,%K0.001036427370199021

c5(0)=60.
While the concentration samples in Fig. 7(c) are used, the estimated When the initial concentrations arg0)=180, ¢(0)=180 in this
result will be: figure, the maximal difference is only about 5; whg{®)e60, ¢

(0)=60, the maximal difference is only about 1.2. The maximal re-
lative errors in both cases are less than 3%, which is less than the
relative errors introduced into the concentration samples. It is clear
It is clear that all three sets of the estimated parameters are closeitoFig. 8 that the concentration differences between the exact and
the exact parameter values with a very small error, which indicatethe estimated value are very small with both sets of initial concen-
trations. The small concentration difference indicates that the esti-
mated kinetic parameter is a good approximation to the real exact

k,=98.99980578291010,%37.01748896537582
K,=0.04292663036394419,K0.001120936475488305

@ ° value. Considering the fact that the initial concentrations used for
a N _ (W comparing concentration difference are different from that used to
g [ \»\ L= Component B estimate kinetic parameters, it can be concluded that the hybrid op-
Y timization method has the capability to estimate kinetic parameters
§ 2 " reliably with only one set of concentration samples, provided that
£ _"" : K"j,_ RN the mathematical model is a reasonable description of a focused
8 0 ! ; ’1..“___ annanss reaction. Of course, when many sets of data are available, the esti-
% , ‘.‘ ,"‘ B mation can be improved by some related statistical method.
s V!
© ., W CONCLUSION

For a photocatalytic reactions, either single component or multi-

'60 2 8 12 16 20 component systems, it has been customary to estimate kinetic pa-
Residence time (s) rameters separately based on single component data, even when the
15 ‘ . L-H equations are coupled where more than one reactants are in-
f L volved. In this study, for a multi-component photocatalytic system,

- ggmxg | it has been illustrated that simultaneous parameter estimation is fea-
T sible in solving the relevant multi-objective optimization problem
by a hybrid genetic-simplex method. In this method the genetic al-
& gorithm is used to find roughly an optimum in a rather wide range,
RS FUUUTIUT SUUS SUTE SN S while the simplex algorithm is used sequentially to refine the rough
et i optimum and make it accurate. Applying it to a real reaction, we
found the estimated results by the hybrid optimization method are
more accurate than those of existing investigations. By sensitivity
analysis and numerical verification, it has been also shown that the
estimation is reliable even when only one set of experimental data
15 3 ] (with unknown error) is available. This investigation proposes an

0 4 8 12 16 20 effective approach to abstract kinetic parameters from very few ex-
Residence time (s) perimental data.
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Fig. 8. (&) The concentration difference between the exact one
[given in Fig. 7(a) and (c)] and the currently calculated one.
(&) Initial concentrations of,©)=180 and £0)=180 (mol/L).
(b) Initial concentrations of,(0)=60 and g0)=60 (mol/L). This work was supported by Korea Research Foundation Grants
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Cexac(m)

c(m)

NOMENCLATURE

: concentration of componeinfmol/L]
: the ideal (without error) concentration atmhté in-
stance [mol/L]

: themth observation of concentration of the compo-

nenti [mol/L]

CamuaedM) : the simulated concentration at thih instance [mol/

c(m)

oMo

XXX

A

I

L]

: thenth simulated concentration of componigntol/
L]

: the relative error

: the fitness ofth chromosome

: object function

: object function of component

: collection of all reaction rate constant

: reaction rate constant of compongfrhol/(L)(s)]

: thejth possible value of k

: collection of all adsorption equilibrium constants

: adsorption equilibrium constant of componigiy
mol]

: thejth possible value of K

- lower limit of the reaction rate constant

: lower limit of the adsorption equilibrium constant

: possibility of thgth chromosome
: reaction rate of componenfmol/(L)(s)]
: upper limit of the reaction rate constant

: upper limit of the adsorption equilibrium constant

: theith chromosome
: average weight of component
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