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Abstract—The inorganic membrane reactor is a combined unit operation of chemical reactions and membrane separa-
tions. By having a membrane reactor, the downstream separation load can be reduced. Also, the yields can be in-
creased and conversion can be improved for equilibrium limited reactions. However, many of the industrial chemical
reactions take place at high temperature that the conventional polymeric membranes cannot withstand. A great deal
of research has been done recently to develop ion-conducting ceramic membranes. Many of these have been success-
fully employed to form membrane reactors for many industrially relevant chemical reactions, such as hydrogenation,
dehydrogenation, oxidation, coupled reactions, and decomposition reactions. An overview is given for the area of in-
organic membrane preparations and membrane reactors. Many examples of petrochemical interests are presented, in-
cluding hydrocarbon conversions and fuel cell applications.
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INTRODUCTION

The interest in inorganic membranes goes beyond the scientific
curiosity. The long history of hydrogen purification with palladium
foils, helium separation with fused quartz, and oxygen separation
with silver represents the successful industrial applications of inor-
ganic membranes. However, since the gas permeability through these
metals is much lower than that through polymeric membranes, at-
tention has largely been focused on polymer membranes for practi-
cal applications. The progress of inorganic membranes had been
relatively dormant until the development of thin composite metal
membranes and ion-conducting ceramic membranes. These mem-
branes, unlike the polymeric membranes, offer virtually complete
separation. Since the inorganic membranes can withstand high tem-
peratures and hostile environments, their applications to membrane
reactors for many industrial processes attracted considerable atten-
tion. The concept of a membrane reactor was first successfully prov-
en in bioreactor applications with polymeric membranes and appro-
priate enzymes as catalysts. In this review paper, the recent devel-
opment of inorganic membranes and their use in membrane reac-
tor applications will be discussed with relevant references. For fur-
ther details, readers are referred to other recent review papers in the
field [Armor, 1998; Saracco et al., 1994, 1999; Saracco and Spec-
chia, 1994; Drioli, 2001; Boddeker et al., 2001; Stoukides, 2000;
Zaman and Chakma, 1994].

ADVANTAGES AND DISADVANTAGES
Inorganic membranes offer the following advantages:
» Ability to withstand high temperatures for a long time
* Resistance to hostile environments (organic solvents, large pH

changes, detergents, steam, etc.)
* High mechanical strength (stable at high pressure and high pres-
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sure drop)
* Resistance to microbial attacks
« High flux (throughput)
* Easy cleaning (steam or backflushes)
* Long life
+ Easy modification to add catalytic activity

While there are so many advantages for inorganic membranes,
some disadvantages are very critical and serious enough to hamper
the progress of industrial application of inorganic membranes, as
listed below:

* Brittleness (easy to crack)

« Difficult sealing problems at high temperature applications
* Low surface-to-volume ratio

* Few membranes with high selectivity

* Expensive capital and repair costs

METALLIC MEMBRANES

1. Palladium-Based Composite Membranes

The palladium-based membranes are the most frequently used
metal membranes owing to their very high hydrogen selectivity [Na-
gamoto and Inoue, 1981, 1985, 1986]. They have been used for hy-
drogenation, dehydrogenation, dehydrogenation-oxidation and steam
reforming reactions. The exclusive transport mechanism toward
hydrogen is generally believed to be due to the interaction of hy-
drogen atoms and palladium metal. Molecular hydrogen is dissoci-
ated and chemisorbed on one side of the membrane and dissolved
in the palladium matrix. The atomic hydrogen then diffuses to the
other side of the membrane. There, the hydrogen atoms recombine
and desorb as molecular hydrogen. Therefore the driving force for
the permeation becomes the difference in the square root of pres-
sures at both sides of the membrane [Hwang and Kammermeyer,
1975; Shu et al., 1991]. Only hydrogen gas can go through, while
no other gas molecules are allowed to transfer through the dense
palladium membrane.
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There are several problems with palladium membranes. The first
is hydrogen embrittlement [Armor, 1992]. This is caused by the
large distortion in lattice structure due to the alpha-beta phase trans-
formation. When the cyclic stress is present by adsorption and de-
sorption of hydrogen, the palladium becomes very brittle.

Another big problem with palladium membrane is its sensitivity
to poisoning in the presence of CO, H,S, SO,, sulfur, arsenic, chlo-
rine, mercury, zinc, and unsaturated hydrocarbons, etc. The mechan-
ical instability problem (hydrogen embrittlement) may be somewhat
eased by making alloys with other metals such as Ag, Ru, Rh, or
other rare earths [Armor, 1992]. Some alloy elements from the VI,
VII, and VIII groups in the periodic table are also known to increase
palladium membrane permeability [Gryaznov et al., 1987; Gryaznov,
1992].

In practice, it is a difficult challenge to select the best alloying
metals and their amounts in order to achieve the high permeability,
catalytic activity, and resistance to poisoning and hydrogen embrit-
tlement.

Another major hurdle with palladium alloy membranes is the
reduction of membrane thickness. The flux will increase as the mem-
brane gets thinner, therefore the costs will decrease because of the
reduced operating and material costs. Many methods have been de-
veloped to prepare a thin palladium-coated composite membrane,
some of which will be briefly outlined and reviewed below.

1-1. Electroless Plating

One can produce thin palladium-based composite membranes
by dipping porous support materials such as ceramic, metal, or glass
in a bath of palladium salt complex solution. For uniform coating,
the support material must be cleaned, sensitized, and activated before
dipping. Palladium deposition takes place on the support surface
by autocatalyzed reduction reaction of metastable metallic com-
plexes. Uemiya et al. [1988, 1991a, b] and Kikuchi et al. [1989a, b]
used porous glass tubes while Govind and Atnoor [1991] employed
porous silver as supports. Shu et al. [1993] were successful in de-
positing palladium and silver on porous stainless steel. Also, alu-
mina [Uemiya et al., 1990, 1991c, d, e; Matsuda et al., 1993] and
stainless steel were coated with thin palladium layers by electroless
plating.

1-2. Sputtering

This process removes atoms from a suitable target and deposits
on the support surface in the form of a thin film by means of rapid
ion bombardment from a high-energy plasma [Konno et al., 1988;
Gryaznov et al., 1993; Jayaraman et al., 1995; Xomeritakis and
Lin, 1997]. Thin films of binary and temary alloys of palladium with
manganese, cobalt, ruthenium, tin, and lead were deposited on poly-
meric, porous stainless steel and oxide supports by Gryaznov et al.
[1993]. Sputter deposition on polymer membranes usually produces
very fragile and defective membranes, which cannot function at
high temperatures. Metallized porous ceramic membranes may al-
low operation at elevated temperatures if the adhesion of metal on
the substrate is gas-tight.

1-3. Spray Pyrolysis

A solution of metal salts is sprayed into a heated gas stream and
pyrolyzed. Li et al. [1993] produced palladium-silver alloy mem-
brane by using spray pyrolysis of a palladium nitrate and silver ni-
trate solution in a hydrogen-oxygen flame. They obtained an alloy
membrane with a thickness of less than 2 pm, but the separation
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factor between hydrogen and nitrogen gases was too low compared
with those of membranes obtained by other methods.
1-4. Chemical Vapor Deposition (CVD)

The successful physical vapor deposition techniques used for the
electronic industry do not offer gas-tight composite membranes. It
is believed that in those methods film formation takes place on top
of the support. It is difficult to control and produce uniformly thin
metal films and good adhesion on the support materials. Also, they
require cumbersome and time-consuming pretreatment steps. Thus,
attention is growing for vapor phase processes such as reactive CVD
producing good film quality and fast film growth. Yan et al. [1994],
Morooka et al. [1995], Uemiya et al. [1994], and Xomeritakis and
Lin [1996, 1997] used thermal decompositions of volatile metal-
lorganic palladium precursors for fabrication of composite mem-
branes. Dense palladium was deposited inside pores of ceramic sup-
port (0-alumina tubes) by CVD employing thermal decomposition
of a metallorganic precursor (palladium acetate or palladium acetyl-
acetonate).

2. Silver Alloy Membranes

The only other metal membrane that has been studied in mem-
brane reactors is silver alloy, which permits oxygen permeation [An-
shits et al., 1989; Gryaznov et al., 1986, 1989]. Based on the poor
performance, the silver alloy membranes have not been actively
pursued for use in membrane reactors or separation devices.

SOLID ELECTROLYTE MEMBRANES

Although some novel solid electrolytes can selectively transfer
specific elements such as F, C, N, S, etc., most of the recent studies
have only focused on two types of solid electrolytes: one for oxy-
gen-conducting and the other for hydrogen-conducting ceramics.
The reasons are that these new ceramic materials offer very high
permeabilities toward oxygen and hydrogen, respectively; with in-
finite separation factors. Thus, they are very suitable not only for
gas separations but also for membrane reactors involving oxygen-
ation, oxidative coupling of methane, hydrogenation, dehydrogena-
tion, etc. If the as shown in Figs. 1 and 2. The impurities or dopants
incorporated into these oxides during preparation may cause oxy-
gen vacancies. Through these vacancies the oxygen anions are passed
from one site to the next. Also, electrons may be transmitted by either
n-electron conductivity is low, that particular ceramic material can
be used for fuel cell application.
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Fig. 1. Fluorite type structure.
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Fig. 2. Perovskite-type structure.
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Fig. 3. Four ways of making oxygen ion-conducting ceramic mem-
branes.

1. Oxygen Ion-Electron Conducting Ceramics

The most widely studied materials as ion-conducting membranes
are fluorite- and perovskite-type ceramics. Metal oxides in the form
of fluorite and perovskite have crystalline structures with a simple
cubic lattice type conduction or p-type conduction.

Four different ways of making oxygen ion-conducting membranes
are illustrated in Fig. 3. The top left picture is the dual phase mem-
brane. The top right picture shows the oxygen permeation by a mixed
oxygen ion-electron conducting membrane. In both of these pro-
cesses, the driving force for overall oxygen permeation is the differ-
ence of oxygen partial pressure raised some power across the mem-
brane. The bottom left picture shows how an air-hydrogen fuel cell
works with the oxide membrane sandwiched by two electrodes. It
generates electric power as oxygen permeates to react with hydro-
gen. The bottom right picture depicts an oxygen pump. This arrange-
ment requires external power to drive the oxygen from one side to
the other.

1-1. Fluorite Type
The two most commonly studied oxygen ion-electron conduct-

ing ceramics of fluorite-type are based on yttria stabilized zirconia
(YSZ) as shown by Dou et al. [1985] and Kim and Lin [1998], and
O-phase Bi,O; as reported by Jurado et al. [1988] and Bouwmeester
etal. [1992]. In spite to a of their high oxygen ion conductivity, their
oxygen flux through dense membranes are still limited very low
level due to the low electronic conductivity. Doping multivalent
metal oxides can increase the electronic conductivity [Arashi and
Naito, 1992; Nigara et al., 1995; Han and Worrell, 1995; Han et
al., 1997]. A similar result was obtained by preparing dual-phase
membrane [Chen et al., 1996; Kim and Lin, 2000]. Ceria has the
highest oxygen-ion mobility, a large solubility for acceptor doping,
a variable-valent cation, and an extensive range of nonstoichiome-
try. Pure CeO, exhibits n-type electronic conduction. Tuller [1992]
showed that doping with acceptor Y,O; increases the ionic con-
ductivity at the expense of electronic conductivity. Thus, the doped
ceria ceramics are good candidates for solid electrolytes for a fuel
cell.

1-2. Perovskite Type

The oxygen flux attained by various fluorite type ceria mem-
branes is still too low to be applicable for membrane reactors. Ter-
aoka et al. [1985, 1988] first demonstrated that La,_ Sr,Co,_ Fe O;_;
based perovskite-type ceramic membranes possess considerably
high oxygen fluxes at high temperatures suitable for membrane reac-
tors. Since then there have been many re- ports [Kruidhof et al., 1993;
Qiu et al., 1995; Stevenson et al., 1996; Tsai et al., 1998; Xu and
Thomson, 1998; Zhang et al., 1999] on the same subject, but the
oxygen flux hardly improved. Oxygen conducting perovskite-type
membranes were used in membrane reactor for oxidative coupling
of methane by Hamakawa et al. [1993], Teymouri et al. [1993], Zeng
et al. [1998], and Zeng and Lin [2000].

Qi et al. [2000] summarized four different methods of preparing
Lay sSr,,Co,¢Fe, ;055 powders to produce dense ceramic membranes:
citrate method, solid-state method, spray-pyrolysis method, and co-
precipitation method. Each method offered different compositions
that changed the oxygen permeability and electronic conductivity.
In general, perovskite-type membranes show higher oxygen flux,
electronic conductivity, and mechanical strength than fluorite-type
materials, because perovskite is capable of achieving high degree
of doping while retaining good phase stability.

2. Proton-Electron Conducting Ceramics

Certain perovskite-type materials can transport hydrogen readily
since they can host large amount of protons in their lattice struc-
ture.

2-1. Perovskite Type

Proton-conducting perovskite-type membranes were used in hy-
drogen separation from gas mixtures by Hamakawa et al. [1994]
and Iwahara et al. [1986], and in hydrogen sensors by Yajima et al.
[1995]. Qi and Lin [2000] reported two methods of preparing per-
ovskite-type materials, the citrate method and the oxalic acid method.
2-2. Terbium Doped Strontium Cerate

Terbium doped strontium cerate (SrCeQ;), SCTb, showed high
electrical and proton conductivity in hydrogen atmosphere. Also,
Kreuer [1997], Iwahara et al. [1986], and Iwahara et al. [1990] re-
ported that SrCe o5 Yby:O05-5 (SCYD) and BaCe,,Nd, ,O,_5 (BCNd)
have very high proton conductivity at 900 °C in pure hydrogen. Since
both SCYb and BCNd possess significant amount of oxygen va-
cancy, they exhibit high oxygen ion conductivity as much as proton
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conductivity. It is interesting to note that SCYb is essentially a non-
oxygen ionic conductor. The electronic conductivity of SCTb in
oxygen is several orders of magnitude smaller than that of SCYD,
allowing it to be an ideal proton-conducting electrolyte for fuel cell
and sensor applications [Qi and Lin, 1999].

POROUS MEMBRANES

The majority of inorganic membranes that are being employed
by industry now are porous metals and ceramic membranes such
as alumina, silica, titania, zirconia, glass, etc. Since these materials
have been known and used for a long time, there is abundant litera-
ture. In this review paper, hence, mainly the new types of ceramic
membranes will be discussed.

TRANSPORT MECHANISMS

Since the transport mechanisms in conventional porous inorganic
membranes are well described by viscous flow, Knudsen flow, sur-
face diffusion, capillary condensate flow, and molecular sieving flow
[Hwang and Kammermeyer, 1975], it will be omitted here. The hy-
drogen flux J,;, through a thick palladium membrane is known to
obey:

w12 4 \12
— Pw) ™ ~(Py
J,,} —Qn: 11) . ( 11) E (1)

0

where / is membrane thickness and Qy, is hydrogen permeability,
which can be expressed as a product of diffusivity and solubility.
The upstream and downstream partial pressures of hydrogen are
P}, and Py, respectively. The square root dependency of flux on

Table 1. Types of chemical reactions

gas pressure is due to surface dissociation of hydrogen molecule.
However, the hydrogen permeation rate is in general determined by
the surface exchange rates and the proton ion diffusion rate through
the bulk membrane [Hamakawa et al., 1994; Qi and Lin, 1999, 2000].

The oxygen permeation rate is in general determined by the sur-
face exchange rates and the oxygen ion diffusion rate through the
bulk membrane [Teraoka et al., 1985, 1988; Kruidhof et al., 1993;
Qiu et al., 1995; Stevenson et al., 1996]. For a thick membrane, the
surface exchange step may be ignored and the bulk diffusion be-
comes the controlling rate. In this case, the oxygen permeation flux
through oxygen ion conducting ceramic membranes is expressed
as:

PZI, -n_ PJ) -n
JO: :QQD )‘) [( U‘) B (2)

where n is the power coefficient, which depends on the creation
speed of oxygen vacancy with the change of ambient oxygen par-
tial pressure, / is membrane thickness, and Q,, is oxygen perme-
ability, which can be expressed as a product of diffusivity and so-
lubility. The upstream and downstream partial pressures of oxygen
are P{,, and P, respectively. As the membrane thickness decreases,
the oxygen permeation rate will depend not only on the bulk dif-
fusion but also on the surface kinetics.

MEMBRANE REACTORS
(CATALYTIC MEMBRANE REACTORS)

Membrane reactors are chemical reactors in which membranes
are used to combine two unit operations, namely reaction and sepa-
ration, into a single one. When Michaels [1968] originally suggested

Equilibrium shift reactions:

Hydrogenation, Dehydrogenation, Oxidation, Coupling Reactions, and Decomposition.

H,S = H,+S,

CH,+H,0 = CO; CO,; Hy; -+,
CH,OH+Toluene = Ethylbenzene; Propene,
C,Hg = G Hy+H,,

Propene+H,O = Acetone,

Isobutane = Isobutene,

Hexane = Ethane; Propene

CO+H,0 = CO,*tH,,
CH,;OH = CH,0+H,,

Propane = Propene,
Butane = Butene,
2-Butene+H, = Butane,
Cyclohexane => Benzene.

Hydrogenation (gas phase):

CO+H, = Hydrocarbons,
CH,+H, = C,H,,

1-Butene = Butane,
Benzene = Cyclohexane,
Furfural = Furfuril Alcohol.

CO,+H, = Hydrocarbons,
CH,+H, = CH,,
Cyclohexene = Cyclohexane,
Nitrobenzene = Aniline,

Hydrogenation (liquid phase):

Acetone+H, = 2-Methylpentanone-4,
Acetone+H, = 2-Methylpenten-2-one-4,
2-Butyne-1,4-diol+H, = cis/trans-Butenediol,

cis/trans-butene-1,4-diol+H, = cis/trans-Butanediol,

Quinone+Acetic Anhydride = Vitamin K,
Dehydrolinalool+H, = Linalool.
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Table 1. Continued

Dehydrogenation (gas phase):

H,S = H,+S,

CH,+H,0 = CO+3H,,

Propane = Aromatics,

Butene = Butadiene,

n-Hexane = Cyclic Hydrocarbons.

CO+H,0 = CO,+H,,
CH;0H+H,0 = 3H,+CO,,
Isopropanol = Acetone,
n-Hexane = Benzene,

Dehydrogenation (liquid phase):

CH,OH = HCOOCH;;

(Nafion) CH,(OCH,),;
Methylformate;
Methylal; H,; H,O

CH,0OH = CH,0CH,0H; Hy; ---
(H;PO,; Heteropolyacids, Pt)

Oxydation:

CH,+0,=Cyt

Propylene+0O, = Propylene Oxide,
Propylene+0, = Hexadiene; Benzene+---,
Benzylic and Allylic Compounds+O, = ---,
SO, +%20, = SO,

CH+0,=Cy+-,

CH,0OH+0, = H,CO; CO; CH,; ---,
Ethylbenzene+O, = Styrene; CO,; -+,

C,H,+0, = Ethylene Oxide,
Butene+0O, = Butadiene,

CO+20, = CO,,

CH,+0, = CO,+H,0,
CH,+%20, = C,H,0; CO,; 0,
C;H+0, = CH,0O; CO,; H,0.

Coupling of reactions:

C,H, = C,H,+H, and H,+%0, = H,0,
2CH, = C,H¢+H, and H,+%0, = H,0,
Butane = Butenes and H,+%:0, = H,0,

Cyclohexanol = Cyclohexanone and Phenol = Cyclohexanol,

2-Butene = Butadiene and Toluene = Benzene,

Cyclohexane = Benzene and o-Xylene = Benzene; Methane,
Cyclohexene => Benzene and Cyclohexene = Cyclohexane,
Cyclohexane => Benzene and Toluene = Benzene; Methane.

Liquid phase homogeneous and heterogeneous catalysis on porous membranes:

NO+H,S+0, =2 HNO;+S,

C,H,+H,+CO = CH,CH,CHO,
Methyl-#-butylether = Iso-butene Methanol,
Oleic Acid+Ethanol = Ester+H,0.

C,H,+0, = CH,;CHO,
CH,, C,H,, CH+H,0,= -,
Nitrobenzoic Acid+H, = ---,

More reactions:

Dehydrogenation of Ethane; Propane; n-Butane; Cyclohexane; Ethylbenzene; Methanol,

Reduction of Nitrogen Oxide with Ammonia,
Steam Reforming of Methane.

Fuel cell applications:

Membranes: Oxygen Conductors (Low Electrical Conductivity),

Fuels: H,, CO, CH,, CH,OH, C,H;OH, and NH,,
Temperature Range: 627-1,094 °C.

this to achieve greater conversion by shifting the equilibrium lim-
ited reactions through selective elimination of one of the products,
only polymeric membranes were available for separations. A cou-
ple of drawbacks with polymer membranes have retarded wide usage
of membrane reactors for industrial applications. Polymers exhibit
only partial selectivity and cannot withstand high temperatures. Since
then various inorganic membranes have been developed to over-
come these shortcomings as discussed above. At present, only two

kinds of inorganic membranes attract most of the attention: one for
hydrogen and the other for oxygen. For hydrogen separation mem-
branes, metallic palladium and proton-permeating ceramics hold
promise. For oxygen separation membranes, only oxygen ion-con-
ducting ceramics have been considered as practical candidates for
membrane reactor materials.

There are several different ways to construct a membrane reactor.
A vessel of an inert membrane with permselectivity can be packed

Korean J. Chem. Eng.(Vol. 18, No. 6)
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with catalyst or the catalyst may be fluidized. Another method is to
employ a catalytic membrane, which may be made of either the
catalyst itself or an inert membrane impregnated with catalyst. This
type is called a catalytic membrane reactor. The catalytic membrane
reactor can be packed with catalysts or contain fluidized catalyst.
Both tubular and flat disk membranes have been used for mem-
brane reactors in laboratory in parallel or cross flow mode. For in-
dustrial reactors, the shell-and-tube type may be more feasible.
1. Types of Chemical Reactions

Table 1 lists some examples of typical chemical reactions that
have been studied using various inorganic membranes in membrane
reactor arrangement. Some potential candidates for industrial mem-
brane reactor applications include: water-gas shift reaction, meth-
ane steam reforming, dehydrogenation of ethane, propane, butane,
cyclohexane, ethylbenzene, etc. By using a membrane reactor, the
selectivity towards desired products can be enhanced for many ox-
idative reactions. Also, numerous coupling reactions can take ad-
vantage of membrane reactor configuration. The role of membrane
reactors is not limited to practical applications. Catalysis of many
reactions and some oxidation reactions can be better understood,
thus resulting in improved reaction mechanisms for those reactions.
2. Equilibrium Shift Using Membrane Reactors

As illustrated in Table 2, many of the equilibrium-limited reac-

Table 2. Equilibrium shift using membrane reactors

tions were the favorite subjects of earlier studies applied to mem-
brane reactors. Many of these reactions attracted a great deal of in-
terest from the petrochemical industry [Armor, 1998]. In a mem-
brane reactor, one of the products can be eliminated continuously,
thus yielding a shift of equilibrium in a thermodynamically limited
reaction. Even a small percentage of equilibrium conversion can
result in a huge economic gain for industrial processes. If hydrogen
is involved as one of the species in the equilibrium-limited reaction,
the proton-conducting membrane can be effectively employed as
the membrane that can supply or eliminate hydrogen to and from
the reaction zone.
3. Palladium-Based Membrane Reactors

The palladium membranes are highly selective to hydrogen, and
therefore have been widely used for hydrogenation, dehydrogena-
tion, and steam reforming reactions. Decomposition of hydrogen
sulfide was tested by both palladium membrane [Edlund and Pledger,
1993] and proton-conducting ceramic membrane [Peterson and Win-
nick, 1996]. Water-gas shift reaction and methane steam reforming
were studied by using palladium-based membranes. Many dehy-
drogenations of hydrocarbons were also the subject of research by
the palladium-based membranes as shown in Table 3, in which ex-
amples of other reactions are also given. The palladium membranes
have several drawbacks that include hydrogen embrittlement, cor-

Type of chemical reactions References

CO+H,0 = CO,+H,

Champagnie et al., 1992; Edlund et al., 1992; Kikuchi et al., 1989a; Seok and Hwang,

1990; Uemiya et al., 1991b.

CH,+H,0 = CO; CO,; Hy; -+

Adris et al., 1991; Guy, 1992; Oertel et al., 1987; Tsotsis et al., 1992, 1993; Uemiya et al.,

1991a; Vayenas et al., 1992.

CH,0OH = CH,0+H,
CH, = CH,+H,

Song and Hwang, 1991.
Bitter, 1988; Guy, 1992; Champagnie et al., 1992; Chan and Brownstein, 1991; Tsotsis et

al., 1993; Ziaka et al., 1993.

CSHX = C3H6+HZ
C,H,=>C,H,; C,H, Seok and Hwang, 1990.
CH,,=C,H, Zaspalis et al., 1991.

Isobutane = Isobutene

Cyclohexane = Dehydrogenation

Ethyl Benzene = Dehydrogenation
etal., 1993.

Bitter, 1988; Roth, 1988; Tsotsis et al., 1993; Ziaka et al., 1993.

Toannides and Gavalas, 1993.
Guy, 1992; Itoh, 1987; Okubo et al., 1991.
Michaels and Vayenas, 1984; Moser et al., 1992; Gallaher et al., 1993; Tiscareno-Lechuga

Table 3. Palladium-based membrane reactors

Type of chemical reactions

References

H,S =H,+S

CO+H,0 = CO,+H,

CH,+H,0 = CO; CO,; H,; -~

Propane = Aromatics

Isobutane = Isobutene

Isobutene Dehydrogenation

1,3-Pentadien = Cyclopentane; Cyclopentene

CO+H,0 = Hydrocarbons

Paraffin, Olefin, Cyclohexane, Toluene Dehydrogenation

Ethanol = Acetaldehyde

Edlund and Pledger, 1993; Peterson and Winnick, 1996.
Kikuchi et al., 1989a; Uemiya et al., 1991b.

Uemiya et al., 1991a.

Uemiya et al., 1990; Uemiya et al., 1991a.

Matsuda et al, 1993.

Raich and Foley, 1995.

Gryaznov et al., 1993.

Gryaznov et al., 1993.

Armor et al., 1993; Farris and Armor, 1993; Raich and Foley, 1995;
Gryaznov et al., 2001.

Raich and Foley, 1998.
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Table 4. Oxygen-conducting ceramic membrane reactors

Type of chemical reactions References

H,S = H,+S
CH,+0, = C, -+

Algahtany et al., 1992.

Eng and Stoukides, 1991a, b; Chiang et al., 1993; Eng et al., 1995; Jin et al., 2000; Lin and

Zeng, 1996, 1997; Zeng et al., 1998; Zeng and Lin, 2000, 2001.

CH,+H,0 = CO; CO,; H,; -~
CH,+0, =H,CO

CH,+0,=H,; CO
CH,+0,=CH,; C,+---

C,H;+0, = CO,; H,O

C,H,+0, = CO,; H,O

C;H,+0, = CO,; H,0O

CH,OH+0O, = H,CO; CO,
NO+C;H(+0O, =N,; CO,; H,0O; ---
CO,=0,C; CO

Bafas et al., 2001.
Hibino et al., 1995.

Beatrice et al., 2000.
Cavalca et al., 1993.
Pliangos et al., 2000.
Itoh et al., 1993.

NO, =N,; O, Cicero and Jarr, 1990.
SO, =S8; 0, Cicero and Jarr, 1990.
H,0=H,; O, Nigara et al., 1997

Algahtany et al., 1993a, b.

Jiang et al., 1994; Hibino et al., 1996.
Kaloyannis and Vayenas, 1997.
Petrolekas et al., 1998; Beatrice et al., 2000.

Table 5. Proton-conducting ceramic membrane reactors

Type of chemical reactions

References

H,0 =H,+%0,

NO-+H, = N,; N,O (low current density);
NH; (high current density)

N,+3 H, =2 NH;

CH,OH synthesis

CH, = CHg; CH,

CH,+0,=Cy+-

H,S+0, =S80, H,

Iwahara et al., 2000.
Kobayashi et al., 1996, 2000a, b, c.

Marnellos et al., 2000; Panagos et al., 1996; Yiokari et al., 2000.
Panagos et al, 1996.

Chiang et al., 1992.

Langguth et al., 1997a, b.

Peterson and Winnick, 1996.

rosion by sulfur compounds, and high cost. Composite palladium
membranes have recently been synthesized and tested using many
different techniques [Ziegler et al., 2001; Goto et al., 2000; Nam et
al., 1999; Jun and Lee, 1999, 2000; Souleimanova et al., 2000; Li
et al., 2000; Yeung et al., 1999; Cheng and Yeung, 1999].
4. Oxygen Conducting Ceramic Membrane Reactors

As mentioned earlier, membrane reactors for oxygenation reac-
tions can be constructed by using oxygen ion-conducting ceramic
membranes. Table 4 lists some of the popular oxygenation reac-
tions reported in the literature that have been carried out in various
dense ceramic membrane reactors. Cicero and Jarr [1990] reported
the U.S. Department of Energy’s demonstration and feasibility study
of using high-temperature ceramic membranes to remove sulfur
and nitrogen contaminants found in gas streams of coal-based power
generation systems. Eng, Stoukides, and their coworkers published
many papers on ceramic membrane reactors, as shown in the re-
ferences. Their studies on the oxidation of methane and methane
steam reforming are especially noteworthy and very relevant in ap-
plications to fuel cells and sensors. Itoh et al. [1993] applied an yttria
stabilized zirconia (YSZ) membrane reactor system to enhance the
direct thermal decomposition of carbon dioxide at high tempera-
ture. Nigara et al. [1997] split water to generate oxygen and sepa-
rated it through a high temperature oxygen permeation membrane:
calucia-stabilized zirconia doped with cerium oxide. Bafas et al.

[2001] studied the partial oxidation of methane to formaldehyde in
a continuous gas recycle membrane reactot/separator. They achieved
56% selectivity with 89% methane conversion.
5. Proton-Conducting Ceramic Membrane Reactors

The proton-conducting ceramic membrane reactors have been
investigated for many industrially attractive chemical reactions. Table
5 lists some examples: hydrogen generation by water splitting, hy-
drogenation of NO, ammonia synthesis, methanol synthesis, hydro-
genation and dehydrogenation of alkanes and alkenes, dimeriza-
tion of methane, and oxidation of hydrogen sulfide.
6. Fuel Cell Applications

The recent flurry of activities in fuel cell research and the advent
of inorganic membranes created a perfect environment conducive
to developing efficient fuel cells. All kinds of hydrocarbons as well
as hydrogen were studied as the fuel and some examples are shown
in Table 6. Both oxygen ion- and proton-conducting ceramic mem-
branes have been employed in fuel cell research. The yttria stabi-
lized zirconia (YSZ) membranes received considerable attention
among many researchers for carrying out oxidation reactions.
7. Porous Membrane Reactors

Porous inorganic membranes were among the first inorganic mat-
erials that were made into reactors and tested. In the early days, no
ion-conducting ceramic membranes were available. These included
porous Vycor glass, which is an intermediate product of Vycor brand
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Table 6. Fuel cell applications

Chemical reactions

Membranes

References

H,+0, = H,0

Zirconia Cermet; Ceria-based

Bieberle et al., 2001.

CH,+0,=CO; H,; - YSZ; BaCeY Algahtany et al., 1993a; Asano et al., 1995.
CH,+H,0 =CO; H,; - YSZ Algahtany et al., 1993b.

CH,+NH;+0, = HCN; --- YSZ McKenna ¢t al., 1993.

Oxidation of n-Hexane; Benzene; Toluene YSZ Yamanaka and Otsuka, 1993a, b.
Oxidation of Alkanes; Alkenes; Benzene YSZ Otsuka and Yamanaka, 1998.

Oxidation of Toluene; n-Decane; Synthetic Diesel Fuel YSZ Kim et al., 2001.

Oxidation of CH,OH YSZ Jiang and Virkar, 2001.

Oxidation of CH;OH

Oxidation of C,H;OH+H,0O YSZ
C,Hy+0, =CO; Hy; CH, --- SmSrCo
Toluene+0O, = Cresol YSZ

H,S+0,=S0,; H,

Zirconium sulfoarylphosphonate

Lithium sulfate

Alberti et al., 2000.

Jiang and Virkar, 2001.
Hibino et al., 2001.

Otsuka et al., 1992.

Peterson and Winnick, 1996.

Table 7. Porous membrane reactors

Chemical reactions Membranes

References

CO+H,0 = CO,+H, Porous Vycor Glass
CH,+H,0 = CO; CO,; H,; Alumina
CH,+0,=C0,+H,0 Pt/gamma-Alumina
CH,OH = CH,0+H, Porous Vycor Glass
C,H, = C,H,+H, Pt/Alumina

C;H; = C,H+H, Alumina

C,H,=C,H,; C,H, Porous Vycor Glass
CH,, = C,H; Alumina; Pt-SiO,
Isobutane = Isobutene Dense SiO, on Vycor
Oxidation of H,S Sintered Stainless Steel

Hydrogenation of nitrate in water
Reduction of aqueous nitrate
Cinnamaldehyde hydrogenation
Dehydrogenation of ethylbenzene to styrene
Dehydrogenation of ethylbenzene to styrene

Pd-Cu/Alumina

Pd/Alumina; Tin/Alumina

Cu-Pt/gamma-Alumina
Fluidized Bed in Metal Reactor
Pd/Porous Stainless Steel

Seok and Hwang, 1990.

Tsotsis et al., 1992, 1993.

Neomagus et al., 2000.

Song and Hwang, 1991.

Champagnie et al., 1992; Tsotsis et al., 1993.
Bitter, 1988; Tsotsis et al., 1993; Ziaka et al., 1993.
Seok and Hwang, 1990.

Zaspalis et al., 1991.

loannides and Gavalas, 1993.

Neomagus et al., 1998.

Daub et al., 2001.

Ilinitch et al., 2000.

Pan et al., 2000.

Abdalla and Elnashaie, 1995.

She et al., 2001.

glass by Coming Glass, porous alumina (both alpha and gamma),
porous stainless steel, and their modified or composite membranes.
Although membrane selectivity was generally poor, permeation flux
was adequate enough to test the very concept of membrane reactor
for many of the industrial chemical reactions as shown in Table 7.
8. Other Applications (Sensors and Separation Devices)

Besides the industrial membrane reactors, many of the membrane
reactor concepts (cited references in this review) can be utilized in
producing oxygen and hydrogen gases as well as manufacturing
chemical sensors, but they will not be discussed here since it is be-
yond the scope of the present review.

CONCLUSIONS

The concept of the membrane reactor is a novel idea. By com-
bining the chemical reaction with the separation process in a single
unit operation, many advantages over the conventional reactot/sepa-
rator can be realized. At the same time, there are still many obsta-
cles before this new device can become fully operational in industry.
Most of the research published so far deals with laboratory scale
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experiments. The potential applications involve high-temperature
industrial reactions, separations of oxygen and hydrogen gases, fuel
cells, and sensors. The latest developments of ion-conducting ceramic
membranes raise much hope of future success. However, more ef-
forts should be made to address sealing problems, high cost, low
permeability, membrane defects, stability of membranes, and long-
term performance data.
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