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Photocatalytic Activation of CO, under Visible Light
by Rhenium Complex Encapsulated in Molecular Sieves
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Abstract—The photocatalytic activation of CO, over molecular sieve-encapsulated cationic rhenium complex has
been investigated under visible light (A>350 nm). The cationic rhenium complex, [Re(I)(CO);(bpy)(py)]” (bpy=2.2'"-
bipyridine, py=pyridine), has been encapsulated by ion-exchange method using the aqueous solution of [Re(I)(CO);,
(bpy)(py)I'PF, into the microporous NaY and the mesoporous AIMCM-41 molecular sieve acting as supramolecu-
lar heterogeneous host. To confirm the encapsulation of [Re(I)(CO)4(bpy)(py)]” into the pores of molecular sieve, Xe-
NMR and FT-IR spectroscopies have been applied before and after the [Re(I)(CO),(bpy)(py)]” encapsulation. To in-
vestigate the photophysical and photochemical properties, molecular sieve-encapsulated cationic rhenium complex has
been studied by UV-Visible diffuse reflectance spectroscopy (UV-DRS) with photoirradiation (A>350 nm) at room
temperature. By monitoring the photoreaction of CO, over the photocatalysts, the conversion of CO, into CO and car-
bonate species has been observed by using in-sifu FT-IR and time-resolved mass spectroscopy. From the experimen-
tal results, the photocatalytic activation mechanism of CO, on the catalyst under visible light (A>350 nm) could be
proposed via the photo-induced reaction of two electrons and two protons, resulting from water decomposition.
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INTRODUCTION

Since photosensitized decomposition of water on TiO, electrodes
was discovered, semiconductor photocatalysis has received much
attention due to its potential to convert solar energy into electrical
or chemical energy [Chevaleeski et al., 2001; Anpo et al., 2000].
The continued increase of the atmospheric CO, concentration due
to human and anthropogenic activities is predicted to lead to signifi-
cant changes in climate [Cox et al., 2000]. On-going efforts of recy-
cling CO, into useful fuels and organic compounds have received
much attention of many research groups because of the concern
for solving global warming problems [Meyer, 1989]. The CO, acti-
vation was accomplished by chemical, electrochemical, and photo-
chemical reactions [Reinking et al., 1989; Amatore et al., 1981; Hal-
mann, 1978]. Photocatalytic activation of CO, has been extensively
studied as a major goal of artificial photosynthesis using various
photocatalyst systems [Halmann, 1978; Hawecker et al., 1986; Sul-
livan et al., 1984]. The photocatalyst systems for CO, activation are
classified into heterogeneous semiconductor suspensions, homoge-
neous aqueous solutions of organic dye, and transition metal com-
plexes. Recently, the interest in photochemistry of Re (I) complexes
has increased due to their potential utility for the CO, activation in
artificial photosynthetic systems. Rhenium complexes such as ReX
(CO),(bpy) (X=Cl, Br) and Re(CO),(bpy)[P(OEt);], have been used
as photocatalysts for CO, reduction to CO in solvent mixture of tri-
ethanolamine/dimethylformamide. Most of the research on photo-
chemical activation of CO, using Re (I) complexes has focused on
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the homogeneous solution systems. Some efforts have been reported
in connection with encapsulation of rhenium complexes into zeo-
lite and their photochemical application to CO, activation [Sung-
Suh et al., 2000; Park et al., 2000].

Based on host-guest interaction, molecular sieves have been used
as heterogeneous host for the encapsulation of guest molecules such
as organic molecules, metal complexes and organometallic fragments
[Bein et al., 1996; Kim et al., 2001]. Such inorganic solid-state sup-
ramolecular systems generate the microheterogenization of the en-
capsulated molecular assemblies which show the photocatalytic ac-
tivity. For zeolite-entrapped complexes, the steric and electrostatic
constraint imposed on the complexes within the channels or cages
of zeolites can alter the photochemical and photophysical proper-
ties of the guest complexes and diminish the photodegradation and
undesirable electron transfer reactions [Kim et al., 2001].

In this study, [Re(CO),(bpy)(py)]" encapsulated in NaY and Al-
MCM-41 molecular sieves was applied to photocatalytic activation
of CO,. The encapsulated cationic rhenium complex was character-
ized by using FT-IR and Xe-NMR spectroscopies. The photoacti-
vation of CO, on the catalyst was studied by UV-DRS, in-situ FT-
IR and time-resolved mass spectroscopy with photoirradiation under
visible light. The photocatalytic activation mechanism of CO, on
the catalyst under visible light could be proposed via the photo-in-
duced reaction of two electrons and two protons, resulting from water
decomposition.

EXPERIMENTAL

The experimental method is described elsewhere [Sung-Suh et
al.,, 2000; Park et al., 2000]. The cationic rhenium complex, [Re(CO);
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(bpy)py)I” (bpy=2,2-bipyridine, py=pyridine) was used as a pho-
tosensitizer. The complex was encapsulated into the microporous
NaY and mesoporous AIMCM-41 (Si/Al1=30) molecular sieves by
ion exchange method using the aqueous solution of [Re[CO)(bpy)
(py)]'PF,". The encapsulated samples were evacuated (<10™ torr)
at 100 °C for 16 hours and characterized by FT-IR, Xe-NMR and
UV-DRS spectroscopies. To study the photoreaction of CO, over
these encapsulated rhenium complexes using #-situ FI-IR, the pel-
let of [Re(CO)(bpy)py)] /AIMCM-41 was placed into a in-situ
quartz cell with CaF, windows for FT-IR measurement and evacu-
ated to about 10~ torr at 200 °C for 12 hours. Then, CO, was ad-
sorbed onto the evacuated pellet followed by photoirradiation (A\>
350 nm) from a 300 W-high pressure xenon-arc lamp (Oriel In-
struments). /n-situ FT-IR spectra were recorded with photoirradia-
tion time. The photocatalytic reduction of CO, over encapsulated
rhenium complexes was done in a quartz tube connected to a va-
cuum line analyzing the product by time-resolved IGA (Intelligent
Gravimetric Analyzer) mass spectroscopy.

RESULTS AND DISCUSSION

The experimental processes with molecular sieve-encapsulated
rthenium complexes of [Re(CO)(bpy Xpy)] /NaY and [Re(CO)(bpy)
(py)]7TAIMCM-41 are schematically shown in Fig. 1. Both encap-
sulated complexes show the photocatalytic activities for CO, acti-
vation into CO and carbonate.

1. Encapsulation of Rhenium Complex into Molecular Sieves

Fig. 2 shows Xe-NMR spectra of NaY and AIMCM-41 and their
encapsulated rhenium complexes. The difference of chemical shifts
of these Xe-NMR spectra supports that the rhenium complex is en-
capsulated inside the pores of NaY and AIMCM-41 [Park et al.,
2000]. Really if the Re-complex is encapsulated inside molecular
sieves, then the electron cloud of Xe atom is deformed by the in-
teraction between Xe and Re-complex. FT-IR spectra in Fig. 3 also
support the encapsulation of [Re(CO),(bpy)(py)]” into the pores of
NaY and AIMCM-41. The frequencies of three CO ligands of [Re
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Fig. 1. Process of photocatalytic CO, activation over cationic rhe-
nium complex encapsulated in molecular sieves: (a) |Re

(CO)(bpy)(py)| /NaY, (b) [Re(CO)y(bpy)(py)] /AIMCM-41.
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Fig. 2. Xe-NMR spectra of (a) NaY, (b) |[Re(I)(CO),(bpy)(py)| /NaY,
(c) AIMCM-41 and (d) [Re(I(CO)bpy)(py)] /AIMCM-41.
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Fig. 3. FTIR spectra of (a)|Re(I(CO);(bpy)(pyY)[’; (b) [Re(I(CO);

(bpy)(py)I'/Nay, (¢) [Re(D(CO),(bpy)(py)I” and (d) [Re(T)
(CO)s(bpy)(py)| 7AIMCM-41.

(CO);(bpy)(py)]" are changed after encapsulation into the NaY mi-
cropores and AIMCM-41 mesopores. This frequency change due
to the encapsulation seems to be ascribed to the steric hindrance
and electronic interaction exerted on [Re(CO),(bpyXpy)|” restricted
inside the NaY micropores and AIMCM-41 mesopores. Both Xe-
NMR and FT-IR spectra evidence the encapsulation of [Re(CO),
(bpy)(py)] into the NaY micropores and AIMCM-41 mesopores.
2. Photocatalytic Activation Study of CO,

To study the photocatalytic CO, activation on the surface of mole-
cular sieve-encapsulated rhenium complexes, UV-DRS spectra are
measured with photoirradiation under visible light and CO, adsorp-
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Fig. 4. UV-Vis absorption spectra of [Re(I(CO);(bpy)(py)|/NaY
(a) after evacuation, (b) with photoirradiation, and (c) with
CO, adsorption and [Re(CO);(bpy)py)|/AIMCM-41 (d)
after evacuation, (e) with photoirradiation, and (f) with CO,
adsorption.

tion, as shown in Fig. 4. The band at 390 nm can be assigned as met-
al-to-ligand charge transfer (MLCT) transition from the rhenium
(drtorbital) to the bpy (prt* orbital) [Katyanasundaram, 1986]. This
MLCT transition indicates that metal complex could play as a pho-
tocatalyst. With photoirradiation, the new absorption bands appeared
at 380-530 nm as shown in Fig. 4(b, e). These new bands are as-
signed to the [Re()Y(CO)(bpy Xpy)] radical [Kalyanasundaram,
1986]. The spectra in Fig. 4(b, ) are similar to UV-visible absorp-
tion spectrum of [Re(ICO),(bpy Xpy)] radical photoinduced in
the solution of [Re(CO),(bpy)(py)]" and TEOA (triethanolamine)
in DMF. It has been known that TEOA acts as an electron donor
[Park et al, 2000]. In [Re(I(CO)(bpyXpy)]'/zeolites, the [Re(I)
(CO);(bpy " )py)] radical was produced with photoirradiation in the
absence of electron donor such as TEOA. It has been known that
the frameworks of the zeolites show the electron-donating property
to proper electron acceptors encapsulated in their pores and that the
steric hindrance stabilizes the generated radical species restricted in
the pores [Park et al., 2000]. Upon CO, adsorption as shown in Fig.
4(c, 1), the new broad absorption bands are slightly quenched. It
means that adsorbed CO, on zeolites reacts with electrons of sur-
face-trapped conduction band. From the results of UV-DRS, it can
be supposed that the frameworks of the zeolites may act as an elec-
tron donor in the photoinduced formation of [Re(I)(CO)(bpy Xpy)]
radical in zeolites. And the AIMCM-41 encapsulated Re-complex
shows better photocatalytic reactivity than NaY sample.
3. Photocatalytic Reduction of CO, on [Re(CO);(bpy)py)l”/
AIMCM-41

With photoirradiation onto CO,-adsorbed [Re(CO):(bpy Xpy)I”/
AIMCM-41, the formation of carbonates and CO can be confirmed
by using in-situ FT-IR and time-resolved mass spectroscopy. In Fig,
5, the intensity of CO, band at 2,343 cm™ decreased and the carbon-
ate bands at 1,400-1,700 cm™ increased [Nakamoto, 1978]. Time-
resolved IGA (Intelligent Gravimetric Analyzer) mass spectros-
copy was also used for detection of the gas phase products of CO,
photoreaction. Since molecular weight of CO (m/e=28) is equal to
that of N, (m/e=28), the isotope labeling experiment was carried
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Fig. 5. FTIR spectra of [Re(CO);(bpy)(py)|/AIMCM-41 (a) after
evacuation, (b) with CO, adsorption, and (c) with photoir-
radiation.
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Fig. 6. Reaction time profiles of the photocatalytic reduction of
BCO, (28.4 Torr) photoreaction over [Re(CO);(bpy)(py)|/

AIMCM-41 under visible light.
(a) PCO, (m/e=45) and (b) *CO (m/e=29)

out by using “CO, instead of regular *CO, to observe the photore-
duced product “CO (m/e=29) distinguished from N,. As shown in
Fig. 6, slow growth of peak at m/e=29 with decrease of peak at m/
e=45 represented “CO, explains that carbon dioxide is reduced to
carbon monoxide by photolysis over the [Re(CO),(bpy Xpy)] /Al-
MCM-41. The formation of photolysis products could not be de-
tected without water. Fig. 7 shows the photocatalytic decomposi-
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Fig. 7. Reaction time profiles of the photocatalytic reduction of
3CO, (28.4 Torr) photoreaction over [Re(CO),(bpy)(py)]'/
AIMCM-41 under visible light.

(2)”CO, (m/e=45) and (b) H,0 (m/e=18)

tion of water with photoreduction of CO,, suggesting that the pho-
tocatalytic reduction of CO, is initiated by the photocatalytic de-
composition of water on the catalyst surface. From the results of
in-situ FT-IR and time-resolved mass spectroscopy, CO was also
produced along with carbonated species over [Re(CO),(bpy)(py)]/
AIMCMH41. It indicates that [Re(CO),(bpy)(py)]/AIMCM-41 shows
the photocatalytic activity for photoinduced reduction of CO, into
CO and HCOOH. From the whole experimental results, we would
propose the reaction scheme for the photoreduction of CO, using
[[Re(CO),(bpy)py)]/AIMCM-41 under visible light as shown in
Scheme 1.

CONCLUSIONS
The cationic rhenium complex encapsulated in molecular sieves

of [Re(CO)(bpy)(py)]/NaY and [Re(CO):(bpy)py)] /AIMCM-
41 showed the activity for photoinduced activation of CO, into CO

and carbonate species under visible light (A>350 nm). It is assumed
that the frameworks of microporous NaY and mesoporous AIMCM-
41 molecular sieves act as an electron donor to form [Re(CO),(bpy ™)
(py)] radicals which are active species for the activation and reduc-
tion of CO, into CO and carbonate species.
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