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Abstract—A deterministic model for multipurpose, multiperiod batch plants was presented in a linearized form to
predict the future design according to the change of demand by using a modified Benders’ Déoonies OSL
code offered by the IBM corporation as optimizer was employed for solving several example problems. The decom-
position method was successful, showing remarkable reduction in the computing times as compared with those of the
direct solution method. Also the heuristic used as a solution approach for the multiperiod model provided an efficient
methodology to the block-structured problem by dividing the large overall problem into the manageable single period
blocks.
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INTRODUCTION and a computational procedure for solving those problems was pre-
sented in his work. This work was extended to further theoretical
Recently, multipurpose batch plants have been given attentiomlevelopment and industrial applications [Geoffrion, 1972; Papa-
due to the exploding needs of specialty chemicals and pharmacegeorgaki, 1991; Lee, 1992; Che et al., 1999; Jung et al., 1994].
tical products. To date, many general problem formulations for mul-  In this work, a linearized multiperiod batch plant model is solved
tipurpose batch plants, employing both continuous and discrete vaby using a modified Bender's decomposition and a heuristic algo-
iables have not used an exact MINLP or MILP formulation to getrithm.
an optimal solution [Papageorgaki and Reklaitis, 1990a, b; Wen
and Chang, 1968; Nishida et al., 1974; Grossmann and Seargent, MODEL DEVELOPMENT:
1978; Reinhart and Rippin, 1986, 1987; Straub and Grossmann, GENERAL MULTIPERIOD BATCH PLANTS
1990, 1992; Park and Park, 1999; Kang et al., 1996]. Treatment of
discrete variables as continuous introduces a gap between the sub-Deterministic Multiperiod Design Model (MINLP)
optimal solution and the true optimal solution that has not been re- Batch plants are normally operated over multiple periods of time,
solved to date. Therefore, a more rigorous formulation is needed atith different demand levels in each period. This naturally leads to
the expense of greater computing effort, which might be reducec multiperiod model, an extension to the single period model. Since
in the near future by exploiting the problem structure. A contribu-the demand for products varies over the periods, the design of batch
tion along these lines was published in 1992 by Voudouris and Grosplants also must be modified accordingly.
smann [1992] who introduced binary variables for denoting discrete We assume that the demands of products may vary in determin-
equipment sizes in their linearized MILP formulations. Several casesstic fashion over successive periods, that the length of the periods
such as those of single product campaigns, multiple product camis known a priori (deterministic) and that the recipes of products
paigns, single production routes and multiple production routes werare unchanged over time. Also, no inventory balances are consid-
explored, but the results were not compared with previous workered for mathematical simplicity in formulating the model. Our goal
To guarantee optimality, an MILP model would be preferred becausén this type of multiperiod model would be to answer the follow-
if it has a special structure, then various performance enhancingng questions:
techniques such as SOS, bounding, valid cuts, and so on, along with
existing MILP commercial algorithms, can be used. Furthermore, «How much extra equipment should be purchased whenever de-
a linear model takes on the role of a stepping stone, leading to mand expansions occur?
stochastic batch plant model that is considered to be more practical. « How can we predict the evolution of the plant design over mul-
Decomposition--splitting a master problem into pieces of sub-tiple periods?
problems--is known to be very useful for handling large scale linear
programming problems. The idea was extended and exploited in A multiperiod design model is proposed as an MINLP as fol-
mixed-variable problems by Benders [1962]. Theoretical developlows.
ment of a programming problem (master; which may be discrete, A subscript t is introduced to denote periods that are defined as
nonlinear etc.) and a linear programming problem (subproblem)discrete time intervals. Nand N, denote the number of a type
from a mathematically complicated original problem was discussedf equipment used in a period t and the number of equipment items
of type e available in period t which were already purchased by per-
*To whom correspondence should be addressed. iod, t=1. XP, symbolizes the amount of production of product i in
E-mail: daechul@sch.ac.kr period t.
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The objective function differs from that of the single period mod-  T,,=max,TL, O (8)
el in that it has two terms which denote the equipment cost and the .
product worth, respectively. The first term involves the amount of H‘—ZT“ ©)

extra equipment to be purchased in order to meet the next period

demand, and the equipment discount factor that decreases over tinfedrameters

Thi§ term should be minimizgd to suppress the purchase of extra o . =, +QE,, 1, 2, ..., t"™ (10)
equipment. The second term simply represents the total product sales

worth. The combination of two terms balances the equipment purwhere QE could be positive or negative (in certain cases, produc-
chase cost against the lost income from unfulfiled demands. Thigion reductions may occur).

also means that two terms should be comparable in order of mag- Following contemporary practice, the cost of units and prices of
nitude, otherwise the chosen design as well as the formulation migmommodities must be discounted with time. The discount factor is

be far from reality. modelled as an exponential function in time.
minimize ¥ 5 {[ N~ Ni 1 ]aV e =P XPy} @ aTaee Y, t71,2,.., "™ (11)
e t
P =pe Y, E1,2,.., ™ (12)

The allocation constraints are similar to those given in our previ-
ous single period model except for an additional inequality for each b,,=b,=0.6 (13)
subscript t. But the most important feature of the multiperiod mod- ) _
el is shown in the connectivity constraint, which counts reuse of! N€ Symbols and notation are as follows;
the same equipment over periods. By this family of constraints, the « xp. : Product Quantity Produced

interperiod dependency in the design of batch plant is established. « QE, : Expected Quantity Expansion (or Reduction)
The minimum of the following two terms is selected as a counter .y : Equipment Cost Discount Exponent

for reuse of the equipment type, e. «y : Price Discount Exponent
Connectivity between periods: * P - Product Sales Price
mMin[Ny, Ny ] =Ny 122, o, ™ ) There are two practical ways to solve this model: one is to solve

) ) ) ) ] this formulation directly ignoring the integer character of the vari-
Since the formulation considers parallel units operated in phasgpes and the other is to convert it to a rigorously formulated mod-
and out of phase, the equipment bounding inequality will be stated 5 to approach its solution by mean of an appropriate method.
as follows. Itis hard to obtain the exact optimal solution via the direct solution ap-
Equipment Bound Constraints: proach because of the nonlinearity of the model and the violation
of integrality of some variables. Thus we chose the latter way as
our solution method because it may attain global optimality in spite
of the expected difficulties of solving large integer problems.

The batch size is simply the practical size of the minimum unit - \th this background, the model is reformulated to a linearized
arranged in a production line. The sum of the product of the batclg, (MILP).

size and the number of batches executed over the entire horizon 4S | inearized Version of the Model

the real production quantity of a product that the plant produces. First, the two integer variables, Bind \(, are represented by new
This production is bounded by minimum requirement and maxi-

Net2 NUlmeklNGlmkt (3)

(.m0UU,

Pmax
mum allowance of the demand. binary variables. As Nis an integer we obtain N) p Z,
p=1
Quantity Constraints: where Z,.=1 when p item of equipment type e are used in period
) NU, o t and Z,.=0 otherwise. SimilarlyV = JZ ViYj  Where¢1
Bia =miny, == Q) when size ="
J of equipment e is used in period t ang=¥ otherwise.
XP, =Y nyBy, 5) To linearize the objective function, Eq. (1), variatg is intro-
¢ duced to represent the product gfdxd \ as in the single period
Q"< XP,< Q" (6) case. Thus we replace the product withs follows:

mmmmmm

o o ey
NetVet:Z pzlet z VjetYJet: z z pvjetamet
p=1 =" "

p=1j ="

The following constraints define the limiting cycle time, cam-
paign duration time and total production horizon within each per-
iod. The limiting cycle time depends on how equipment is assigned
to each task and on how many parallel groups exist. The produc- Another factor considered is reuse of equipment between peri-
tion times of all products in a campaign cannot exceed the lengti®ds, which is symbolized &g, anda’;:

of the campaign. « =1 when p items of equipment type e of size j are in period
Horizon Constraints: tand t1 (O, 1)

X * o',;,=0 otherwise
= im imeki
TL,M mam%ﬂ (7) And
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* 0}=1 when p items of equipment type e of size j are in periodAssignment of product-campaign-equipment:
tand t1 (0e<e-1)

: Xme2l 00 O 20

o'=0 otherwise k%(euzam . I @0)

It is evident that two different variables,,, anday, are needed > Ximezl OO0 [ [ @)
elPR,

because Eq. (2) also requires two exclusive mathematical formula
to be represented, Thatasis used if an increase of equipment usage  Xim-nert F Xime T Xim+nert 2

in the next period occure" is used otherwise. n=1, m-1; e e UimOKOt (22)
Finally, the objective function takes the form: XinaeS T X 03 Om; DedP,,; Okt 23)
ePy
o o ) o a .
msz Z z zaet p* [VjEtaP]El _the,rl(alple,rl)] _z zpnxpng Equipment Bounds:
[h=1j=""e=1t=1 i01t=1
e g
(14) Zp* Zpet2 z z z q* g* wqg\mekt D Dth (24)
p=1 (i,m)0U.q=1g=1
where a=3.e Y, p,=p,e Y .
L Pe=Po Batch Size:
Connectivity between periods: ey
Bus Y 5 Y Ve . O OmOkit (25)
p p el Piyj=j"""g =1 me
|:Z ap]et:| +[6p|eJ _2|: Z alp|e,11:|20
g Pep BlktS Bmtax z Xllekt D Dth (26)
ellP;
Op: Oj; D&, Ot(#£1): t =1, ..., t-1 (15) i
Bi2Bid" ) Xiew 0 LkO @7)
ell Py
M*8,2Y Oy M'=t™ (16) .
o Z P Production Demand:
By0s Z o 30{0, 1} 17) Among the production demand constraints, Eq. (28) shows a dis-

= tinctive feature of the production policy used in this model. Because
. no overproduction is allowed and extreme under-production is pre-
[del { . )3 Gp-,e,u} -2[ay, |20 Op; Oj; Oe; Ot(#1) (18) vented, a Iowgr bound and an upper bound on the production of each
e product are given.

Qi"sXP,<Q™ 0O 0Ot (28)
XPlt :znlktBlkt (5)
k

M

a

Z ) Zametzl O (19)
The connectivity betweamanda’ (ora") is shown by using logical ) )
“AND” in Eq. (15) and Eq. (18). That ensures thaforo”) should ~ Next we introduce Egs. (25)-(28) and (5), and obtain
be | only when the first two bracketed [ ] terms of those con- Y, Y,

straints are . The binary variableis a function of t, which takes XPS3ney >3 —LSijq,.memskz DI Llep

Swin T Swin T

i KOK  e0Pm =""g=1 OKel Py =j""g=1 ime

on the values zero or one according to the vaI:quj,et as shown Eq. (5) is replaced by Eq. (29)Pl. does not reduce to zero
in Egs. (16) and (17). because it is forced to be lower bounded by XRerefore, it retains
Egs. (15)-(18) account for the repeated use of equipment in sudhe proper batch size and the related number of batches do not vanish.
cessive periods. For instance, if the type A units of size j which were I ey
used in period | are reused and if one more of the same type of unit 3 > > q?‘-tpl ime XPy 0 Om0Ot (29)
is purchased in period 2, then the duplicate indicatgg, will be KIKET R 0= SAme
one whilea,,,=1 anda,,, =1 (in this case, att" will be zero). Par- Plyjimec< Nt Byimee 1 3 Om; De0 PR, Ok; Og; Oj; Ot (30)

ticularly, Eq. (15) and its auxiliary relations [Egs. (16)-(17)] gener-
ally cover all cases which possibly happen whijg=a, ;. In
other words, even if the number of unit type e used is smaller thafProduction Horizon:
that of the currently available items, those constraints will track the
number of available items of the specific unit e and adjusst that
the objective function has the correct unit cost terms. Let a unit typ
e be used over three consecutive periods in the following number:
3-2-5. Then, we can count the number of the reused items in pe}-
iods (1-2) and (2-3) as two and three (not two and two), respec-
tively.

Meanwhile, if some items of a unit are in idle status in the next
period, then the corresponding will be activated instead af,
which reduces to zero.

PlymexSNie O ; Om; De0P,,; Ok; Og; Oj; Ot (31)

The same treatment is applied to the production time related con-
straints. However, one different manipulation must be added to elimi-
Sate nonlinearity of the form (continuot(&inary) as shown in Eqg.

35). Note that Eq. (32) does not prevent the reduction gf,RSI

0 zero due to lack of any lower bound. Fortunately, we can use the
nikt value form the production demand related constraints to pro-

vide PS};... With & lower bound as follows:

-
T2S P'Emepsl_,,mekt 0 Om; e B,; Okt 32)
g=1
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PSlimerS N Gygimews 1 Om; e B,; Ok; OgOt (33)
PSlJ,mek,_ w O Om; 0 R,,; Ok; OgOt (34)
2 18‘2 PShme@Nie 0 Om; Ok; Ot (35)
>TusH, O (36)

kOK

Campaign Ordering:

5C0,25COLm, Oik=Lt.., K™ @7
il it

COw=Xipee O ; Ok; Ot (38)
CO,< Z Xiew O Ok; Ot (39)

el R,

To reduce degeneracy in the campaign-product assignments, tl
indicator variable, C@ ensures that the smaller numbered cam-

paign involves more products.

Subsidiary Constraints:
z Yus1 0O Ot (40)
="
o
YjetS z z leekt D Dt (41)
i=m (i,m) DU kOK
-,
M* z Yjet— z leekt D Dt (42)
=™ (i,m)0UkOK

where M=Maximum of > > X«

he

D. Cho

SOLUTION METHOD AND SAMPLED RESULTS

1. Model Structure and Decomposition Method

Basically we deal with Bender’s type of decomposition with
slight differences from that of the single period model.

The problem can be divided into two parts: design and schedul-
ing. In the design part, we can determine the product-campaign-
unit assignment (X), and the unit sizes and numbgrin(the latter
part, the batch sizes of production lines, number of batches of prod-
ucts and campaign duration times will be determined. Those two
parts form a master problem (an upper-level problem) which has
the design aspect and a sub-problem (a lower-level problem) which
deals with the scheduling aspect. The master problem variables are
X and while the sub-problem(s) has two main sets of variables: one
for special ordered set (SOS) and the other for logical ‘AND’. Based
on the dimensionality of the X and variables, the master problem
iS considered to be a ‘hard’ problem from the view of MILP. On
the other hand, the sub problem (in which the X@rde fixed)
simply reduces to a problem involving batch sizing and appropri-
ate division of the production horizon since most of the configura-
tion of the batch plant is already determined.

But the multiperiod model has a linked structure composed of
independent single period models (blocks). The master problem
has a connection between single period models and cannot be split
into blocks which would be solved independently. On the other hand,
the sub-problems are nothing but a collection of independent blocks
which can be dealt with one by one.

The second characteristic of this decomposition is that it has ad-
ditional complicating variables denoting unit numbers and sizes.
This serves to eliminate the connectivity that links one block to an-
other in the sub-problem structure.

The procedure of implementing this algorithm will be described
next. Its flow diagram is shown in Fig. 1. Starting with the master
problem with known input of the campaign lengths, the related sub-

Parallel units (U) and groups (G) are accommodated by the nexproblem can be solved from the first period to last. The input of

(i.m)0UkOK
e =
27 Z e 00Ot 43)
p=1 S
two relations.
o
Ugimers=Ximewe 0 0Om; el B,,; Ok; Ot (44)
q=1
o
qumekt:xlmekt O Dm eﬁ] F|>m1 Dk Ot (45)

1

=}

Finally, a mathematical expression for the logical “AND” for some
binary variables is presented. These are derived from the lineariz:

tion of the product of two binary variables.

Yiee tZpet 01 O Oj; O Ot (46)
Yjet pet z*aplet—o o D], H'B 0t (47)
Yjet Uqlmekt_BqumektSl D Dml eD Fl)m’ Dk DJ’ in Dt (48)

Yjet Uqlmekt_z*BqumektzO DI Dm eD Fl)m’ Dk DJ’ in Dt (49)

<1 Oi; Om; e0 R,; Ok; Oj; Og; Ot (50)

glmekt qlmekt qg\mekt— imy

G
G Wygme20 O1; Om; ed R,; Ok; Og; Og; Ot (51)

glmekt qlmekt 2

For all of the other constraints and variables, the reader is referred

to the section on Nomenclature.
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campaign duration times makes the master problem linear (MILP).
The process starts with an equal division of the entire horizon.

If infeasibility occurs, the computation retums to the master prob-
lem with an integer cut of the assignment variables. Otherwise, the

v

Master Problem

Feasible X, a, a’, a”(Complicating Variable)

OK
STOP
l No
~|(Sub-proble Sub-problem Sub~proble
1 9 n

Fig. 1. Flow diagram of decomposition in multiperiod model.
X: product-campaign-unit assignment

a: unit size and number allocation

a', a": reuse indication af between adjacent periods
T: campaign duration time updated

IC: integer cut of current integer solution

v

LB-UL>0

T&IC
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updated campaign duration times as well as the integer cut are a@he next stage is to create a new MP with properly generated in-
ded to the master problem. The updated data of campaign duratidager cuts of Xo' anda’ and to solve it. If the termination condition
times will lead to the master problem. The updated data of camis not satisfied, the iteration continues.
paign duration times will lead to a re-search of the feasible domain A schematic diagram of this heuristic algorithm is presented in
of the MP solution to avoid missing of possible local minimal points. Fig. 2.

The lower bound given by the master problem is compared with3. Usefulness of Decomposition Algorithm
the current upper bound resulting from the feasible solutions of the The MP is a relaxation of the original problem. Hence its fea-
sub-problems. If the lower bound exceeds or is equal to the uppesible region completely covers the solution sets of the original prob-
bound, then the process stops because there will be no further felem. In other words, the feasible solution set of the original prob-
sible set of solutions to the master problem. Otherwise, the procedem is just a subset of those of the MP. Hence if, through iteration,
will be resumed. every solution set of the MP is explored, we can ensure that the op-
2. Modified Method (Heuristic) timal solution is necessarily obtained.

In a multiperiod model, the major difficulty in applying the Ben-  Let §,» denote the set of MP solutionsg, Set of SP solutions
der’s type of decomposition to its solution originates from the masteand S, set of original problem solutions.
problem. A solution of the master problem is supposed to yield values Then,
of the complicating variables - product-unit-campaign allocation S, 05 S0 0Ss
and unit numbers and sizes. This, however, does not normally give ~°— 757 =P ==0P
the optimal solution in reasonable computation time due to the com- After each iteration, we find the next better solution in MP (to
plicated interconnectivity between periods, which often leads theexclude the previous solution, integer cuts are necessary). So we
branching and bounding procedure to extensive enumeration. Thexpect the lower bounds to increase as the iterations proceed and
relatively weak relation of the assignment variables to the objectivefinally the lower bound will exceed the upper bound or all solu-
function and the large number of possible combinations of the astions of the MP will be explored exhaustively.
signments to be searched through the process are the main reason3hen, we do not have to keep iterating because those two con-
of the slow convergence to MP optimality. ditions guarantee that we reached true optimum of the original prob-

Therefore, we need a modified solution method, particularly forlem, if one exists. Therefore, exhaustive investigation of the feasi-
the MP. Another decomposition of the MP into period subproblemsble region of MP results in exhaustive investigation of that of OP,
was carried out as follows. which produces the optimal solution.
2-1. Partition and Heuristic Optimization in MP From

Sub-MP’s (SMP) were set up for all periods considered. The first S, 05,05
SMP is solved and its solutioris used for solution of the next SMP. PoToRTTSE
After the last SMP is solved, we have to check for the possibility min S,-0min S.0min S,
that another combination af anda’, excluding the current point,
may produce a better configuration. Thus a so-called ‘catisofd-
ded to the first SMP in the next iteration. When the objective value min S, =min S,=min S,
is not improved with further iterations (until one equipment unit
with a size and a type is added only in period I), the iteration pro-
cess is terminated to accept the best value as optimal solution.
2-2. Major Decomposition

With fixed X, a anda’, each partitioned sub-problem is solved.

If min §,,=min S;; (termination condition for iterations), then,

This proves the sufficiency of the decomposition method used
for global optimum(linear model).
4, Test Results of Computer Experiments

Four example problems were depicted in the Tables and their
computation results were demonstrated visually in Figs. 2 through 5.
4-1. Example Problem 1

The direct decomposition method and heuristic decomposition

L — e d method were both tested for this 2-period example.
@ The comparison of computation times involve two methods. Us-

i MP self- iteration with o cut

Q Feasible X, a, @’, a”(Complicating Variable) i . . .
< Table 1. Processing times and size factor [( )] for tasks in Problem 1
=
-STOP Product. Equipment type
task El E2 E3 E4
@_w ......... AT1 5(1.2) 4.5(1.25)
1 AT2 3(1.3)

Fig. 2. Flow diagram of heuristic decomposition in multiperiod A.T3 4.5(1.1)

model. B.T1 6(1.4)

X: product-campaign-unit assignment B.T2 4(1.15) 3(1.2)

a: unit size and number allocation CT1 7.5(1.5)

a', a": reuse indication af between adjacent periods
T: campaign duration time updated C.T2 6.5(1.2)
IC: integer cut of current integer solution C.T3 6(1.1) 5(1.2)

Korean J. Chem. Eng.(Vol. 19, No. 2)
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Table 2. Possible unit capacity data in Problem 1

[¢]

Table 6. Solution for scheduling in Problem 2

Unit type A N 3o Batch size No. batches  Campaign length
El 2000, 3000, 4000 3 200 Period 1 BA, 1538 n, 195 T, 1049.7
E2 2000, 3000 3 220 BAg, 1429 R, 175 T,, 1349.7
E3 2000, 3000 3 280 BAc, 1667 3, 180 T, 975.3
E4 2000, 3000, 4000 3 360 Period 2 BA, 1538 n, 390 T, 2099.4
BA,, 1429 n, 350 T,, 1950.6
Table 3. Production demands in Problem 1 BA, 1667 R, 260 T, 1950.0
Period 3 BA, 1538 n, 293 T, 4533.2
Product Demand rangex®10 Value coeff.p, BA,, 1429 n, 755 T, 1466.8
Period 1 A 2.4-3.0 0.05 BA., 1667 n, 604 T, 0.0
B 2.0-2.5 0.05
C 2.4-3.0 0.05
Period 2 A 4.8-6.0 0.05 ing even an MP solution. However, the heuristic decomposition meth-
B 4.0-5.0 0.05 od resulted in a (sub) optimal solution in reasonable time since the
C 4.8-6.0 0.05 partitioned sub-master problems (SMP) were each easily solved

Table 4. Comparison of computation times by two methods (heu-
ristic vs direct decomposition)

Heuristic CPU (sec) Obj.value Decomp. CPU (sec)
MP1 20.60 21575.65
MP2 20.15 3475.65 MP1 181.82
MP3 22.24 8745.65
SP1 52.67 5150.99 SP1 52.67
MP4 14.99 7918.44 MP2 545.48

Table 5. Production demands in Problem 2

Product Demand rangex’10 Value coeff.,p,
Period 1 A 2.4-3.0 0.05
B 2.0-25 0.05
C 2.4-3.0 0.05
Period 2 A 4.8-6.0 0.05
B 4.0-5.0 0.05
C 4.8-6.0 0.05
Period 3 A 6.4-8.0 0.05
B 8.0-10.0 0.05
C 5.6-7.0 0.05

ing the direct method, the solution time required was 779.97 sec
onds, while only 130.65 seconds was consumed using the heurist
decomposition method (Table 4). Considering that the majority of
the computation time for the direct method is due to the difficulty
of the master problems involved, the partitioning of the master prob
lem has obviously brought remarkable enhancement in solution time

Note that ‘MP(SP' denotes ‘in thexth master(sub) problem’.
4-2. Example Problem 2

The same input data as that of example problem 1 was used e
cept that the number of periods was increased to three. This prol
lem requires 1737/900 (integer/continuous) variables in total. The
production horizon is 6,000 hours in each period and the maximun
allowable number of parallel processing groups is chosen to be twc

The direct decomposition method was unable to obtain the opti-

mal solution due to the excessive number of iterations executed du

March, 2002

because of the elimination of the interconnectivity relations and the
small number of binary variables involved in each SMP.

The first optimization of MP was completed in three iterations.
That was followed by sub-problem solution to give optimal sched-
uling information. In the second attempt of the MP solution, the best
solution after the first solution is found to be greater than the upper
bound. This means that further search (jiteration) is not necessary
since no better solution can be expected through further iterations.
Therefore, we found the optimal solution that is shown in Table 6.

In the optimal design configuration given in Fig. 3, note that the
design for period 3 is distinguished from the design of period | and
2 by the campaign arrangement. The common use of most units in
all production lines forces the plant to have multiple serial cam-
paigns as long as the production horizon provides enough time for
meeting minimum demands. Meanwhile, in period 3 where the pro-
duction demand increased to a higher level, the number of cam-
paigns was reduced by the joint production of B and C. The joint
production of B and C requires one more item of each type of
equipment, E1 and E2.

4-3. Example Problem 3

The input data for example problem 3 are shown in Tables 8, 9
and 10; the number of integer variables involved in the formula-
tion is 1842.

As shown in Table 8, the task-equipment assignment is unique,

PERIOD| Campaign 1 Campaign 2 Campaign 3
v ele[e ] | s [= Ale]
S JE Ale]
; .

Added items

Fig. 3. Optimal configuration of test Problem 2.
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Table 7. Result of computation times of Problem 2

Problem Obj. value CPU (sec)
MP1 -17550.51 34.22
MP2 -26756.15 51.20
MP3 -8250.52 38.81
SP1 —-26479.0 128.46
MP4 -1505.67 31.41

PERIOD Campaign 1 Campaign 2

EERAEEE

2

1 :
| e E
Added items

Campaign 3

o[e) o) (o]} [ [

Campaign 4

Table 8. Processing times and size factor [( )] for tasks in test Prob-

lem 3 Fig. 4. Optimal configuration of test Problem 3.
Product. Equipment type
task E1l E2 E3 E4 E5 Table 11. Solution for scheduling in Problem 3
ATl 5(1.2) Batch size No. batches  Campaign length
AT2 6(1.2) Period1  BA, 1667 n, 240 T, 1392.9
AT3 4.5(1.2) BAg, 1667 R, 279 T,, 1439.7
B.T1 3.5(1.2) BA., 1667 R, 240 T, 1727.7
B.T2 2(1.2) BA,, 1667 r, 300 T, 1439.7
B.T3 5(1.2) Period 2  BA, 1667 n, 500 T, 2999.4
CT1 7.2(1.2) BAg, 1667 n, 600 T,, 3000.6
C.T2 5.5(1.2) BA., 1667 R, 417 T, 0.0
C.T3 3(1.2) BA,, 1667 R, 625 T, 0.0
D.T1 4.8(1.2)
D.T2 3.6(1.2) Table 12. Result of computation times of Problem 3
Problem Obj. Value CPU (sec)
Table 9. Possible unit capacity data in Problem 3

_ MP1 35797.33 219.31
Unit type v B MP2 53777.33 431.06

El 2000, 3000, 4000 3 200 SP1 34615.71 1029.21

E2 2000, 3000 3 220 MP3 49822.34 229.74

E3 2000, 3000 3 280

E4 2000, 3000, 4000 3 300 4-4. Example Problem 4

E5 2000, 3000 3 350

Table 10. Production demands in Problem 3

Product Demand rangex’10 Value coeff.p,
Period 1 A 4.0-5.0 0.03
B 4.0-5.0 0.03
C 4.0-5.0 0.03
D 4.0-5.0 0.03
Period 2 A 8.0-10.0 0.03
B 8.0-10.0 0.03
C 6.4-8.0 0.03
D 8.0-10.0 0.03

and the main concern of the design in this problem will be about

the campaign rearrangement. Fig. 4 shows that the large increase
in the demand (nearly double) within the same horizon (6,000 hours)
has resulted in the joint production of (A, D) and (B, C) in the same
period. Thus, one more item each of E4 and E5 must be purchased

at the beginning of period 2.

It is obvious that as problem size grows the computing efforts

greatly increase as shown in Tables 4, 7 and 12.

All previous test problems dealt with the expansion in demand
for every product. At times a general multiperiod batch plant must
also deal with a decrease in some of the demands, which requires
the plant design to be more flexible according to the market need.
This example considers a case in which the demands for two prod-
ucts decrease while that for the third still increases. All the related
input data is shown in Tables 1, 2 and 13 (actually modified from
the data of problem 2).

In this case as shown in Fig. 5, compared to Fig. 3, there were

Table 13. Production demands in Problem 4

Product Demand rangex°10 Value coeff.p,
Period 1 A 2.4-3.0 0.05
B 2.0-25 0.05
C 2.4-3.0 0.05
Period 2 A 4.8-8.0 0.05
B 4.0-5.0 0.05
C 4.8-7.0 0.05
Period 3 A 6.4-6.0 0.05
B 8.0-10.0 0.05
C 5.6-6.0 0.05
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Table 14. Result of computation times of Problem 4 First, since even the single period model basically includes too
Problem Obj. value CPU (sec) many integer variables, causing computationa}l difficulties, there is
VPL 37140 470.84 a serious limitation on the tractable problem size. Therefore, some
_ : ' heuristics (or approximation) just like in the solution method used
MP2 25620. 874.9 in the multiperiod model solution should be analyzed for larger prob-
SP1 -36436.4 92.04 lems.
MP3 ~14882.6 552.28 Secondly, expansion of the multiperiod model may be consid-

ered to inventory when the number of periods is increased and their
duration becomes shorter.

PERIOD|  Campaign 1 Campaign 2 Campaign 3 The introduction of inventory between periods allows overpro-
duction in some periods and will require modifying the present mod-

1 C B A el. The difficulty here lies in the increase of the mathematical com-

plexity.

]
2
5 A NOMENCLATURE

[ : product
5 Io B m :.task.
: A Ccampign
Fig. 5. Optimal configuration of test Problem 4. 'I:\le EE::]Ok()jer of units of type e
V. :unit capacity of type e

two added equipment items required in period 2 but none are addéf,  : campaign length
in period 3, and campaign rearrangement [from (B, C) and (A) toTL, : limiting cycle time
(B, C) and (A, B)] suffices to allow the production demands to beB,, : batch size

met in that period. Q, :production quantity
H, :production horizon
CONCLUSION AND RECOMMENDATIONS Ximekt + Product-task-equipment-campaign-period assigning variable
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