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Abstract−−−−A deterministic model for multipurpose, multiperiod batch plants was presented in a linearized form to
predict the future design according to the change of demand by using a modified Benders’ Decomposition. The OSL
code offered by the IBM corporation as optimizer was employed for solving several example problems. The decom-
position method was successful, showing remarkable reduction in the computing times as compared with those of the
direct solution method. Also the heuristic used as a solution approach for the multiperiod model provided an efficient
methodology to the block-structured problem by dividing the large overall problem into the manageable single period
blocks.
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INTRODUCTION

Recently, multipurpose batch plants have been given attention
due to the exploding needs of specialty chemicals and pharmaceu-
tical products. To date, many general problem formulations for mul-
tipurpose batch plants, employing both continuous and discrete var-
iables have not used an exact MINLP or MILP formulation to get
an optimal solution [Papageorgaki and Reklaitis, 1990a, b; Wen
and Chang, 1968; Nishida et al., 1974; Grossmann and Seargent,
1978; Reinhart and Rippin, 1986, 1987; Straub and Grossmann,
1990, 1992; Park and Park, 1999; Kang et al., 1996]. Treatment of
discrete variables as continuous introduces a gap between the sub-
optimal solution and the true optimal solution that has not been re-
solved to date. Therefore, a more rigorous formulation is needed at
the expense of greater computing effort, which might be reduced
in the near future by exploiting the problem structure. A contribu-
tion along these lines was published in 1992 by Voudouris and Gros-
smann [1992] who introduced binary variables for denoting discrete
equipment sizes in their linearized MILP formulations. Several cases
such as those of single product campaigns, multiple product cam-
paigns, single production routes and multiple production routes were
explored, but the results were not compared with previous work.
To guarantee optimality, an MILP model would be preferred because
if it has a special structure, then various performance enhancing
techniques such as SOS, bounding, valid cuts, and so on, along with
existing MILP commercial algorithms, can be used. Furthermore,
a linear model takes on the role of a stepping stone, leading to a
stochastic batch plant model that is considered to be more practical.

Decomposition--splitting a master problem into pieces of sub-
problems--is known to be very useful for handling large scale linear
programming problems. The idea was extended and exploited in
mixed-variable problems by Benders [1962]. Theoretical develop-
ment of a programming problem (master; which may be discrete,
nonlinear etc.) and a linear programming problem (subproblem)
from a mathematically complicated original problem was discussed

and a computational procedure for solving those problems was
sented in his work. This work was extended to further theoret
development and industrial applications [Geoffrion, 1972; Pa
georgaki, 1991; Lee, 1992; Che et al., 1999; Jung et al., 199

In this work, a linearized multiperiod batch plant model is solv
by using a modified Bender's decomposition and a heuristic a
rithm.

MODEL DEVELOPMENT:
GENERAL MULTIPERIOD BATCH PLANTS

1. Deterministic Multiperiod Design Model (MINLP)
Batch plants are normally operated over multiple periods of tim

with different demand levels in each period. This naturally lead
a multiperiod model, an extension to the single period model. S
the demand for products varies over the periods, the design of b
plants also must be modified accordingly.

We assume that the demands of products may vary in deter
istic fashion over successive periods, that the length of the per
is known a priori (deterministic) and that the recipes of produ
are unchanged over time. Also, no inventory balances are con
ered for mathematical simplicity in formulating the model. Our go
in this type of multiperiod model would be to answer the follow
ing questions:

• How much extra equipment should be purchased wheneve
mand expansions occur?

• How can we predict the evolution of the plant design over m
tiple periods?

A multiperiod design model is proposed as an MINLP as f
lows.

A subscript t is introduced to denote periods that are defined
discrete time intervals. Net and N'e, t−1 denote the number of a type
of equipment used in a period t and the number of equipment it
of type e available in period t which were already purchased by 
iod, t−1. XPit symbolizes the amount of production of product i 
period t.
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The objective function differs from that of the single period mod-
el in that it has two terms which denote the equipment cost and the
product worth, respectively. The first term involves the amount of
extra equipment to be purchased in order to meet the next period
demand, and the equipment discount factor that decreases over time.
This term should be minimized to suppress the purchase of extra
equipment. The second term simply represents the total product sales
worth. The combination of two terms balances the equipment pur-
chase cost against the lost income from unfulfilled demands. This
also means that two terms should be comparable in order of mag-
nitude, otherwise the chosen design as well as the formulation might
be far from reality.

(1)

The allocation constraints are similar to those given in our previ-
ous single period model except for an additional inequality for each
subscript t. But the most important feature of the multiperiod mod-
el is shown in the connectivity constraint, which counts reuse of
the same equipment over periods. By this family of constraints, the
interperiod dependency in the design of batch plant is established.
The minimum of the following two terms is selected as a counter
for reuse of the equipment type, e.

Connectivity between periods:

(2)

Since the formulation considers parallel units operated in phase
and out of phase, the equipment bounding inequality will be stated
as follows.

Equipment Bound Constraints:

(3)

The batch size is simply the practical size of the minimum unit
arranged in a production line. The sum of the product of the batch
size and the number of batches executed over the entire horizon is
the real production quantity of a product that the plant produces.
This production is bounded by minimum requirement and maxi-
mum allowance of the demand.

Quantity Constraints:

(4)

(5)

(6)

The following constraints define the limiting cycle time, cam-
paign duration time and total production horizon within each per-
iod. The limiting cycle time depends on how equipment is assigned
to each task and on how many parallel groups exist. The produc-
tion times of all products in a campaign cannot exceed the length
of the campaign.

Horizon Constraints:

(7)

(8)

(9)

Parameters

(10)

where QEit could be positive or negative (in certain cases, prod
tion reductions may occur).

Following contemporary practice, the cost of units and prices
commodities must be discounted with time. The discount facto
modelled as an exponential function in time.

(11)

(12)

(13)

The symbols and notation are as follows;

• XPit : Product Quantity Produced
• QEit : Expected Quantity Expansion (or Reduction)
• γ : Equipment Cost Discount Exponent
• γ' : Price Discount Exponent
• ρit : Product Sales Price

There are two practical ways to solve this model: one is to so
this formulation directly ignoring the integer character of the va
ables and the other is to convert it to a rigorously formulated m
el and to approach its solution by mean of an appropriate met
It is hard to obtain the exact optimal solution via the direct solution
proach because of the nonlinearity of the model and the viola
of integrality of some variables. Thus we chose the latter way
our solution method because it may attain global optimality in sp
of the expected difficulties of solving large integer problems.

With this background, the model is reformulated to a lineariz
form (MILP).
2. Linearized Version of the Model 

First, the two integer variables, Net and Vet are represented by new

binary variables. As Net is an integer we obtain Net=  Zpet

where  
Zpet=1 when p item of equipment type e are used in per

t and 
Zpet=0 otherwise. Similarly,  where Yjet=1

when size 
j of equipment e is used in period t and Yjet=0 otherwise.

To linearize the objective function, Eq. (1), variable αpjet is intro-
duced to represent the product of Net and Vet as in the single period
case. Thus we replace the product with α as follows:

Another factor considered is reuse of equipment between p
ods, which is symbolized as α'pjet and α"pjet:

• α'pjet=1 when p items of equipment type e of size j are in per
t and t−1 (αpjet≥αpje, t− 1)

• α'pjet=0 otherwise

And

minimize Net − N'e t− 1,[ ]aetVet

bet
 − ρitXPit{ }

t
∑

e
∑

i
∑

min Net, Ne t− 1,[ ] = N'e t− 1,     t = 2, …, tmax

Net NU imektNGimkt
i m,( ) Ue∈
∑≥

Bikt = minm

VetNUimekt

Sime

-----------------------〈 〉

XPit  = niktBikt
k

∑

Qit
min XPit Qit

max≤ ≤

TL ikt = maxm

PimeX imekt

NGimkt

--------------------〈 〉

Tkt = maxi niktTL ikt〈 〉

Ht Tkt
k

∑≥

Qi t + 1,  = Qit  + QEit,     t = 1, 2, …, tmax

aet = ae0e
− γ t − 1( ),     t = 1, 2, …, tmax

ρit  = ρ0e
− γ' t − 1( )

,     t = 1, 2, …, tmax

bet = be = 0.6

p
p = 1

pmax

∑

Vet = vjetY jet

j = j
min

j
max

∑

NetVet = pZjet vjetY jet = pvjetαpjet

j = j
min

j
max

∑
p = 1

p
max

∑
j = j

min

j
max

∑
p = 1

p
max

∑
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• α"pjet=1 when p items of equipment type e of size j are in period
t and t− 1 (αpjet<αpje, t− 1)

• α"pjet=0 otherwise

It is evident that two different variables, α'pjet and α"pjet, are needed
because Eq. (2) also requires two exclusive mathematical formula
to be represented, That is, α is used if an increase of equipment usage
in the next period occurs; α" is used otherwise.

Finally, the objective function takes the form:

(14)

where aet=ae0e
− γ(t− 1), ρit=ρi0e

− γ'(t− 1)

Connectivity between periods:

(15)

(16)

(17)

  (18)

(19)

The connectivity between α and α' (or α") is shown by using logical
“AND” in Eq. (15) and Eq. (18). That ensures that α' (or α") should
be l only when the first two bracketed [ ] terms of those con-
straints are l. The binary variable, δ is a function of t, which takes

on the values zero or one according to the value of  as shown

in Eqs. (16) and (17).

Eqs. (15)-(18) account for the repeated use of equipment in suc-
cessive periods. For instance, if the type A units of size j which were
used in period l are reused and if one more of the same type of unit
is purchased in period 2, then the duplicate indicator, α'1jA1 will be
one while α2jA2=1 and α1jA1=1 (in this case, all α'' will be zero). Par-
ticularly, Eq. (15) and its auxiliary relations [Eqs. (16)-(17)] gener-
ally cover all cases which possibly happen while αpjet≥αpje, t−1. In
other words, even if the number of unit type e used is smaller than
that of the currently available items, those constraints will track the
number of available items of the specific unit e and adjust α' so that
the objective function has the correct unit cost terms. Let a unit type
e be used over three consecutive periods in the following numbers,
3 - 2 - 5. Then, we can count the number of the reused items in per-
iods (1-2) and (2-3) as two and three (not two and two), respec-
tively.

Meanwhile, if some items of a unit are in idle status in the next
period, then the corresponding α'' will be activated instead of α',
which reduces to zero.

Assignment of product-campaign-equipment:

(20)

(21)

(22)

(23)

Equipment Bounds:

(24)

Batch Size:

(25)

(26)

(27)

Production Demand:

Among the production demand constraints, Eq. (28) shows a
tinctive feature of the production policy used in this model. Beca
no overproduction is allowed and extreme under-production is 
vented, a lower bound and an upper bound on the production of 
product are given.

(28)

(5)

Next we introduce Eqs. (25)-(28) and (5), and obtain

Eq. (5) is replaced by Eq. (29). PIqjimekt does not reduce to zero
because it is forced to be lower bounded by XPit. Therefore, it retains
the proper batch size and the related number of batches do not v

(29)

(30)

(31)

Production Horizon:

The same treatment is applied to the production time related 
straints. However, one different manipulation must be added to e
nate nonlinearity of the form (continuous)*(binary) as shown in Eq.
(35). Note that Eq. (32) does not prevent the reduction of PSIgimekt

to zero due to lack of any lower bound. Fortunately, we can use
nikt value form the production demand related constraints to p
vide PSIgimekt with a lower bound as follows:

(32)

min aet*p* V jet
beαpjet − V je t− 1,

be α'pje t− 1,( )[ ] − ρitXPit
t = 1

t
max

∑
i 1∈
∑

t = 1

t
max

∑
e= 1

e
max

∑
j = j

min

j
max

∑
p = 1

p
max

∑
 
 
 

αp'jet
p' = p

p
max

∑  + δpjet[ ] − 2 α'pje t− 1,
p' = p

p
max

∑ 0≥

p; j∀ ; e∀ ; t∀  1≠( ); t' = 1, …, t − 1∀

M'*δpjet αpjet'
t' = 1

t − 1

∑ ,     M' = tmax≥

δpjet αpjet'
t' = 1

t − 1

∑ ,     δ 0, 1{ }∈≤

αpjet[ ] + αp'je t− 1,
p' = p + 1

p
max

∑  − 2[α''pje t− 1, ] 0≥ p; j∀ ; e∀ ; t∀  1≠( )∀

αpjet 1   ∀≥
e= 1

e
max

∑
j = j

min

j
max

∑
p = 1

p
max

∑

αpjet'
t' = 1

t − 1

∑

X imekt 1     i∀∀∀≥
e Pim∈
∑

k K∈
∑

X imekt 1     i m∀ t∀∀∀≥
e Pim∈
∑

X i m − n( )e'kt + X imekt + X i m+ 1( )e'kt 2≤
n = 1, m − 1; e e'≠ ; i∀ m∀ k∀ t∀

X imekt X im'e'kt
e' Pim'∈
∑      i∀ ; m∀ ; e∀ Pim∈ ; k∀ t∀≤

p* Zpet
p = 1

p
max

∑ q* g* ωqgimekt     ∀ k∀ t∀
g = 1

g
max

∑
q = 1

q
max

∑
i m,( ) Ue∈
∑≥

Bikt

q*v jet

Sime

------------βqjimekt     i∀ m∀ k∀ t∀
g = 1

g
max

∑
j = j

min

j
max

∑
e Pim∈
∑≤

Bikt Bikt
max X i1ekt     ∀ k∀ t∀

e Pi 1∈
∑≤

Bikt Bikt
min X i1ekt     ∀ k∀  ∀

e Pi1∈
∑≥

Qit
min XPit Qit

max    ∀ t∀≤ ≤

XPit  = niktBikt
k

∑

XPit nikt

q* V jet

Sime

--------------βqjimekt

q* V jet

Sime

--------------βqjimekt
g = 1

g
max

∑
j = j

min

j
max

∑
e Pim∈
∑

k K∈
∑≤

g = 1

g
max

∑
j = j

min

j
max

∑
e Pim∈
∑

k K∈
∑≤

q*V jet

Sime

--------------PIqjimekt XPit     i∀ m∀ t∀≥
g = 1

g
max

∑
j = j

min

j
max

∑
e Pim∈
∑

k K∈
∑

PIqjimekt nikt
maxβqjimekt     i∀ ; m∀ ; e∀ Pim∈ ; k∀ ; q∀ ; j∀ ; t∀≤

PIqjimekt nikt     i∀ ; m∀ ; e∀ Pim∈ ; k∀ ; q∀ ; j∀ ; t∀≤

T ik

Pime

g
--------PSIgimekt     i∀ m∀ ; e Pim∈ ; k∀ t∀

g = 1

g
max

∑≥
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(33)

(34)

(35)

(36)

Campaign Ordering:

(37)

(38)

(39)

To reduce degeneracy in the campaign-product assignments, the
indicator variable, COikt ensures that the smaller numbered cam-
paign involves more products.

Subsidiary Constraints:

(40)

(41)

(42)

where M=Maximum of 

(43)

Parallel units (U) and groups (G) are accommodated by the next
two relations.

(44)

(45)

Finally, a mathematical expression for the logical “AND” for some
binary variables is presented. These are derived from the lineariza-
tion of the product of two binary variables.

(46)

(47)

(48)

(49)

(50)

(51)

For all of the other constraints and variables, the reader is referred
to the section on Nomenclature.

SOLUTION METHOD AND SAMPLED RESULTS

1. Model Structure and Decomposition Method
Basically we deal with Bender’s type of decomposition wi

slight differences from that of the single period model.
The problem can be divided into two parts: design and sche

ing. In the design part, we can determine the product-campa
unit assignment (X), and the unit sizes and numbers (α). In the latter
part, the batch sizes of production lines, number of batches of p
ucts and campaign duration times will be determined. Those 
parts form a master problem (an upper-level problem) which 
the design aspect and a sub-problem (a lower-level problem) w
deals with the scheduling aspect. The master problem variable
X and while the sub-problem(s) has two main sets of variables:
for special ordered set (SOS) and the other for logical ‘AND’. Ba
on the dimensionality of the X and variables, the master prob
is considered to be a ‘hard’ problem from the view of MILP. O
the other hand, the sub problem (in which the X and α are fixed)
simply reduces to a problem involving batch sizing and appro
ate division of the production horizon since most of the configu
tion of the batch plant is already determined.

But the multiperiod model has a linked structure composed
independent single period models (blocks). The master prob
has a connection between single period models and cannot be
into blocks which would be solved independently. On the other ha
the sub-problems are nothing but a collection of independent blo
which can be dealt with one by one.

The second characteristic of this decomposition is that it has
ditional complicating variables denoting unit numbers and siz
This serves to eliminate the connectivity that links one block to 
other in the sub-problem structure.

The procedure of implementing this algorithm will be describ
next. Its flow diagram is shown in Fig. 1. Starting with the mas
problem with known input of the campaign lengths, the related s
problem can be solved from the first period to last. The input
campaign duration times makes the master problem linear (MIL
The process starts with an equal division of the entire horizo

If infeasibility occurs, the computation returns to the master pr
lem with an integer cut of the assignment variables. Otherwise

PSIgimekt nikt
maxGgimekt     i∀ m∀ ; e Pim∈ ; k∀ ; g∀ t∀≤

PSIgimekt nikt     i∀ ; m∀ ; e Pim∈ ; k∀ ; g∀ t∀≤

PSIgimekt nikt     i∀ m∀ ; k∀ ; t∀≥
e Pim∈
∑

g = 1

g
max

∑

Ttk Ht   ∀≤
k K∈
∑

COikt
i I∈
∑ COi k + 1 t, ,

i I∈
∑      t∀ ; k = 1, …, kmax≥

COikt X i1ekt     i∀ ; k∀ ; t∀≥

COikt X i1ek     i∀ ; k∀ ; t∀
e Pi 1∈
∑≤

Y jet 1     ∀ t∀≤
j = j

min

j
max

∑

Y jet

j = j
min

j
max

∑ X imekt    ∀ t∀
k K∈
∑

i m,( ) Ue∈
∑≤

M* Y jet

j = j
min

j
max

∑ X imekt    ∀ t∀
k K∈
∑

i m,( ) Ue∈
∑≥

X imekt
k K∈
∑

i m,( ) Ue∈
∑

Zpet
 = Y jet    ∀ t∀

j = j
min

j
max

∑
p = 1

p
max

∑

Uqimekt
q = 1

q
max

∑  = X imekt     i∀ m∀ ; e Pim∈ ; k∀ ; t∀

Gqimekt
g = 1

g
max

∑  = X imekt     i∀ m∀ ; e Pim∈ ; k∀ ; t∀

Y jet + Zpet − αpjet 1≤      p∀ ; j∀ ; e∀ ; t∀

Y jet + Zpet − 2*αpjet 0≥      p∀ ; j∀ ; e∀ ; t∀

Y jet + Uqimekt − βqjimekt 1     i∀ ; m∀ ; e Pim∈ ; k∀ ; j∀ ; q∀ ; t∀≤

Y jet + Uqimekt − 2*βqjimekt 0   i∀ ; m∀ ; e Pim∈ ; k∀ ; j∀ ; q∀ ; t∀≥

Ggimekt + Uqimekt − ωqgimekt 1  i∀ ; m∀ ; e Pim∈ ; k∀ ; j∀ ; q∀ ; t∀≤

Ggimekt+ Uqimekt− 2* ωqgimekt 0 i∀ ; m∀ ; e Pim∈ ; k∀ ; g∀ ; q∀ ; t∀≥

Fig. 1. Flow diagram of decomposition in multiperiod model.
X: product-campaign-unit assignment
α: unit size and number allocation
α', α'': reuse indication of α between adjacent periods
T: campaign duration time updated
IC: integer cut of current integer solution
March, 2002
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updated campaign duration times as well as the integer cut are ad-
ded to the master problem. The updated data of campaign duration
times will lead to the master problem. The updated data of cam-
paign duration times will lead to a re-search of the feasible domain
of the MP solution to avoid missing of possible local minimal points.

The lower bound given by the master problem is compared with
the current upper bound resulting from the feasible solutions of the
sub-problems. If the lower bound exceeds or is equal to the upper
bound, then the process stops because there will be no further fea-
sible set of solutions to the master problem. Otherwise, the process
will be resumed.
2. Modified Method (Heuristic)

In a multiperiod model, the major difficulty in applying the Ben-
der’s type of decomposition to its solution originates from the master
problem. A solution of the master problem is supposed to yield values
of the complicating variables - product-unit-campaign allocation
and unit numbers and sizes. This, however, does not normally give
the optimal solution in reasonable computation time due to the com-
plicated interconnectivity between periods, which often leads the
branching and bounding procedure to extensive enumeration. The
relatively weak relation of the assignment variables to the objective
function and the large number of possible combinations of the as-
signments to be searched through the process are the main reasons
of the slow convergence to MP optimality.

Therefore, we need a modified solution method, particularly for
the MP. Another decomposition of the MP into period subproblems
was carried out as follows.
2-1. Partition and Heuristic Optimization in MP

Sub-MP’s (SMP) were set up for all periods considered. The first
SMP is solved and its solution α is used for solution of the next SMP.
After the last SMP is solved, we have to check for the possibility
that another combination of α and α', excluding the current point,
may produce a better configuration. Thus a so-called ‘cut’ of α is ad-
ded to the first SMP in the next iteration. When the objective value
is not improved with further iterations (until one equipment unit
with a size and a type is added only in period l), the iteration pro-
cess is terminated to accept the best value as optimal solution.
2-2. Major Decomposition

With fixed X, α and α', each partitioned sub-problem is solved.

The next stage is to create a new MP with properly generated
teger cuts of X, α' and α' and to solve it. If the termination condition
is not satisfied, the iteration continues.

A schematic diagram of this heuristic algorithm is presented
Fig. 2.
3. Usefulness of Decomposition Algorithm

The MP is a relaxation of the original problem. Hence its fe
sible region completely covers the solution sets of the original pr
lem. In other words, the feasible solution set of the original pr
lem is just a subset of those of the MP. Hence if, through iterat
every solution set of the MP is explored, we can ensure that the
timal solution is necessarily obtained.

Let SMP denote the set of MP solutions, SSP set of SP solutions
and SOP set of original problem solutions.

Then,

After each iteration, we find the next better solution in MP (
exclude the previous solution, integer cuts are necessary). So
expect the lower bounds to increase as the iterations proceed
finally the lower bound will exceed the upper bound or all so
tions of the MP will be explored exhaustively.

Then, we do not have to keep iterating because those two 
ditions guarantee that we reached true optimum of the original p
lem, if one exists. Therefore, exhaustive investigation of the fe
ble region of MP results in exhaustive investigation of that of O
which produces the optimal solution.

From

If  (termination condition for iterations), then,

This proves the sufficiency of the decomposition method us
for global optimum(linear model).
4. Test Results of Computer Experiments

Four example problems were depicted in the Tables and t
computation results were demonstrated visually in Figs. 2 throug
4-1. Example Problem 1

The direct decomposition method and heuristic decomposi
method were both tested for this 2-period example.

The comparison of computation times involve two methods. U

SMP SSP, SMP SOP⊇ ⊇

SMP SOP SSP⊇ ⊇

min SMP min SOP min SSP⊇ ⊇

min SMP min SSP≥

min SOP = min SSP = min SMP

Fig. 2. Flow diagram of heuristic decomposition in multiperiod
model.
X: product-campaign-unit assignment
α: unit size and number allocation
α', α'': reuse indication of α between adjacent periods
T: campaign duration time updated
IC: integer cut of current integer solution

Table 1. Processing times and size factor [( )] for tasks in Problem 1

Product.
task

Equipment type

E1 E2 E3 E4

A.T1 5(1.2) 4.5(1.25)
A.T2 3(1.3)
A.T3 4.5(1.1)
B.T1 6(1.4)
B.T2 4(1.15) 3(1.2)
C.T1 7.5(1.5)
C.T2 6.5(1.2)
C.T3 6(1.1) 5(1.2)
Korean J. Chem. Eng.(Vol. 19, No. 2)
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ing the direct method, the solution time required was 779.97 sec-
onds, while only 130.65 seconds was consumed using the heuristic
decomposition method (Table 4). Considering that the majority of
the computation time for the direct method is due to the difficulty
of the master problems involved, the partitioning of the master prob-
lem has obviously brought remarkable enhancement in solution time.

Note that ‘MP(SP) n’ denotes ‘in the n-th master(sub) problem’.
4-2. Example Problem 2

The same input data as that of example problem 1 was used ex-
cept that the number of periods was increased to three. This prob-
lem requires 1737/900 (integer/continuous) variables in total. The
production horizon is 6,000 hours in each period and the maximum
allowable number of parallel processing groups is chosen to be two.

The direct decomposition method was unable to obtain the opti-
mal solution due to the excessive number of iterations executed dur-

ing even an MP solution. However, the heuristic decomposition m
od resulted in a (sub) optimal solution in reasonable time since
partitioned sub-master problems (SMP) were each easily so
because of the elimination of the interconnectivity relations and
small number of binary variables involved in each SMP.

The first optimization of MP was completed in three iteration
That was followed by sub-problem solution to give optimal sche
uling information. In the second attempt of the MP solution, the b
solution after the first solution is found to be greater than the up
bound. This means that further search (iteration) is not neces
since no better solution can be expected through further iterat
Therefore, we found the optimal solution that is shown in Table

In the optimal design configuration given in Fig. 3, note that t
design for period 3 is distinguished from the design of period l a
2 by the campaign arrangement. The common use of most un
all production lines forces the plant to have multiple serial ca
paigns as long as the production horizon provides enough time
meeting minimum demands. Meanwhile, in period 3 where the p
duction demand increased to a higher level, the number of c
paigns was reduced by the joint production of B and C. The jo
production of B and C requires one more item of each type
equipment, E1 and E2.
4-3. Example Problem 3

The input data for example problem 3 are shown in Tables
and 10; the number of integer variables involved in the formu
tion is 1842.

As shown in Table 8, the task-equipment assignment is uniq

Table 2. Possible unit capacity data in Problem 1

Unit type ve Ne
max aeo

E1 2000, 3000, 4000 3 200
E2 2000, 3000 3 220
E3 2000, 3000 3 280
E4 2000, 3000, 4000 3 360

Table 3. Production demands in Problem 1

Product Demand range×105 Value coeff., ρio

Period 1 A 2.4-3.0 0.05
B 2.0-2.5 0.05
C 2.4-3.0 0.05

Period 2 A 4.8-6.0 0.05
B 4.0-5.0 0.05
C 4.8-6.0 0.05

Table 4. Comparison of computation times by two methods (heu-
ristic vs direct decomposition)

Heuristic CPU (sec) Obj. value Decomp. CPU (sec)

MP1 20.60 21575.65
MP2 20.15 3475.65 MP1 181.82
MP3 22.24 8745.65
SP1 52.67 5150.99 SP1 52.67
MP4 14.99 7918.44 MP2 545.48

Table 5. Production demands in Problem 2

Product Demand range×105 Value coeff., ρio

Period 1 A 2.4-3.0 0.05
B 2.0-2.5 0.05
C 2.4-3.0 0.05

Period 2 A 4.8-6.0 0.05
B 4.0-5.0 0.05
C 4.8-6.0 0.05

Period 3 A 6.4-8.0 0.05
B 8.0-10.0 0.05
C 5.6-7.0 0.05

Table 6. Solution for scheduling in Problem 2

Batch size No. batches Campaign length

Period 1 BAA, 1538 nA, 195 T1, 1049.7
BAB, 1429 nB, 175 T2, 1349.7
BAC, 1667 nC, 180 T3, 975.3

Period 2 BAA, 1538 nA, 390 T1, 2099.4
BAB, 1429 nB, 350 T2, 1950.6
BAC, 1667 nC, 260 T3, 1950.0

Period 3 BAA, 1538 nΑ , 293 T1, 4533.2
BAB, 1429 nB, 755 T2, 1466.8
BAC, 1667 nC, 604 T3, 0.0

Fig. 3. Optimal configuration of test Problem 2.
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and the main concern of the design in this problem will be about
the campaign rearrangement. Fig. 4 shows that the large increase
in the demand (nearly double) within the same horizon (6,000 hours)
has resulted in the joint production of (A, D) and (B, C) in the same
period. Thus, one more item each of E4 and E5 must be purchased
at the beginning of period 2.

It is obvious that as problem size grows the computing efforts
greatly increase as shown in Tables 4, 7 and 12.

4-4. Example Problem 4
All previous test problems dealt with the expansion in dema

for every product. At times a general multiperiod batch plant m
also deal with a decrease in some of the demands, which req
the plant design to be more flexible according to the market n
This example considers a case in which the demands for two p
ucts decrease while that for the third still increases. All the rela
input data is shown in Tables 1, 2 and 13 (actually modified fr
the data of problem 2).

In this case as shown in Fig. 5, compared to Fig. 3, there w

Table 7. Result of computation times of Problem 2

Problem Obj. value CPU (sec)

MP1 −17550.51 34.22
MP2 −26756.15 51.20
MP3 −8250.52 38.81
SP1 −26479.0 128.46
MP4 −1505.67 31.41

Table 8. Processing times and size factor [( )] for tasks in test Prob-
lem 3

Product.
task

Equipment type

E1 E2 E3 E4 E5

A.T1 5(1.2)
A.T2 6(1.2)
A.T3 4.5(1.2)
B.T1 3.5(1.2)
B.T2 0.2(1.2)
B.T3 0.5(1.2)
C.T1 7.2(1.2)
C.T2 5.5(1.2)
C.T3 0.3(1.2)
D.T1 4.8(1.2)
D.T2 3.6(1.2)

Table 9. Possible unit capacity data in Problem 3

Unit type ve Ne
max aeo

E1 2000, 3000, 4000 3 200
E2 2000, 3000 3 220
E3 2000, 3000 3 280
E4 2000, 3000, 4000 3 300
E5 2000, 3000 3 350

Table 10. Production demands in Problem 3

Product Demand range×105 Value coeff., ρio

Period 1 A 4.0-5.0 0.03
B 4.0-5.0 0.03
C 4.0-5.0 0.03
D 4.0-5.0 0.03

Period 2 A 8.0-10.0 0.03
B 8.0-10.0 0.03
C 6.4-8.0 0.03
D 8.0-10.0 0.03

Fig. 4. Optimal configuration of test Problem 3.

Table 11. Solution for scheduling in Problem 3

Batch size No. batches Campaign length

Period 1 BAA, 1667 nA, 240 T1, 1392.9
BAB, 1667 nB, 279 T2, 1439.7
BAC, 1667 nC, 240 T3, 1727.7
BAD, 1667 nD, 300 T4, 1439.7

Period 2 BAA, 1667 nA, 500 T1, 2999.4
BAB, 1667 nB, 600 T2, 3000.6
BAC, 1667 nC, 417 T3, 0.0
BAD, 1667 nD, 625 T4, 0.0

Table 12. Result of computation times of Problem 3

Problem Obj. Value CPU (sec)

MP1 35797.33 219.31
MP2 53777.33 431.06
SP1 34615.71 1029.21
MP3 49822.34 229.74

Table 13. Production demands in Problem 4

Product Demand range×105 Value coeff., ρio

Period 1 A 2.4-3.0 0.05
B 2.0-2.5 0.05
C 2.4-3.0 0.05

Period 2 A 4.8-8.0 0.05
B 4.0-5.0 0.05
C 4.8-7.0 0.05

Period 3 A 6.4-6.0 0.05
B 8.0-10.0 0.05
C 5.6-6.0 0.05
Korean J. Chem. Eng.(Vol. 19, No. 2)
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two added equipment items required in period 2 but none are added
in period 3, and campaign rearrangement [from (B, C) and (A) to
(B, C) and (A, B)] suffices to allow the production demands to be
met in that period.

CONCLUSION AND RECOMMENDATIONS

The single period model was extended to the multiperiod case
in which the change of the design is considered according to the
change of demands. The model for multiple periods was established
in a different way from the single period model in which the de-
mands must be met (the order must always be fulfilled). That is,
since the multiperiod model represents a long-term plant planning
and design, the overproduction in every period could cause waste
of resources and over-utilization of equipment under a no inven-
tory system. But to avoid the complicated formulation that an in-
ventory system might cause we presented the plant model without
an inventory system, focusing only on minimization of the net in-
vestment cost for the given periods. The net investment cost is com-
prised of the equipment cost the revenue loss, which is defined as
the lost income due to unfulfilled order. The objective function is
simply the necessary equipment cost which must be expended to
minimize the revenue loss for the set of periods.

For this model, a two-level decomposition was applied: the first
partition was implemented in the same manner as in the single per-
iod model while the second partition was implemented for each sub
problem associated with each period. Each sub problem associated
with a given period could be solved in increasing order of periods
with a heuristic which links the independent blocks to one another.
Thus, this implies that as long as each block can be solved by using
reasonable computing effort, the entire optimization of the model
will become tractable.

However, there are some further points to be considered in the
solution approaches and the model development.

First, since even the single period model basically includes 
many integer variables, causing computational difficulties, there
a serious limitation on the tractable problem size. Therefore, so
heuristics (or approximation) just like in the solution method us
in the multiperiod model solution should be analyzed for larger pr
lems.

Secondly, expansion of the multiperiod model may be cons
ered to inventory when the number of periods is increased and
duration becomes shorter.

The introduction of inventory between periods allows overp
duction in some periods and will require modifying the present m
el. The difficulty here lies in the increase of the mathematical co
plexity.

NOMENCLATURE

i : product
m : task 
e : equipment type
k : campaign
t : period
Ne : number of units of type e
Ve : unit capacity of type e
Tk : campaign length
TLk : limiting cycle time
Bik : batch size
Qt : production quantity
Ht : production horizon
X imekt : product-task-equipment-campaign-period assigning varia

All others were explained in the text.
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