
Korean J. Chem. Eng., 19(2), 221-226 (2002)

2],
um
es,
ntrol
 this
con-
er-
ovel
e
ess-
rom
h and
s.
ac-

ce of
con-
con-
ther
jec-
 of
om-
ac-
ck-
. In
ch-
ome
 or

ur-
eas-

ame-
ues

the
221

†To whom correspondence should be addressed.
E-mail: paisan.k@chula.ac.th

Model-Based Control Strategies for a Chemical Batch Reactor with
Exothermic Reactions

Amornchai Arpornwichanop, Paisan Kittisupakorn † and Mohamed Azlan Hussain*

Department of Chemical Engineering, Chulalongkorn University, BKK 10330, Thailand
*Department of Chemical Engineering, University Malaya, KL 50603, Malaysia

(Received 20 August 2001 • accepted 19 November 2001)

Abstract−−−−Batch reactor control provides a very challenging problem for the process control engineer. This is because
a characteristic of its dynamic behavior shows a high nonlinearity. Since applicability of the batch reactor is quite
limited to the effectiveness of an applied control strategy, the use of advanced control techniques is often beneficial.
This work presents the implementation and comparison of two advanced nonlinear control strategies, model predictive
control (MPC) and generic model control (GMC), for controlling the temperature of a batch reactor involving a com-
plex exothermic reaction scheme. An extended Kalman filter is incorporated in both controllers as an on-line estimator.
Simulation studies demonstrate that the performance of the MPC is slightly better than that of the GMC control in
nominal case. For model mismatch cases, the MPC still gives better control performance than the GMC does in the
presence of plant/model mismatch in reaction rate and heat transfer coefficient.
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INTRODUCTION

A chemical reactor, which is one of the most important units in
the chemical industry, can be broadly classified into two categories:
a continuous and batch reactor. Although chemical reactors in large-
scale operation have been operated in a continuous fashion, some
reactors have been operated in a batch mode. This is because the
batch reactor has the flexibility to be used for producing multi-prod-
ucts in small-scale processes.

It is commonly accepted that the control of batch reactors, es-
pecially when exothermic reactions are involved, is a difficult and
challenging problem [Rotstein and Lewin, 1992]. Since it shows a
high nonlinearity produced by heat generation term and its dynamic
behavior can also strongly change with time. In addition, the batch
reactors do not have a steady state condition; therefore, they are un-
stable under an open-loop operation.

A process for controlling the batch reactor generally consists of
two steps: heating the reactor from ambient condition to desired
temperature and then controlling it at this condition. Traditionally,
these steps can be coped with by i) solving an open-loop optimal
control problem (e.g. minimum time problem) to set the optimal
temperature trajectory, ii) using a feedback control to keep the tem-
perature at final desired value. However, the difficulty of this ap-
proach is that since there is no feedback information in the first step,
it is not allowable for modeling errors; the heat released from the
reaction in the heating period may increase until greater than the
cooling capacity and make the reactor runaway [Jutan and Uppal,
1984].

In order to cope with such problems, many advanced control tech-
niques have been applied for the control of a batch reactor, e.g. Non-
linear feedforward-feedback control [Jutan and Uppal, 1984; Kra-

varis et al., 1989], Adaptive control [Rotstein and Lewin, 199
Generic model control [Cott and Macchietto, 1989; Kershenba
and Kittisupakorn, 1994]. In addition to these control techniqu
recently Park and Park [1999] applied a feedback linearization co
technique to control a batch reaction system. It was found that
control strategy gave a better control performance than the PID 
troller in both set point tracking and disturbance rejection. Furth
more, Lee and Lee [1997] and Lee et al. [1999] proposed a n
model predictive control algorithm incorporating it with the iterativ
batch-to-batch learning control technique for nonlinear batch proc
es. The developed algorithm could eliminate persisting errors f
unknown repeated disturbances as well as plant model mismatc
has been evaluated through simulation and experimental studie

As can be seen from the literature on the control of batch re
tors, many research works have stated the superior performan
advanced control techniques in comparison to a conventional 
trol technique (PID). However, no such work has compared the 
trol performance of a use of advanced control technique with o
advanced control techniques. Thus this motivates us to the ob
tive of this work that focuses on a designing and implementing
MPC and GMC which have been addressed extensively and c
pares their performance for controlling an exothermic batch re
tor. Simulation studies of MPC and GMC in case of set point tra
ing under nominal and model mismatch cases are performed
addition, since both MPC and GMC are model-based control te
niques, they require the knowledge of process variables and/or s
parameters in a control algorithm which are not all measured
known with sufficient accuracy for control purposes. For this p
pose, it is necessary to use an online estimator to estimate unm
urable process variables and unknown/uncertain process par
ters. An extended Kalman filter, one of several estimation techniq
applied to estimate states and parameters with great success [Val-
liere and Bonvin, 1989], is also used in this work to estimate 
unmeasured heat released of reactions.
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BATCH REACTOR

In this section, the model equation of a batch reactor used in this
simulation work is described. The batch reactor system studied by
Cott and Macchietto [1989] and Kershenbaum and Kittisupakorn
[1994] consists of a batch reactor and a jacket controlling system.
For this reactor it is assumed that two parallel exothermic reactions
occur in liquid phase and the rates of reaction depend on a reactant
concentration as shown below:

k1

A+B�C R1=k1MAMB
k2

A+C�D R1=k1MAMC

where C and D are desirable product and undesirable by-product,
respectively. The rate constants k1 and k2 are temperature depen-
dence according to the Arrhenius equation. MA, MB and MC repre-
sent the number of moles of components A, B and C in the reactor.

The operating objective of this reactor is to maximize the prod-
uct C but minimize the production of D. This can be achieved by
heating the reactor temperature from an initial condition to a desired
set point rapidly and keeping it at this condition. The optimal tem-
perature set point of 95oC is chosen here.

In order to control the reactor temperature, the jacket inlet tem-
perature is used as a manipulated input and can be regulated by a
heat exchanger; the diagram of this system is shown in Fig. 1. The
dynamics of the jacket temperature control can be reasonably as-
sumed by a first order model with time constant [Liptak, 1986].
Moreover, since in a real situation the ability of jacket system is
limited in a specific temperature range by the heat-exchanger capac-
ity. Therefore, a lower temperature of 20oC and an upper tempera-
ture of 120oC are assumed in this work. In addition, a meas-
urement noise is always present in a real application; thus, we also
assume that both reactor and jacket temperature measurements have
a Gaussian noise with zero mean and 1oC standard deviation. The
addition of both jacket temperature limitation and measurement error
makes this simulation work reflect the actual process.

In the simulation work, the behavior of the batch reactor can be
simulated by solving mass and energy balances [Eqs. (1)-(15)], which
describe the dynamics of the reactor. The process parameters and
initial condition are given in Table 1.

(1)

(2)

(3)

(4)

(5)

(6)

W=MWAMA+MWBMB+MWCMC+MWDMD (7)

Mr=MA+MB+MC+MD (8)

Cpr=(CpAMA+CpBMB+CpCMC+CpDMD)/Mr (9)

Qr=−∆H1R1− ∆H2R2 (10)

Qj=UA(Tj−Tr) (11)

(12)

(13)

Trm=Tr+a(k) (14)

Tjm=Tj+a(k) (15)

where A is given by 2w/ρr and a(k) is Gaussian noise with a standar
deviation of 1oC. The meanings of other variables and parame
are given in the Nomenclature.

MPC FORMULATION

Model predictive control (MPC) can be normally defined as
class of control strategy that computes a control trajectory by u
a process model to predict future state outputs and optimize a
function of a plant subject to state and/or input constraints [Kitti
pakorn and Hussain, 2000]. Reviews regarding the MPC techn
can be seen in many articles by, e.g. Biegler and Rawlings [19

dMA

dt
---------- = − R1 − R2

dMB

dt
----------  = − R1

dMC

dt
----------  = + R1 − R2

dMD

dt
----------  = + R2

k1 = exp k1
1

 − 
k1

2

Tr  + 273.15
-------------------------- 

 

k2 = exp k2
1

 − 
k2

2

Tr  + 273.15
-------------------------- 

 

dTr

dt
--------  = 

Qr  + Qj

M rCpr

----------------

dTj

dt
------- = 

FjρjCpj T jsp − Tj( ) − Qj

V jρjCpj

-------------------------------------------------

Fig. 1. Batch reactor system.

Table 1. The values of process parameters and initial condition

MWA =30 kg/kmol CpA =75.31 kJ/(kmol oC)
MWB =100 kg/kmol CpB =167.36 kJ/(kmol oC)
MWC =130 kg/kmol CpC =217.57 kJ/(kmol oC)
MWD =160 kg/kmol CpD =334.73 kJ/(kmol oC)
k1

1 =20.9057 ∆H1 =−41840 kJ/kmol
k2

1 =10000 ∆H2 =−25105 kJ/kmol
k1

2 =38.9057 ρ =1000 kg/m3

k2
2 =17000 ρj =1000 kg/m3

r =0.5 m Cpj =1.8828 kJ/(kg oC)
Fj =0.348 m3/min Vj =0.6912 m3

τj =1 min U =40.842 kJ/(min m2 oC)
MA (0) =12 kmol MB (0) =12 kmol
MC (0) =0 kmol MD (0) =0 kmol
Tr (0) =20 oC Tj (0) =20 oC
March, 2002
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Henson [1998], and Morari and Lee [1999]. Although a nonlinear
MPC is available, it may not be straightforwardly applicable to a
real system due to two main difficulties. The first one involves opti-
mization problem solving numerical techniques, computer hardware
as well as computational time. The other one involves the com-
plexity of the mathematical model of a system and, state and param-
eter estimation techniques to estimate unknown/unmeasurable states
and parameters. As a result, a linear MPC is considered to apply to
control the batch reactor in this work.

A formulation of the linear MPC technique for batch tempera-
ture control problem is shown below. It is clear that the process mod-
el of a system is the heart of the MPC technique. In general, the pro-
cess model can be arranged in a discrete time model in state space
form in which x, u, y are state, input, and output variables, respec-
tively. From the previous section, although process models of the
batch reactor are known, we assumed that only energy balances
around the reactor and jacket are used in the MPC algorithm. The
discrete state space form (Tr, Tj) is obtained from Eqs. (12) and (13)
by local linearization around a current condition; this means that
the process model in the control algorithm is updated at every time
interval.

x(k+1)=A(k)x(k)+B(k)u(k) (16)

y(k)=C(k)x(k) (17)

The manipulated input profile (Tj) can be determined by solving
a minimization problem based on an objective function which is
the sum of squares of the deviation of set point and predicted value
on outputs and inputs over the prediction horizon (P). The optimi-
zation decision variables are control inputs (U) M time steps.

(18)

subject to the system models [Eqs. (16) and (17)] and a constraint
on the manipulated variables. W1 is a weighting matrix on outputs
and W2 is a weighting matrix on inputs.

However, even though a set of inputs is computed, only the first
control action is applied to the system and when feedback infor-
mation becomes available after the control action is implemented,
a computation is repeated again for the next sampling time.

GMC FORMULATION

Generic model control (GMC), developed by Lee and Sullivan
[1988], refers to a control technique based on a process model. The
basic concept is that it directly inserts nonlinear process models into
the controller itself; the nonlinear process models do not need to be

linearized. The control action is calculated based on a transfor
control action with external PI control action. To have a clear vi
of the difference between MPC and GMC, the concepts, ad
tages and limitations of these control techniques are included in T
2. GMC control technique can be given as follows:

(19)

where y represents the controlled variables. K1 and K2 are GMC
tuning constants. The tuning parameters K1 and K2 can be deter-
mined by choosing a target profile of a controlled variable as s
gested by Lee and Sullivan [1988].

To apply the GMC for controlling a temperature of a batch re
tor, an energy balance around the reactor is needed; it gives the
tion between a controlled variable (reactor temperature) and a ma
ulated variable (jacket temperature).

(20)

where Trm and Tj are the measured reactor and jacket temperat
W is the mass of the reactor content and Cp is the mass heat ca
of the reactor content. Both values of W and Cp are assumed 
constant at this stage.

Then replacing Trm for y in Eq. (19) and rearranging to obtain Tj

yield:

(21)

Eq. (21) gives the jacket temperature computed by the GMC c
troller in a continuous form. For the purpose of applying the GM
in a real system, the discrete form is required:

(22)

Since, the jacket temperature determined from Eq. (22) is an a
temperature which is not a set point value for the jacket temp
ture control system. In order to compensate the effect of a dyna
of the jacket control system, as stated in the system model sec
a first order model with time constant is assumed. Conseque
the jacket temperature set point (Tjsp) is:

(23)

With this temperature set point, a control valve (setting as a

 ysp i( ) − ypred i( )[ ]W1
2

 + usp i( )  − upred i( )[ ]W2
2

i = k + 1

k + P

∑
U k( )… U k + M − 1( )

limmin

dy
dt
------  = K1 ysp − y( ) + K2 ysp − y( )dt

0

t∫

dTrm

dt
---------- = 

Q + UA T j  − Trm( )
WCp

---------------------------------------

T j  = Trm + 
WCp
UA

------------ K1 Trsp − Trm( ) + K2 Trsp − Trm( )dt
0

t∫[ ]  − 
Q

UA
--------

T j k( )  = Trm k( ) + 
WCp
UA

------------ K1 Trsp − Trm k( )[ ] + K2 Trsp − Trm k( )[ ]∆t
0

k

∑
 
 
 

− 
Q k( )
UA
-----------

T jsp k( )  = T j k − 1( )  + τj

Tj k( )  − T j k − 1( )
∆t

------------------------------------- 
 

Table 2. Comparison between MPC and GMC

Comparison MPC GMC

Control law • Optimization problem • Transformed control action  with external PI
Tuning method • Weighting parameters,  prediction and control horizon • Controller tuning curve
Advantages • Capability to handle constraints  and plant stabilization

• Nonlinear MIMO control
• Direct use of system models in  the control law
• Nonlinear SISO control 

Limitation • Reliable system’s models • Reliable systems model
• Relative order one system
Korean J. Chem. Eng.(Vol. 19, No. 2)
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controller) opens or closes, reflecting the ratio of hot water and cold
water feeding into the jacket.

ESTIMATION OF HEAT RELEASED
FROM REACTION

Since model based control techniques utilize a process model of
a system to calculate the control action, all states and model param-
eters are needed. In most processes many of them cannot be meas-
ured or known exactly. Online estimation techniques are used to
estimate unknown/uncertain states and parameters.

For temperature control of the batch reactor, the knowledge of
heat released (Qr) is necessary to the control algorithm and affects
the performance of the controller. Accordingly, in this work, an ex-
tended Kalman filter with simplified process models [Kershenbaum
and Kittisupakorn, 1994] has been applied to estimate the heat evolu-
tion term. The reason for using the simplified model, not the exact
model of the plant, is that it is well known that parameters are not
all known exactly and states are not all measurable. Therefore, if
the exact model is used, too many uncertain/unknown parameters as
well as too many unmeasurable states would be involved. These
would lead to poor performance of the Kalman filter. Hence, the
simplified model with less uncertain/unknown parameters and un-
measurable states is used instead.

In order to develop the simplified models of a batch reactor, it is
assumed that the total rate of reaction (R) is a function of reactor
temperature (Trm) and number of total mole of component in the
reactor (Mr) as in the form:

(24)

where c is a pseudo rate constant.
Additionally, we also assume that an estimated heat released (Qre)

from reaction can be written as a product of the total rate of reac-
tion and the heat of reaction:

Qre=(− ∆H)(R)=−c∆HM rTrm (25)

From Eq. (25), we obtain

(26)

Eqs. (24) and (26) incorporating with energy balances [Eqs. (12)
and (13)] are used in the Kalman filter. Table 3 gives the parame-
ters and initial condition used in the Kalman filter.

SIMULATION RESULTS

The application of MPC with the extended Kalman filter to con-

trol the batch reactor temperature is demonstrated in this sec
The performance of the MPC technique for all tests is compa
with that of the GMC.

In all simulations studied, the batch reactor is initially charg
with 12 kmol of component A and 12 kmol of component B. Bo
the reactor and jacket temperatures are 20oC at the initial condi-
tion. The tuning parameters of MPC and GMC controller are su
marized in Table 4.

First, the performance of the controllers is tested in the nom
case; the model parameters used in the controllers are determ

dMr

dt
---------  = − R = − cMrTrm

dQre

dt
---------- = − c∆H M r

dTrm

dt
---------- + Trm

dM r

dt
--------- 

 

Table 3. Parameters and initial condition for Kalman filter

Trm =20 oC P =diag[1 1 1 1]
Tjm =20 oC Q(1,1) =4
Qr =0 kJ Q(2,2) =16
Mr =0 Q(3,3) =109

R(1,1) =50 Q(4,4) =104

R(2,2) =30

Table 4. Parameters in MPC and GMC algorithm

MPC controller

M =20 P =50
W1(1,1) =2000 W1(2,2) =50
W2(1,1) =1.2

GMC controller

K1 =0.33 K2 =6.94×10−5

Fig. 2. Heat released curve in nominal case both from reactor and
estimate.

Fig. 3. Response of MPC in nominal case.
March, 2002



Model-Based Control Strategies for a Chemical Batch Reactor with Exothermic Reactions 225

ome
ant/
 is
 the
lant/
t a
ran-

er-
eric
ech-
aram-
There-
ed of
MC
 the
and
es
tive

ol-
ol-

lly
correctly as the same as process parameters. Fig. 2 shows the com-
parison of the actual and estimated heat released of reactions. It can
be seen that the extended Kalman filter gives excellent estimation
of the heat released. With this heat released, both MPC and GMC
controllers can give reasonably good reactor temperature control
although an overshoot occurs in the case of GMC controller as can
seen from Figs. 3 and 4.

Since both MPC and GMC techniques use the process model of
the system in the control algorithm, these controllers need to be tested
for robustness with respect to plant/model mismatch. Fig. 5 illus-
trates the response of both MPC and GMC controller when the heat
transfer coefficient decreases 25% from the nominal value. It can
be seen that the MPC controller gives a better control response than
the GMC does. In other words, MPC can control the reactor tem-
perature at the desired set point whereas the GMC controls the reac-
tor temperature with some overshoot and offsets.

Similarly, the kinetic data in rate equation may not be known ex-
actly. Here it is assumed that the reaction rate of the first reaction
increases 40% from the actual reaction rate (Fig. 6). Again, the MPC
controller is still able to cope with this mismatch; it still gives good
control response without any offset. On the other hand, the GMC

controller controls the reactor temperature at the set point with s
offset. The simulation results show that in the presence of pl
model mismatch the MPC is more robust than the GMC. This
because the MPC has a plant stabilization property, whereas
GMC does not have the property. Therefore, in the presence of p
model mismatch, the MPC is still able to control the system a
steady state condition. The GMC on the other hand cannot gua
tee that it can control the system at a steady state condition.

CONCLUSIONS

Model predictive control has been applied to control an exoth
mic reactor. Its control performance is compared with that of Gen
model control. Since both controllers are model-based control t
niques, they need the measurement/estimation of states and p
eters. Here the heat released of reactions cannot be measured. 
fore, an extended Kalman filter is used to estimate heat releas
the reactions. Simulation results show that both MPC and G
can give good control response in a nominal case. However, in
presence of plant/model mismatch in heat transfer coefficient 
reaction rate, the MPC is more robust than the GMC; it still giv
good control performance, whereas the GMC gives deteriora
control performance.
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NOMENCLATURE

Ar : heat transfer area [m2] 
Cp : mass heat capacity [kJ/(kg oC)] 
Cpi : molar heat capacity of component i [kJ/(kmol oC)]
∆Hi : heat of reaction of reaction i [kJ/kmol] 
∆t : sampling time [min]
F : flowrate [m3/min]

Fig. 4. Response of GMC in nominal case.

Fig. 5. Response of system for heat transfer coefficient change.

Fig. 6. Response of system for reaction rate change.
Korean J. Chem. Eng.(Vol. 19, No. 2)
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K1, K2 : GMC controller constants
ki : rate constant for reaction i [kmol−1 s−1]
k1

i : rate constant 1 for reaction i
k2

i : rate constant 2 for reaction i
Mi : number of moles of component i [kmol] 
Mwi : molecular weight of component i [kg/kmol] 
Q : heat released from reactions [kJ/min]
ρ : density of reactor content [kg/m3]
Ri : rate of reaction i [kmol/min]
t : time [min]
T : reactor temperature [oC]
U : heat transfer coefficient [kJ/(min m2 oC]
u : input variables
V : reactor volume [m3]
W : reactor content [kg]
W1,W2 : MPC weighting parameters
x : state variables
y : output variables

Subscripts
f : filter
j : jacket
m : measured
r : reactor
sp : set point
pred : prediction
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