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Abstract−−−−Process optimization often leads to nonconvex nonlinear programming problems, which may have multiple
local optima. There are two major approaches to the identification of the global optimum: deterministic approach and
stochastic approach. Algorithms based on the deterministic approach guarantee the global optimality of the obtained
solution, but are usually applicable to small problems only. Algorithms based on the stochastic approach, which do
not guarantee the global optimality, are applicable to large problems, but inefficient when nonlinear equality con-
straints are involved. This paper reviews representative deterministic and stochastic global optimization algorithms in
order to evaluate their applicability to process design problems, which are generally large, and have many nonlinear
equality constraints. Finally, modified stochastic methods are investigated, which use a deterministic local algorithm and
a stochastic global algorithm together to be suitable for such problems.
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INTRODUCTION

Many chemical process optimization problems can be represented
by nonlinear programming (NLP) problems in the following form:

min f(x) (P)

subject to

g(x)≤0
h(x)=0

where x∈R
n
, f: R

n
�R, g: R

n
�Rl, h: R

n
�R

m
, and n>m. If the

objective function and the feasible region are convex, e.g., when f
and g are convex and h is linear, the problem is called a convex prob-
lem, which has only one local minimum that is the global mini-
mum. Most of chemical process optimization problems, however,
have a nonconvex feasible region because of nonlinear equality con-
straints. Therefore, they are nonconvex, and in many cases, have
multiple local optima. Furthermore, the size of the problem is gen-
erally large. The objective of this study is to find a global optimiza-
tion algorithm suitable for nonconvex problems which involve a
large number of highly nonlinear equations such as obtained from
rigorous models of chemical processes.

Most global optimization algorithms belong to one of the two
categories: (1) deterministic approach and (2) stochastic approach.
Algorithms based on the deterministic approach such as cutting plane
[Horst and Tuy, 1993], generalized Benders decomposition [Geof-
frion, 1972; Floudas and Visweswaran, 1990; Bagajewicz and Man-
ousiouthakis, 1991], branch and bound [Soland, 1971; Ryoo and
Sahinidis, 1995; Adjiman et al., 1996], and interval analysis [Rat-
schek and Rokne, 1988; Vaidyanathan and El-Halwagi, 1994; Han

et al., 1997] guarantee finite ε-convergence (convergence to the glo
bal optimum in finite computation steps for a given finite error t
erance) and global optimality of the obtained solution. Algorithm
based on the stochastic approach such as simulated annealing 
patrick et al., 1983] and genetic algorithm [Goldberg, 1989] aim
high probability of finding the global optimum, not guaranteein
the finite ε-convergence or the global optimality of the obtaine
solution.

METHODOLOGY

The goal of global optimization is achieved if a method is dev
oped which is guaranteed to do one of the following three tasks
1. Find a Tight Convex Hull

Assume that we have an NLP in which the objective function
linear. Note that any problem can be reformulated to this type
problem by replacing the objective function by a substitution va

Fig. 1. Convex hull strategy.
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able and declaring its definition equation as a constraint. Now con-
sider a new problem in which the constraints form a tight convex
hull for the feasible region of the original problem as shown in Fig.
1. This is a convex problem which can easily be solved by a local
optimization technique and whose solution is equivalent to the glo-
bal solution of the original problem. This is the basic idea of most
of the deterministic algorithms.
2. Find a Feasible Point

Assume that we have a method that is guaranteed to find a fea-
sible point if any exists. Given a feasible point, a local optimizer
using the generalized reduced gradient method can find a local min-
imum. We can then add a new constraint that forces the objective
function value to be lower than the current local minimum, and
search for a new feasible point. This procedure can be repeated until
no feasible point exists. Fig. 2 schematically describes this strategy.
In order to implement this strategy, we need a global algorithm for
finding feasible points and a local algorithm for finding local min-
ima. A stochastic method that uses this strategy is described in this
paper.
3. Find All Kuhn-Tucker Points

If a method is available which is guaranteed to find all real roots
of systems of nonlinear algebraic equations, the objective function
values at all Kuhn-Tucker points can be compared to each other to
find the global optimum. This approach is out of the scope of this
paper.

DETERMINISTIC APPROACH

The deterministic approach to global optimization of chemical
processes has actively been studied since the 1980’s, and some hi-
story was summarized by Han et al. [1997]. However, since the glo-
bal optimization of a nonconvex NLP problem is one of the tough-
est NP-hard problems, the deterministic algorithms that are cur-
rently available can usually be applied to small problems only. De-
tailed discussion of the NP-hardness was presented by Choi et al.
[1999].
1. Outer Approximation

A convex hull of a feasible region can be constructed by a set of
linear inequality constraints. For example, Horst and Tuy [1993]
defined a concavity cut for a region K\G formed by a polyhedral

cone K with vertex xo and a reverse convex constraint x∉int G as
shown in Fig. 3. The cut by a new linear inequality constraint 
cludes some region around the infeasible point xo but not any fea-
sible point. However, a big disadvantage of this approach is tha
number of constraints increases as the algorithm converges to a
convex hull, and thus constraint dropping strategies are require
indicated by Horst and Tuy [1993].

Note that any continuous function defined on a finite closed c
vex domain can be represented by a difference of two convex (
functions. All we have to do is add and subtract a sufficiently c
vex function. The cutting plane methods are applicable to d.c. p
lems where all functions are d.c. on a given convex set [Horst 
Tuy, 1993]. However, in general, these methods are suitable 
for low rank nonconvex problems, in which only a few of the va
iables are responsible for the nonconvexity of the problem [Kon
et al., 1997].
2. Generalized Benders Decomposition

Consider the following type of problem:

minx, y f(x, y)

subject to

g(x, y)≤0

where f and g are convex with respect to x, i.e., when y is constant,
the problem is convex. This problem can be decomposed into
problems as follows.

Primal:

minx f(x, y)

subject to

g(x, y)≤0

where y is fixed at a given point. This problem can easily be solv
because it is convex. The solution is an upper bound of the gl
minimum because the feasible region has been narrowed.

Master:

miny y0

subject to

L*(y; u)=minx [f(x, y)+uT g(x, y)]≤y0

L*(y; u)=for all u≥0

Fig. 2. Feasible point strategy [Choi et al., 1999].

Fig. 3. (G, K)-cut [Horst and Tuy, 1993].
March, 2002
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L*(y; v)=minx vT g(x, y)≤0
L*(y; v)=for all v∈{v|v≥0, iνi=1}

For subsets of u and v, the solution to this problem is a lower bound
for the global minimum.

This technique is useful when x and y are separable, because the
solution x and the Lagrange multipliers u obtained from the primal
can directly be used in the first set of constraints in the master, in
which the minimization with respect to x is unnecessary.

If the primal is infeasible at a given point y, an infeasibility min-
imization problem can be solved such as the following.

minx α

subject to

g(x, y)≤α1

where 1=[1 … 1]T. The solution x and the Lagrange multipliers v
obtained from this problem can be used to construct the second set
of constraints in the master, in which the minimization with respect
to x is again unnecessary.

The algorithm iterates between the primal and the master until
the upper and lower bounds converge together. Like outer approxi-
mation, this technique also needs constraint dropping strategies, and
is suitable for low rank nonconvex problems only.
3. Branch and Bound

This is the most widely used technique for global optimization
of various problems. Let us consider the following type of problem.

min f(x)

subject to

g(x)≤0
A x=c

where A and c are constant matrix and vector respectively.
The algorithm starts from relaxation of the above problem into a

convex problem over an initial box a≤x≤b. Let us replace the ob-
jective function f(x) by a convex envelope such as shown by dashed
curves in Fig. 4. A convex hull of the feasible region can be obtained
by replacing all nonconvex functions gi(x) by their convex enve-
lopes. The relaxed problem is now convex, and thus its local solu-
tion is guaranteed to be the global minimum. Furthermore, as this
is the solution to a relaxed problem, it is a lower bound for the glo-
bal minimum of the original problem.

The box is subsequently split into parts (branching). The solu-

tion to each subproblem is a lower bound in its region. The low
one of these is the lower bound for the global minimum of the 
ginal problem. If a solution satisfies the original constraints as w
the value of the original objective function at that point is an up
bound. The lowest upper bound is stored as a candidate for the
bal minimum. Meanwhile, every subproblem is discarded if it
infeasible or its solution is higher than the upper bound (boundi
The algorithm stops when the lower bound converges to the u
bound.

The efficiency of the branch and bound algorithm mainly d
pends on the tightness of the convex envelopes. The most c
monly used convex envelopes, which are also called underestim
can be classified as follows.
3-1. Linear Underestimators

A reverse convex term in a separable function φ(x)= jφj(xj) can
be replaced by a linear underestimator. For example, if φj(xj)=−xj

2,
aj≤xj≤bj, the tightest convex envelope is the following linear fun
tion.

ψj(xj)=− (aj+bj) xj+ajbj

Note that this approach can be applied to separable problems 
However, any problem can be converted to a separable prob
because a nonseparable term x1 x2 can be replaced by a separab
function w1

2−w2
2 where w1 and w2 are defined by the following linear

equality constraints.

w1=(x1+x2)/2
w2=(x1−x2)/2

3-2. Quadratic Underestimators
For general functions, quadratic underestimators can be use

proposed by Adjiman et al. [1996]. For a nonconvex function φ(x),
a≤x≤b, a convex envelope can be defined as follows.

ψ(x)=φ(x)+ jαj (xj−aj)(xj−bj)
αj≥max {0, −0.5 min λk [H(φ(x))]}

where λk (k=1, …, n) are the eigenvalues of the Hessian matrixH.
A problem in this approach is that determination of tight αj is again
a nonconvex optimization problem unless H is constant.
4. Interval Analysis

Convex envelopes and hulls can also be obtained by interval 
lysis based on the following arithmetic.

[a, b]+[c, d]=[a+c, b+d]
[a, b]− [c, d]=[a−d, b−c]
[a, b]×[c, d]=[min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
[a, b]/[c, d]=[min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/d)] if 0∉[c, d]

Unlike the case of linear or quadratic underestimators, the bra
and bound algorithm can directly be applied to problem (P). Le
start from an interval box X of variables x. For any Xk⊂X, if lb g(Xk)
>0 or lb h(Xk)>0 or ub h(Xk)<0, then the box Xk is infeasible. The
box Xk can also be discarded if lb f(Xk)>f(xo) where xo is a feasible
point. The interval boxes are repeatedly branched and bounded
the algorithm stops when a feasible point is found near the glo
lower bound.

The convex envelopes and hulls based on interval analysis
just constants and intervals respectively, and not tight at all. Th

∑

 ∑

∑

Fig. 4. Convex envelopes.
Korean J. Chem. Eng.(Vol. 19, No. 2)
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fore, the branch and bound procedure that uses interval analysis in
some cases requires extremely many subproblems. However, each
subproblem can be solved very efficiently because it only requires
simple interval arithmetic.
5. Handling Equalities

Many deterministic algorithms are applicable to specific types
of problems only. For example, the generalized Benders decompo-
sition algorithm described in this paper allows inequality constraints
only, and the underestimator branch and bound allows inequality
constraints and linear equality constraints only. Generally, algorithms
can be modified to accept linear equality constraints because they
do not cause nonconvexity. However, problems should be modi-
fied, except for algorithms such as interval branch and bound, if they
have nonlinear equality constraints.

The simplest method is to convert h(x)=0 into h(x)≤0 and h(x)
≥0. Note that h(x)≤0 and ihi(x)≥0 are also equivalent to h(x)=0.
Therefore, m equality constraints can be converted to 2m or m+1
inequality constraints. The generalized Benders decomposition can
now be applied to equality constrained problems. The linear under-
estimator branch and bound can also be applied to any problem be-
cause h(x) can be converted to a separable d.c. function c(x)+r(x)
where c(x) is convex and r(x) is reverse convex. In this case, 2m
inequality constraints c(x)+r(x)≤0 and −c(x) −r(x)≤0 are preferred
to m+1 inequalities, because summation of reverse convex terms
results in a larger gap between the original function and its convex
envelope.

The following procedure applies to general d.c. functions c(x)+
r(x) where c(x) is convex and r(x) is reverse convex. Let us define
new variables u=c(x) and v=r(x). Then, c(x)+r(x)=0 are equiva-
lent to linear equality constraints u+v=0, convex inequality
constraints c(x)−u≤0 and −r(x)+v≤0, and reverse convex inequal-
ity constraints −c(x)+u≤0 and r(x)−v≤0. Note that the last 2m re-
verse convex constraints can be summed to form a single reverse
convex constraint i [−ci(x)+ri(x)+ui−vi]≤0. Therefore, using 2m
extra variables, m nonlinear equality constraints can be converted
to m linear equality constraints, 2m convex inequality constraints,
and one reverse convex inequality constraint. As a result, all we
need, theoretically, is an algorithm that can solve a convex prob-
lem with a single reverse convex constraint, and all of the deter-
ministic algorithms reviewed in this paper can do it.

STOCHASTIC APPROACH

Stochastic algorithms, when run sufficiently long, are virtually
guaranteed to find the global optimum according to the following
convergence theorem [Bäck et al., 1991].

For minimization of objective function f(x),
1) Let xt+1=xt+N(0, σ) 1.
2) If f(xt+1)<f(xt), accept xt+1.
2) Otherwise, xt+1=xt.
3) Repeat for next t.
Then, for σ>0 and fmin>− ∞, lim t�∞ p{f(xt)=fmin}=1.

This means that for a random search based on a normal distribu-
tion, the probability of global optimality of the obtained solution
will eventually approach one. For stochastic algorithms to be effi-
cient, however, balancing is required between exploiting the best

solution (local search) and exploring the search space (global se
[Booker, 1987]. The above algorithm is biased towards local sea
and two representative methods that can be balanced are su
rized as follows.
1. Simulated Annealing

Let us consider a collection of atoms in equilibrium at a giv
temperature T. Displacement of an atom causes a change ∆E in the
energy of the system. If ∆E≤0, the displacement is accepted. If ∆E
>0, the probability that the displacement is accepted is exp(−∆E/
kT) where k is the Boltzmann constant. This process can be s
lated in optimization as follows.

For minimization of objective function f(x),
1) Take xnew randomly.
2) If ∆f=f(xnew)− f(xold)≤0, accept xnew.
2) Otherwise,
2) a) Take a random number w∈[0, 1].
2) b) If w≤exp(− ∆f/T), then accept xnew.
2) b) Otherwise, xnew=xold.
3) Control T, and repeat.

This algorithm is mostly applied to combinatorial optimization pro
lems, but suitable for unconstrained function optimization als
2. Genetic Algorithm

The theory of evolution can also be employed in optimizat
as follows.

For optimization of fitness function f(x),
1) Select a given size of population {xi} where xi is a chromosome

(binary vector).
2) At a given crossover probability, crossover xp and xq to generate xp'

and xq'.
3) At a given mutation rate, mutate xi.
4) Repeat.

This algorithm is based on the assumption that the best solu
will be found in regions of the search space containing relativ
high proportions of good solutions, and that these regions ca
identified by judicious and robust sampling of the space [Book
1987]. It is being widely applied case by case to special data s
tures in which problem specific knowledge is incorporated. S
modified genetic algorithms are referred to as evolution progra
[Michalewicz, 1996].

The original genetic algorithm uses binary representation of c
mosomes to be suitable for combinatorial optimization. Howev
this algorithm can also be applied to unconstrained function o
mization. In this case, floating point representation is more e
cient, in which the following operators can be used.

For randomly selected j∈{1, …, n},
1) Simple crossover: xp'=[x1

p, …, xj
p, xq

j+1, …, xn
q] and

xq'=[x1
q, …, xj

q, xp
j+1, …, xn

p]
2) Arithmetical crossover: xp'=w xp+(1−w) xq and

xq'=(1−w) xp+w xq

3) Uniform mutation: xj
i∈[aj, bj]

4) Boundary mutation: xj
i=aj or bj

5) Non-uniform mutation: Fine tune xj
i.

3. Handling Equalities
Stochastic algorithms do not suffer from the NP-hardness of

∑

∑
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problem, and thus they are considered to be suitable for large prob-
lems. However, these algorithms still have difficulties when applied
to chemical process design. The stochastic algorithms are based on
the random search technique. Since the evaluation of the objective
function is meaningful only at feasible points, they are suitable for
unconstrained or inherently inequality constrained optimization prob-
lems only. However, most chemical process design problems have
many equality constraints. Therefore, the problem or the algorithm
should be modified.
3-1. Problem Modification
3-1-1. Penalty Function Method

Constrained optimization problems can be converted to uncon-
strained problems as follows.

minx F(x, r)=f(x)+1/(2r) c(x)T c(x)

where r is a penalty parameter (>0), and c(x) is a vector of all active
constraint functions. As r�0, x converges to a local minimum x*,
but the Hessian matrix H[F(x, r)] becomes ill-conditioned. Further-
more, when there are too many equality constraints as in chemical
process design problems, it is difficult to keep the reformulated prob-
lem numerically stable.
3-1-2. Feasible Point Strategy

In order to avoid dealing with equality constraints in a stochastic
algorithm, a feasible point strategy can be adopted, in which feasi-
ble points can be found by solving an infeasibility minimization prob-
lem such as the following.

min c(x)T c(x)

where c(x) is a vector of all violated constraint functions. Another
form of infeasibility minimization problem is as follows.

min max{g(x), h(x), − h(x)}

As shown by Choi et al. [1999], finding a feasible point for a non-
convex problem is an NP-complete problem, and thus can be con-
sidered easier than finding the global optimum, which is NP-hard.

An equality constrained simulated annealing algorithm proposed
by Choi et al. [1999] solves the following inequality constrained
infeasibility minimization problem.

min α (I)

subject to

g(x)≤α1
h(x)≤α1
− h(x)≤α1
f(x)≤f*−ε+α

where 1=[1 … 1]T, and ε is an optimality tolerance (>0). Note tha
α<ε means that x is a feasible point at which the value of the o
jective function is lower than the previously found local minimu
f*. Implementation of this strategy is schematically described
Fig. 5.
3-2. Algorithm Modification
3-2-1. Decoding Strategy

Let us convert all inequality constraints g(x)≤0 in problem (P)
into equality constraints g(x)+s=0 where s is a vector of nonnega-
tive slack variables. Then we have the following type of problem

min f(x, y) (E)

subject to

h(x, y)=0
a≤x≤b
c≤y≤d

where x represents n−m design (independent) variables, y represents
m state (dependent) variables, and h: R

n
�R

m
(n>m). Assuming

that x can be decoded to y by an equation solver, this problem ca
be viewed as follows.

min f(x, y(x))

subject to

a≤x≤b

This type of problem is suitable for stochastic algorithms. Furth

Fig. 5. A stochastic method based on feasible point strategy. Fig. 6. A stochastic method based on decoding strategy.
Korean J. Chem. Eng.(Vol. 19, No. 2)
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more, chemical process design problems generally have small degrees
of freedom, and thus the above problem is expected to be small in
most cases. However, stochastic algorithms are inefficient for fine
local tuning, and thus a deterministic local algorithm is to be in-
corporated.

The decoding strategy can easily be implemented when h is linear
with respect to y, and is being widely used in algorithms devoted
to specific problems. For general problems, a robust equation solver
is required, and a Newton type algorithm can be used if a good initial
guess generator is available. A rough solution to an infeasibility min-
imization problem can serve as a good initial guess, and a stochas-
tic global optimizer can generate it with a large optimality tolerance.
Note that decoding is valid even if there are multiple solutions for
y at a given x, because the result is stochastic. Implementation of
this strategy is schematically described in Fig. 6.

DISCUSSION AND CONCLUSION

Outer approximation and generalized Benders decomposition
are suitable for low rank nonconvex problems only. Generally, how-
ever, chemical process optimization problems are high rank non-
convex problems. Therefore, branch and bound is the most effi-
cient deterministic method currently available, especially when linear
underestimators and interval analysis are incorporated to tighten
the subproblem boxes. However, the guarantee of global optimal-
ity is still computationally too expensive.

Stochastic algorithms inevitably take forever to obtain a solution
of which the global optimality is guaranteed. Therefore, we have
to adopt and use the currently best solution at some stage of the pro-
cedure, and if necessary, keep the procedure running for a long time
for a possibility of existence of a better solution. As mentioned be-
fore, the deterministic algorithms guarantee the global optimality
of the obtained solution, but they don’t give any useful information
but the lower bound on the global minimum until the procedure con-
verges and stops. Stochastic algorithms do not guarantee the global
optimality of the obtained solution, but continually improve tentative
solutions, and thus can give us useful results in a reasonable time
span.

Studies on global optimization indicate that most chemical pro-
cess design problems are still too tough targets. Deterministic al-
gorithms take too much computation time even for moderately sized
problems. Stochastic algorithms have difficulties in dealing with
equality constraints. Therefore, stochastic methods based on the
feasible point strategy or the decoding strategy are considered use-
ful. Further research on feasible point finding and equation solving
is suggested as future work.

REFERENCES

Adjiman, C. S., Androulakis, I. P., Maranas, C. D. and Floudas, C.
“A Global Optimization Method, αBB, for Process Design,” Com-
puters & Chem. Eng., 20, Suppl., S419 (1996).

Bäck, T., Hoffmeister, F. and Schwefel, H.-P., “A Survey of Evolutio
Strategies,” Proceedings of the Fourth International Conference
Genetic Algorithms, R. K. Belew and L. B. Booker, eds., Morga
Kaufmann, San Mateo, CA, 2 (1991).

Bagajewicz, M. and Manousiouthakis, V., “On the Generalized Be
ers Decomposition,” Computers & Chem. Eng., 15, 691 (1991).

Booker, L. B., “Improving Search in Genetic Algorithms,” Genetic A
gorithms and Simulated Annealing, L. Davis, ed., Pitman, Lond
61 (1987).

Choi, S. H., Ko, J. W. and Manousiouthakis, V., “A Stochastic Approa
to Global Optimization of Chemical Processes,” Computers & Chem.
Eng., 23, 1351 (1999).

Floudas C. A. and Visweswaran, V., “A Global Optimization Algorithm
(GOP) for Certain Classes of Nonconvex NLPs-I. Theory,” Com-
puters & Chem. Eng., 14, 1397 (1990).

Geoffrion, A. M., “Generalized Benders Decomposition,” J. Opt. The-
ory Applic., 10, 237 (1972).

Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and M
chine Learning,” Addison-Wesley, Reading, MA (1989).

Han, J. R., Manousiouthakis, V. and Choi, S. H., “Global Optimizati
of Chemical Processes Using the Interval Analysis,” Korean J. Chem.
Eng., 14, 270 (1997).

Horst, R. and Tuy, H., “Global Optimization: Deterministic Approache
2nd ed., Springer-Verlag, Berlin, Germany (1993).

Kirkpatrick, S., Gelatt, Jr. C. D. and Vecchi, M. P., “Optimization b
Simulated Annealing,” Science, 220, 671 (1983).

Konno, H., Thach, P. T. and Tuy, H., “Optimization on Low Rank No
convex Structures,” Kluwer Academic Publishers, Dordrecht, T
Netherlands (1997).

Michalewicz, Z., “Genetic Algorithms+Data Structures=Evolution Pr
grams,” 3rd ed., Springer-Verlag, New York (1996).

Ratschek, H. and Rokne, J., “New Computer Methods for Global O
mization,” Ellis Horwood, Chichester, England (1988).

Ryoo, H. S. and Sahinidis, N. V., “Global Optimization of Nonconve
NLPs and MINLPs with Applications in Process Design,” Comput-
ers & Chem. Eng., 19, 551 (1995).

Soland, R. M., “An Algorithm for Separable Nonconvex Programmi
Problems II: Nonconvex Constraints,” Management Science, 17,
759 (1971).

Vaidyanathan, R. and El-Halwagi, M., “Global Optimization of Non
convex Nonlinear Programs via Interval Analysis,” Computers &
Chem. Eng., 18, 889 (1994).
March, 2002


	Global Optimization Methods for Chemical Process Design: Deterministic and Stochastic Approaches
	Soo Hyoung Choi† and Vasilios Manousiouthakis*
	School of Chemical Engineering and Technology, Chonbuk National University, Jeonju 561-756, S. Ko...
	Abstract�-�Process optimization often leads to nonconvex nonlinear programming problems, which ma...
	Key words:�Global Optimization, Deterministic, Stochastic Approach, Nonconvex, Nonlinear Program
	INTRODUCTION
	METHODOLOGY
	DETERMINISTIC APPROACH
	STOCHASTIC APPROACH
	DISCUSSION AND CONCLUSION
	REFERENCES






