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Abstract—Heat transfer between a wafer and electrode has been studied in a planar-type inductively coupled plasma
reactor in terms of temperatures of wafer, chamber wall and electrode. A substantial increase in the wafer temperature
was attributed mainly to bombardment of incident ions onto the wafer surface. The decrease in the wafer temperature at
a higher pressure was attributed to the decrease in plasma density and a resistance to heat transfer in a micro gap formed
between the wafer and the electrode. Compared to the case of no rf-chuck power applied, the wafer temperature when
the electrode was biased with 13.56 MHz rf power showed a greater increase mainly due to increased ion bombard-
ment. Since the electrode having a water-cooled-backside geometry gains heat from the bulk plasma, it may lead to
fast etch rates of hard materials whose etch products are less volatile at low temperatures, but not be good for pho-
toresist materials.
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INTRODUCTION Plasma
In recent years, ultra-large integrated circuit and electronic device Energy boss S
fabrication has relied heavily on plasma etching and deposition o oy Ttk Q00
thin films on semiconductor wafers [Liberman and Lichtenberg, Waler — :
; Mlicro gap

1994; Givens et al., 1994; Hahn et al., 1999, 2000, 2001; Lee eta T J
1999]. In plasma processing, the wafer temperature and its spati |

variation across the wafer surface are important parameters. Pr | 1 M

cess outcome, such as etch rate, etching uniformity and selectivit 5,

can be a strong function of the wafer temperature because etch re: T 4

tion rate depends exponentially on temperature. Because of thi Cooled Energy boes by

strong temperature dependence, even minor variation in wafer ten P — Cooling wier ":'I‘It'__*:':;h

perature is magnified, causing a large variation in etching rates across }

the wafer [Kiilamaki and Franssila, 1999]. Fig. 1. Schematic diagram of an electrode cooling system in a plas-

In general, parameters of bulk plasma are the dominant sources ~ Ma etcher.
of wafer heating [Givens et al., 1994]. The effect of wafer heating
is thus connected to the plasma ion temperature that is essentialbautions are not taken to increase the contact area between the wafer
equal to the one of background neutral gas species. It is worttand the electrode, a large resistance to heat transfer can exist be-
while to note that the ion temperature also has an effect of ion ditween the bottom surface of the wafer and the cooled electrode
rectionality causing a large variation in etching profile [Ono and [Pearton et al., 1989]. For example, when the wafer is directly placed
Tuda, 1997]. on the cooled electrode, it contacts the electrode surface. Thus a

Fig. 1 shows a typical scheme of a wafer sitting on a susceptomicro gap exists between the bottom surface of the wafer and the
(or electrode) in a plasma reactor. The wafer receives energy frortop surface of the cooled electrode, as shown in Fig. 1. Under vac-
the plasma by two major mechanisms, an exothermic chemical reactum, this gap contains very few molecules to transfer heat from the
tion and an energetic ion bombardment. The dominant heating mechivafer to the electrode, resulting in a large resistance to heat transfer
anism in high-density plasma reactors, such as electron cyclotrofretheway and Aydil, 1996].
resonance, helicon, and inductively coupled plasmas, involves col- Although it is important to understand the heat transfer between
lisions of particles with accelerated electrons and ion bombardmenthe wafer and susceptor surfaces, litle work has been reported, es-
whereas heat released by etch reactions is more important in higipecially in a high-density plasma system. In this paper, to elucidate
pressure plasma systems. During the plasma processing, the wakke heat transfer between the wafer and the electrode an experimen-
is kept at a constant temperature by cooling from the backside. Undéal study has been carried out in a planar-type inductively coupled
typical conditions, energy loss by the backside cooling is the domplasma (ICP) reactor.
inant heat transfer mechanism out of the wafer. However, if pre-

EXPERIMENTAL
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applied to control plasma density and ion energy (or dc-bias volt:
age) respectively. Detailed descriptions of the ICP system are avai
able elsewhere [Cho et al., 2000]. Unless mentioned, the ICP powve
was fixed at 700 W and gas feed rates were held at 5 sgtdh Cl
scecm A, but the rf chuck power was varied from 0 to 150 W. When
the thermocouple was inserted into the rf plasma, the accuracy ¢
temperature measurement was reduced mainly due to rf noise. Thel
fore, to minimize such a noise problem, we used a single detector. )
with low pass fitter circuits (Hanyoung Co., HYP-100). Accuracy Fig. 3. Effect of the reactor pressure on electron QEnsny a_nd elec-

! . 4 tron temperature, measured by a Langmuir probe in CJ
of temperature measurements was then identified by comparing Ar inductively coupled plasma.
the values of temperature measured when “plasma on” with those
measured in “plasma off’ phase. Since there was no difference ob-
served between the two values, we were able to confirm that thévely. This result indicates that there is a substantial heat transfer
effect of if noise was diminished. Temperatures of the wafer, chambdrom the plasma to the wafer to the electrode. The decrease in the
wall, and the cooling water were measured before and after plasmaafer temperature at a higher pressure is attributed to two reasons:
ignition. In order to facilitate the interpretation of measured results,the decrease in plasma density (or electron density) and less resis-
plasma density and electron temperature were also measured kgnce to heat transfer between the wafer and the electrode at a higher
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using a Langmuir probe system. pressure. First, the plasma density generally decreases with pres-
sure, resulting in less ion flux toward the wafer with pressure (see
RESULTS AND DISCUSSION Fig. 3). Less flux of incident ions onto the wafer surface means less

energy transfer from the bulk plasma. Second, a micro gap formed
Fig. 2 shows the effect of pressure on temperatures of the Galdetween the wafer and the electrode causes a resistance to heat trans-

walfer, the chamber wall, and the backside of electrode that is coolefgr. In this work, the wafer was placed directly on the top of the cooled
by cold water. During these experimentgAEIplasmas were gen-  electrode. Under vacuum, the micro gap contains very few mole-
erated at 700 W ICP power without applying the rf power to the cules that play a role in transferring heat from the wafer to the elec-
electrode. Initial temperatures (i.e., temperatures before plasma ignirode, which results in a large resistance to heat transfer. As the re-
tion) were 10, 21, and°® for the wafer, the chamber wall, and the sistance is reduced by increasing the number of molecules in the
electrode-cooling water, respectively. Temperatures were measuradicro gap, a decrease in the wafer temperature is expected at higher
at 1 minute after ignition. Compared to the cold wafer, a substanpressures (>20 mTorr).
tial increase in the wafer temperature resulted from the plasma. The In order to examine the effect of f chuck power on wafer heat-
temperature of GaN remained relatively constant afQQ® to ing, the rf chuck power of 13.56 MHz was applied to the elec-
20 mTorr, but decreased to ®5at higher pressures (>20 mTorr). trode. Measured temperatures for the cases of 100 W and 150 W
However, the chamber wall and the cooling water showed little de-are shown in Figs. 4 and 5, respectively. Compared to the case of
pendency of pressure, kept almost constant’@ aad 5C, respec-  no rf-chuck power (Fig. 2), the wafer temperature decreased grad-
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Fig. 2. Effect of the reactor pressure on temperatures of the wafer,  Fig. 4. Effect of the reactor pressure on temperatures of the wafer,
the chamber wall, and the electrode backside when no rf the chamber wall, and the electrode backside when the rf
chuck power was applied. chuck power of 100 W was applied.
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applying the rf power to the electrode.
To examine the effect of ion bombardment on heating mechafig. 7. Effect of the ICP source power on temperatures, electron
nism, caused by dc bias, the temperature of cooling water was varied density, and dc bias in Ar plasma.
from 5 to 23C for the cases of rf chuck power on and off, and the
results are shown in Fig. 6. The wafer showed almost the same terperature increased monotonically with the ICP source power in both
perature of the cooling water before plasma ignition. However, afteiAr and C/Ar plasmas. Electron density substantially increased with
ignition, the wafer temperature increased up to’Cond kept al-  the source power, while the dc bias decreased with it, typical phe-
most constant until the rf chuck power was applied. When the rhomena in a high-density plasma system [Hahn et al., 1999, 2000].
power of 100 W was applied to the electrode the wafer showed &he increase in the wafer temperature is attributed mainly to an in-
further increase in temperature, indicating that ion bombardmentrease in electron density with the source power, indicating that a
enhanced the heating of the wafer. dominant mechanism of the wafer heating effect is bombardment
Fig. 7 shows the effect of the ICP source power on the temperasf incident ions onto the wafer surface.
tures of wafer, chamber wall, and electron density. The wafer tem- Fig. 8 represents the wafer temperature as a function of time, meas-
ured with varying the ICP source power in Ar discharges. Although
not illustrated the @Ar plasma showed similar results to the Ar
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Fig. 6. The temperature of wafer vs. the cooling water temperature (min.)
with and without applying the rf chuck power. Fig. 8. Wafer temperature as a function of time in Ar plasma.
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