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Abstract−−−−Simple shear flows of dilute suspensions of spherical bubbles at large Reynolds numbers are studied by
using numerical simulations and kinetic theory. It is shown that the mean-square bubble velocity is very sensitive to
the volume fraction and Reynolds number of the bubbles as well as on initial conditions. The balance of energy con-
tained in bubble velocity fluctuations plays an important role in the rheology of the dispersed phase, which is generally
non-Newtonian.
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INTRODUCTION

Bubbles suspended in a liquid are found in nature and in many
industrial processes such as bubble columns [Bando et al., 2000;
Kim et al., 2002] and centrifuges in the petrochemical industry, cool-
ing devices of nuclear-reactor systems and air entrained in the form
of bubbles in rivers and at the surface of the oceans. Therefore, it is
desirable to develop an analytical framework for predicting macro-
scopic behavior of bubble suspensions. A series of recent papers
[Bieshuvel and Gorissen, 1990; Sangani and Didwania, 1993a; Zhang
and Prosperetti, 1994; Bulthuis et al., 1994] provide a rigorous der-
ivation of the equations of motion for a suspension of bubbles with
potential flow interactions. An important property arising in these
equations is the dispersed-phase pressure tensor, which depends on
hydrodynamic and collisional interactions between the bubbles and
also on their velocity distribution.

A uniform suspension of bubbles rising due to their buoyancy is
subject to instabilities that lead to volume fraction variations. One
mechanism that has long been studied is the instability to void frac-
tion waves resulting from the bubble’s added mass and the depen-
dence of the drag force on volume fraction [Bieshuvel, 1995]. San-
gani and Didwania [1993b] and Smereka [1993] have recently ob-
served a second instability mechanism in dynamic simulations of
potential flow. Their simulations showed that bubbles form large
clusters in planes normal to gravity. In other words, the uniform
state of bubble suspension in the presence of nonzero mean rela-
tive motion between the bubbles and surrounding liquid is gener-
ally unstable. The basic mechanism by which this instability oc-
curs is as follows. According to the potential flow theory, the pres-
sure in the fluid between two bubbles rising side by side is lower
than the pressure away from the bubbles. This Bernoulli effect causes
an attractive force between pairs of bubbles that are oriented hori-
zontally. Similar consideration of two bubbles oriented vertically
and rising through a liquid shows that there will be a repulsive force
between them causing them to move away from each other. Thus,

in a suspension containing many bubbles, pairs of bubbles alig
horizontally occur quickly and grow further with time to form clu
ters in horizontal planes. The observed instability in the numer
simulations was thus explained in terms of microscale forces oc
ring between pairs of bubbles. In either case, the mechanism
may tend to stabilize the homogeneous suspension is the po
bubble pressure created by fluctuations in the bubble velocit

The purpose of the present work is to determine the distribu
of bubble velocities in a suspension of bubbles subject to sim
shear flow with potential flow interactions among the bubbles. T
will be accomplished by using a numerical simulation method si
lar to that developed in Sangani and Didwania [1993b] and the
sults of the simulation will be interpreted by using kinetic theori
It will be seen that the bubble collisions induced by shearing mo
can provide a quite effective mechanism for enhancing the bu
velocity fluctuations.

The application of results based on the potential flow inter
tions to physical systems must be approached with caution. The
tential flow approximation is rigorously valid for bubbles with sli
boundary conditions in the dual limits of high Reynolds number a
low Weber number (so that bubble deformation can be neglect

The best system for approaching these limits is bubbles with
ameters of about 1 mm in water for which the Reynolds numbe
about 130 and the Weber number about 0.5. Even in this cas
limits are only approximately satisfied and the value of the pot
tial flow approximation may depend upon the nature of the in
actions being described. For example, potential flow would be 
pected to be more accurate for collision between bubbles mo
with substantially different speeds in different directions than wh
the bubbles rise at nearly the same velocity. In more general
cumstances, such as solid-liquid or liquid-liquid suspensions 
suspensions of bubbles with larger diameters (4 mm), which
typical of most of the experimental literature, boundary layer se
ration plays an important role in the dynamics.

Other methods currently under development [Ladd, 1990] sh
promise for the possibility of simulating suspensions including b
ble deformation and continuous phase vorticity. However, we 
lieve that the relatively extensive simulation results and the me



364 S.-Y. Kang and A. A. Sangani

ic

.

ajec-
 (as-

to-

em-

a],

3b].
with
]
ereas
hear.
res-

d D/
n
tion
 can
 (i) a
1],

gle
tude
ally,
ons
rtic-

ry
f an
e

nistic understanding that can be developed for bubbles with poten-
tial flow interactions will provide a useful reference for understand-
ing these more complex suspensions.

In section 2 we briefly describe the numerical simulation proce-
dure and in section 3 we present the results of simulations and an
approximate kinetic theory of dilute bubbly liquids. We find that
the steady state velocity variance depends, in a rather complicated
manner, on the volume fraction φ of bubbles and the Reynolds num-
ber Res based on shear rate. At large Res and small φ, we find mul-
tiple steady states: if the initial variance is relatively large, then the
final state variance is very large, of O((Res/φ)2). We refer to this as
an ignited state. On the other hand, if the initial variance is small,
then the steady state, which we refer to as a quenched state, has a
vanishingly small variance.

The multiple steady states are shown to arise due to nonlinear
dependence of the dispersed-phase shear viscosity on the velocity
variance of bubbles or, equivalently, the temperature of the dis-
persed-phase. We also find that the multiple steady states are observed
are only when Res>88 and φ is sufficiently small (φ<φc(Res)). For
smaller Res, the final state is quenched regardless of the initial con-
ditions, and for Res>88 and φ>φc(Res), the final steady state is al-
ways ignited. We also find that the dispersed-phase rheology exhib-
its normal stress differences. Finally, in section 4 we assess approx-
imate conditions under which the shear-induced variance may be
significant in stabilizing flows of bubbly liquids through pipes.

The results presented here are preliminary and limited to dilute
bubbly liquids. We plan to report more complete investigation in-
cluding the simulations and theory for non-dilute bubbly liquids and
the question of stability of bubbly liquids under simple shear and
gravity in a future publication.

THE SIMULATION METHOD

The simulation method is described in detail in Sangani and Did-
wania [1993b]. Here, we briefly summarize the method indicating
some modifications we have made in the present study. We con-
sider motion of N spherical bubbles of radius a placed within a unit
cell of periodic array. The velocity wα of a representative bubble α
is written as a sum of the ensemble-averaged mixture velocity <u>
and a relative velocity V:

(1)

where xα is the position of the center of the bubble at time t. Sim-
ilarly, the velocity of the fluid u(x, t)=<u>+u' is written as a sum
of <u> and u' where u' is the disturbance flow induced by the bub-
bles moving with the relative velocity wα(t). Disturbance u' is as-
sumed to depend only on the position and the relative velocities of
the bubbles. Thus, by definition <u'>=0. In simulations we enforce
this condition by requiring that the average of u' over the unit cell
vanishes at any given instant. We are interested in a large Reynolds
number situation where the hydrodynamic interactions are domi-
nated by potential flow, and therefore we write u'=∇ϕ and solve
∇2ϕ=0, subject to the boundary condition ∇ϕ·n=Vα·n on the sur-
face of bubbles. Here, n is the unit outward normal vector on the
surface of the bubble α. As shown in Sangani et al. [1991] and in
Sangani and Didwania [1993b], the velocity potential can be deter-
mined to a very good accuracy with a point-dipole approximation

(2)

where S1 is a Green’s function for Laplace equation in a period
domain [Hasimoto, 1959; Sangani et al., 1991] and Dα is the dipole
strength. The condition that the average of u' over the unit cell must
vanish is satisfied by taking (cf. Sangani and Didwania [1993b])

(3)

where τ is the volume of the unit cell. Physically, G is the back flow
caused by the relative motion of the bubbles. To calculate the tr
tory of bubbles we must apply force balance on each bubble
sumed to be massless). The impulse defined by 
plays a role analogous to the momentum of a particle in New
nian mechanics. We write the force balance as

(4)

where Fg=−4πa3/3 g is a force due to buoyancy, Fv is a viscous force,
F<u> is a force due to temporal and spatial variations in the ens
ble-averaged velocity <u> of the mixture, Fc

α is a force on the bub-
ble during its collision with other bubbles, Fp

α is a force due to po-
tential flow interactions. As shown in Sangani and Didwania [1993
the last quantity is evaluated from

(5)

where the singular part of S1 must be removed from S1 for γ=α be-
fore evaluating the third derivative of S1. The viscous force is evalu-
ated by using a method described in Sangani and Didwania [199
The main modifications in the present study are concerned 
the evaluation of F<u> and Fc. In Sangani and Didwania [1993b
we considered a special case of constant average velocity, wh
in the present study we are interested in the case of simple s
For this purpose we use a slightly modified version of the exp
sion proposed by Auton et al. [1988]

(6)

where the derivatives of <u> are evaluated at x=xα, m=4πρa3/3
is the mass of fluid having the same volume as the bubble an
Dt=∂/∂t+<u>·∇ is a time derivative following the average motio
of the mixture. While we do not discuss about using (6), this rela
is consistent with several known results. The above expression
be shown to give the correct force on a bubble for the cases of
small amplitude oscillatory flow examined in Sangani et al. [199
(ii) pure extensional flow <ui>=eijxj with eij=eji, at least for which
the flow is irrotational, and iii) the simple shear flow past a sin
spherical bubble with weak shear. No restrictions on the magni
of φ are needed for the validity of (6) in the above two cases. Fin
(6) also gives the correct lift force on a bubble in dilute dispersi
in the presence of simple shear, for which the magnitude of vo
ity is small compared to V/a where V is a characteristic magnitude
of bubbles’ relative velocity. Thus, we expect it to provide a ve
good approximation for ignited states. Note that for the case o
isolated bubble with velocity Vj

α, the expression (6) reduces to th

wα t( )  = u〈 〉 xα t,( ) + Vα t( ),

ϕ  = G x⋅  − Dα ∇S1 x  − xα( ),⋅
α = 1

N

∑

G  = 4π τ⁄( ) Dα

α = 1

N

∑

I α
 = − ρ ϕn sd

S
α∫

dI α

dt
------- = Fα

 = Fg + Fv
α

 + Fu
α

 + Fp
α

 + Fc
α,

Fp
α

 = − 4πρ DαDγ : ∇∇∇S1 xα
 − xγ( ),

γ = 1

N

∑

F u〈 〉 i,
α

 = m
D ui〈 〉

Dt
------------- xα( ) − I j

α∂ uj〈 〉
∂xi

----------- xα( ),
May, 2002
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one given by Auton et al. [1988] upon substituting Ij 
α=mVj

α/2.
In simulations of non-deformable bubbles with potential flow, it

is commonly observed that the bubbles will come into contact while
still moving at a finite relative velocity. In a physical suspension
such a collision could lead to a bubble bounce or to coalescence
depending on the Weber number based on the relative velocity. For
the sake of simplicity in the simulation, it is convenient to assume
that the bubbles always bounce and this can be achieved in prac-
tice without violating the free slip boundary condition on the bubble
surface through the addition of salt to the suspending water [Lessard
and Zieminski, 1971; Tsao and Koch, 1994]. Thus, we include a
collisional force in the simulations to achieve an energy and momen-
tum conserving bubble bounce. The collisional force Fc was evalu-
ated in Sangani and Didwania [1993b] by assuming the collision
process to be instantaneous and momentum conserving. This has
some difficulties in numerical implementation. To overcome this
we used a soft core repulsive potential to model the collision process.
Specifically, the collision force was taken to be

(7)

Here Γaγ if bubbles α and γ are not overlapping. Otherwise, Γaγ=Γc

 where Γc is a constant and  is the component of the relative
velocity Vα−Vγ along the line joining the position of the bubbles at
the onset of overlap.

The numerical algorithm consisted of determining the force on
each bubble given position and impulse of all the bubbles in the
suspension and integrating Iα=Fα and xα=vα using a fourth-order
Runge-Kutta scheme. This method is more efficient and faster than
the modified Euler algorithm used in Sangani and Didwania [1993b]
for the integration of time. In the Runge-Kutta scheme, bubbles can
be slightly overlapped depending on the time step inducing the inclu-
sion of collisional force from soft core potential in determining new
velocities of bubbles. The time step for integration was chosen to
scale with the root-mean-squared velocity of the bubbles.

SIMULATION RESULTS AND KINETIC THEORY
FOR SIMPLE SHEAR MOTION

In this paper we shall consider simple shear motion of dilute bub-

bly liquids under microgravity, i.e. g=0, and <ui>=γx2δi1. The dis-
tances are rendered non-dimensional with a, the velocity wit
and the time with 1/γ. Typical simulation results are illustrated in
Fig. 1 which shows velocity variance <V2> as a function of time
for φ=0.005 at three different Reynolds numbers Res=γa3/µ. We
see that the final steady state, at Res=140, depends on the initial con
ditions of velocity variance. If the bubble suspension is stirred s
ficiently before shearing, then the final state has very large velo
fluctuations. We shall refer to this as the ignited state. If, on the other
hand, the initial velocity fluctuations are small, then the final st
has very small velocity fluctuations; the bubbles essentially foll
the imposed shear. We shall refer to this as the quenched state. Such
multiple steady states are not observed for all Res and φ, the vol-
ume fraction of bubbles. For example, as seen in Fig. 1, the 
state is the ignited state when Res=170 regardless of the initial con
ditions. And, similarly, the final state is always the quenched s
when Res=80.

Before we present an approximate kinetic theory and a more
tailed comparison between the theory and numerical simulation
will help to have a qualitative understanding of the phenomen
The steady state variance is determined by balancing betwee
energy input in shearing the dispersion and the viscous energy
sipation as shown in Fig. 2 graphically. The former can be appr
mated to equal µs

*γ2 while the latter to 12πµna<V*2>. Energy input
by shearing has non-linear dependence on velocity variance wh
as energy loss due to viscous dissipation is linearly dependen
temperature. From this balance, two stable solutions and one
stable solution exist. The steady state is reached relying on the i
velocity variance. When the initial variance is below the unsta
solution, the quenched state is reached. The ignited state will b
complished when the initial variance is above the unstable s
tion. As volume fraction increases, the energy input line will sh
to dotted line resulting in one stable steady state at higher vol
fractions. Here, µs

* is the (dimensional) dispersed-phase shear v
cosity, n is the number density of bubbles, and <V*2> is the di-
mensional velocity variance. In the ignited state, the collision ti
τc=a/(φ<V*2>1/2) is much shorter than the viscous relaxation tim
τv=ρa2/(18µ), and the leading order velocity distribution as Res�∞
is isotropic Maxwellian owing to rigorous collisions of bubble
Thus we can estimate µs

* from the kinetic theory of gases by takin
the mass of bubbles to be their virtual mass m/2 and the mean
path to be a/φ to yield µs

*~ρa<V*2>1/2. The energy balance then show

Fc
α

 = − ∇ ϕαx c   with   ϕc = Γαγ 2a − xα
 − xγ  [ ]3.

γ = 1

N

∑
α = 1

N

∑

∆ni
αγ ∆ni

αγ

Fig. 1. Temperature as a function of time, initial condition at var-
ious Reynolds numbers and volume fraction φφφφ=0.005.

Fig. 2. Graphical demonstration of multiple steady states in shear-
ed bubble suspension.
Korean J. Chem. Eng.(Vol. 19, No. 3)
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that <V2>~(Res/φ)2γ2a2. In the quenched state, <V2> is very small,
and, consequently, τv<<τc. Thus, the majority of the bubbles move
with the velocity of the fluid. The velocity distribution is expected
be very different from Maxwellian because bubbles relax close to
the local fluid velocity. The initial conditions influence the final steady
state for intermediate values of Res by setting up the initial value of
the collision time. At smaller Res, the viscous relaxation time is small
enough to dissipate the fluctuations leading always to the quenched
state while the fluctuations induced by the imposed shear are suf-
ficient at large enough Res to eventually make τc<<τv correspond-
ing to the ignited state.
1. Kinetic Theory

For a spatially homogeneous dispersion of bubbles, the velocity
distribution function f(V) satisfies

(8)

Since φ is very small, the bubbles only undergo occasional interac-
tions. It is well known that potential flow bubbles often undergo
actual collisions and Tsao and Koch [1994] showed that for low
Weber number bubbles with short-range repulsive forces these col-
lisions are nearly elastic. In this simple kinetic theory we will neglect
the hydrodynamic interactions between bubbles and treat the colli-
sions as perfectly elastic. Substituting in (4) Fg=Fp=0, Fv=−12πµaV,
I=mV/2, F<u>,i=−(1/2)mV1δi2 (lift force), expressing the contribution
due to the collisional force in the notation of Chapman and Cowl-
ing [1970], and non-dimensionalizing we obtain

(9)

where the Stokes number, St=Res/18=γτv=ργa2/(18µ), is a non-di-
mensional viscous relaxation time and ∂ef/∂t is the rate of change in
f at a fixed point due to collisional encounters. As shown in Chapter
3 of Chapman and Cowling, this latter quantity is expressed in terms
of an integral

(10)

Here, w=<u>+V is the velocity of a representative bubble in col-
lision with another bubble with velocity w1, the velocities of the bub-
bles at the end of the collision encounter being w' and w'1, and k
and k1 are parameters that depend on the relative velocities and ori-
entation of the bubbles at the onset of the collision. For small φ we
expect the dispersed-phase pressure to be dominated by its kinetic
part and therefore Pij ≈Pk

ij=n<IiVj>≈(1/2)ρφ<ViV j> (cf. Sangani
and Didwania [1993a]). We shall non-dimensionalize pressure by
ργ2a2/2.

To determine the pressure and velocity variance, we multiply (9)
by φViV j and integrate over the velocity space to obtain

(11)

where, in obtaining the terms inside the square brackets on the left-
hand side, use has been of integration by parts, and

(12)

To make further progress we need to determine f and Φe(Pij). Exact

solution for f is rather difficult to obtain and hence we have dev
oped approximate methods. First, we develop an approximatio
which the shear-induced collisions are neglected in evaluating∂ef/
∂t, i.e., the actual velocities w, w1, etc. in (10) are replaced by the
relative velocities V, V1, etc. The resulting theory will explain the
origin of multiple steady states but not the absence of quenched
at high enough Res. The theory will be subsequently modified t
include the shear-induced collisions which play an important r
in the behavior of quenched states.

We have developed two approximate theories for evaluatingΦe

(Pij). Both give identical results. One is based on the method du
Grad [1949] in which f is expanded in a series of Hermite polyno
mials:

(13)

where fM corresponds to an isotropic Maxwellian distribution. Th
constant aij is related to the second moments of velocity and te
perature T by

The trace aii is zero because the bubble phase temperature is 
third of the velocity variance. The series is truncated keeping o
the first two terms and (10) and (12) are evaluated in terms oij.
Substituting for Φe(Pij) in (11) and solving the resulting equation
then yields aij and Pij. In the other method, which we describe 
more detail here, we model the collision process as similar to 
between Maxwell molecules. Thus, we assume that the force F be-
tween two bubbles is repulsive and along the line joining the ce
of the two bubbles separated by a distance r with F=κr−5 where κ is a
constant of proportionality. For this special case it turns out that
collision term (10) assumes a particularly simple form and one fin

(14)

where p=1/3Pkk and λ is a constant related to κ. Now in the limit
St�∞, we expect the variance to become very large and the 
lision term on the right-hand side of (9) to dominate leading to
isotropic Maxwellian velocity distribution. The dispersed-phase v
cosity will then be expected to approach the viscosity of dilute 
consisting of hard-sphere molecules. Matching with the known 
pression for that viscosity requires

(15)

T≡<V2>/3 being the bubble phase temperature. This choice of λ* is
equivalent to choosing the force law constant κ of Maxwell mole-
cules to be proportional to T.

Since T1/2 in due course will be shown to be O(1/φ), it should be
noted that λ*φ=O(1) and the right-hand side of (11) is the same or
of magnitude as the other terms in that equation in the limit φ�0.
Thus, we need to keep the collision term in our analysis even
very dilute suspensions. Now substituting (14) and (15) into (1
using p=φ<VkVk>/3=φT, and solving for the steady state condition
we obtain

(16)

∂f
∂t
----- + ∇v V f( )  = 0⋅

∂f
∂t
----- − 

∂
∂V k

--------- δk2V1 + St
− 1Vk( )f[ ]  = 

∂ef
∂t
------

∂ef
∂t
------  = dw1dkk1[f w'( )f(w'1)  −  f w( )f w1( )]∫∫

∂Pij

∂t
-------- + Pj1δi2 + P1iδj2 + 2St

− 1Pij[ ] = Φe Pi j( ),

Φe Pi j( ) φ dVV iV j

∂ef
∂t
------.∫≡

f V( ) = 1+ 
1
2
--- aij  − 

1
3
---δi jakk 

  ∂2

∂V iV j

------------- + Λ fM,

vivj〈 〉 = T δi j  + ai j( ).

Φe Pi j( )  = λ* φ pδi j  − Pi j( ),

λ*
 = λT1 2⁄    with   λ = 

24

5 π
----------

P11 − P22 = 
P12

St
− 1+ φλT1 2⁄

---------------------------- = 
λφ2T3 2⁄

St
− 1+ φλT1 2⁄

----------------------------,
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and P23=P31=0. To complete the solution we need to determine T.
This is accomplished by taking the trace of (11) to yield at steady
state the energy equation for the dispersed phase

(18)

according to which the work done in shearing the suspension is dis-
sipated by the viscous drag. Substituting for P12 from (17) into (18)
yields a cubic equation for T1/2 whose three roots including zero are
given by

(19)

where we have used the numerical estimate of λ from (15).
It is easy to show that T2 corresponds to an unstable state so that

the quenched and ignited states we found in numerical simulations
(cf. Fig. 1) correspond respectively to T1 and T3. Moreover, we see
that the ignited state exists only when Res=18St exceeds a critical
value given by Recr=18 =88.18…. This explains why the final
state is the quenched state regardless of the initial variance for Res=
80. For Res=140, the variance corresponding to the unstable state 2
is approximately 4.3 according to (19). Thus, as discussed in the
earlier, if initial variance is smaller than this value, the final state
must be the quenched state, and a higher initial variance should lead
to the ignited state. Simulations for Res=140 qualitatively agree with
this prediction although we find that even a slightly higher initial
variance of 6 leads to a quenched state. In fact, the variance reaches
a maximum of about 15 before eventually decreasing to a vanish-
ingly small value corresponding to the quenched state. This quanti-
tative discrepancy may arise due to a number of reasons including
(i) the neglect of shear-induced collisions in the theory, (ii) finite
number of bubbles (N=32) used in the numerical simulations, (iii)
the use of soft core repulsive potential in simulations, and (iv) the
neglect of hydrodynamic interactions in the theory. Finally, we see
that the theory we have presented fails completely in the case of
Res=170 in predicting the existence of only one stable state.

The theory we have presented so far is adequate for determining
the steady state variance in the ignited state for which the root-mean-
squared velocity is much greater than γa and for giving the crite-
rion for extinction of the ignited state, i.e. Res<Recr. However, the
preceding theory gives poor estimates for T1 and T2 because it ne-
glects shear-induced collisions which are important for these two
states.

To improve the theory, we now consider the limit in which the
root-mean-square velocity is much smaller than γa, a situation ap-
plicable to the quenched state. Since the collisions are infrequent in
this state, τv<<τc and the majority of bubbles travel with the ve-
locity of the fluid. Therefore, in this limit Φe(Pij) (cf. (12)) can be
determined from simple geometric considerations by using w=<u>
to yield

(20)

and Φe(P13)=Φe(P23)=0. Substituting for Φe(Pij) from (18) into (9)
and solving for steady state conditions yield

(21)

(22)

Thus, the quenched state variance is dominated by the value of 2
2>

and equals roughly (64π/315)St3φ in the limit of small φ for Stokes
numbers of magnitude 5 or greater. At φ=0.005 and Res=18St=
140, the conditions for the simulations shown in Fig. 1, this giv
an approximate variance of 1.5 whereas the simulation gave a va
ingly small number. This occurs because the bubbles arrange t
selves eventually in positions where avoid collisions making th
velocities the same as the local fluid velocity and it is therefore
artifact of the simulation with periodic boundary conditions. It 
possible to avoid this problem in simulations that neglect hydro
namic interactions by using the Direct-simulation Monte Carlo me
od [Kumaran et al., 1993].

We have shown that the ignited state exists for all Res>Recr. Now
we shall determine in what part of this regime, one has mult
steady states and in what portion only the ignited state exists. I
shear-induced variance Res

3φ is greater than the variance of the un
stable state 2, i.e. O(Res

−3φ−1) (cf. (19)), then the imposed shear wi
create enough velocity fluctuations to take the suspension pas
unstable state 2 even when the initial variance is zero. Co
quently, only the ignited state will exist when Res

3φ exceeds a certain
O(1) number. To estimate this number we constructed an ad-hoc
approximation for Φe(Pij) by superimposing its values in the tw
limits as given by (14) and (20). Solving the resulting equations
Pij at steady state yielded a quadratic equation in T1/2. One root of
this equation is always negative and the other three correspond 
itatively to the three solutions (quenched, unstable, and ignited) g
by (19). However, when φ is increased from zero at a fixed valu
of St=Res/18 that is greater than , we now find that the quench
and unstable state variances approach each other. The varian
these two states become equal at

(23)

For φ>φc the two roots become complex so that the only phy
cally meaningful solution to the equations corresponds to the ign
state.

The above criterion can also be used for estimating Res beyond
which the only steady state is the ignited state for given φ. At φ=
0.005, this yields the transition Res of 155.6. This is in agreemen
with the simulations shown in Fig. 1 for which the multiple stat
are observed at Res=140 but only the ignited state at Res=170.
2. Comparison with Simulations

We now compare the theory and simulations in more detail. 
3 is the phase diagram of quenched, ignited, and multiple (quen
plus ignited) states for bubbly liquids. For small φ we expect only
the quenched state when Res is less than 88 and the multiple (quenc
ed plus ignited) states for Res>88 and φRes

3>3.231×183=18843.
For each value of φ, we carry out simulations at different value
of Res with an initial variance of zero and determine the critical va
of Res for which the final state is ignited. The pluses are the res
obtained by simulations with N=32 and full hydrodynamic inte
actions together with the soft core repulsive potential for overl
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ping bubbles as described in section 2. For the purpose of comparison
with the theory which neglected the hydrodynamic interactions al-
together and modeled the collision process as that corresponding to
hard spheres, we also carried out another set of simplified simula-
tions in which these conditions were satisfied exactly. These simu-
lations with N=100 are shown by circles. The latter results were
also confirmed to be free from finite N effects by another method
[Direct-simulation Monte Carlo, Kumaran et al., 1993]. We believe
that the better agreement obtained with the full hydrodynamic in-
teraction calculations represented by the pluses is fortuitous.

Fig. 4 shows a comparison between the theory (cf. (19)) and sim-
ulations at φ=0.03 varying Reynolds number. For this φ, the criti-
cal Res for multiple steady states to exist is about 86 which approxi-
mately coincides with the extinction of the ignited state branch so
that we observe only the ignited state at larger Res. The simulation
results indicated by filled circles were obtained with full hydrody-
namic interactions and soft core potential. We find that there is con-
siderable discrepancy between the theory and simulations. This re-
sults from the use of soft core potential in simulations which allow
bubbles to overlap considerably resulting in a decrease in the appar-
ent volume fraction of bubbles. Since the variance varies roughly

as 1/φ2, the use of soft core potential results in a higher varian
To correct for this effect we carried out simulations with no hyd
dynamic interactions with both soft as well as hard core potent
The open circles in Fig. 4 represent the results obtained by m
plying the results of full hydrodynamic interactions with the co
rection ratio accounting for the use of soft core potential. We 
that with this correction, the theory and simulations are in very g
agreement with each other.

Fig. 5 shows the kinetic, collisional, and hydrodynamic (or pote
tial) contributions [cf. Sangani and Didwania 1993a; Bulthuis 
al., 1994 for definitions] to the dispersed-phase shear viscosity (
dimensionalized by 1/2ργa2) µs=−P12 as time progresses. As expecte
the collision and potential parts are seen to make negligible co
butions to the overall value of shear viscosity at φ=0.03. Note that
potential interaction between bubbles is still significant in dyna
ics. The average value of the kinetic part is seen to be in a very 
agreement with the value predicted by theory (cf. (17)) provid
that we use the value of average variance computed in simula
to substitute for T instead of using (19). This distinction is nec
sary to make since T for the soft core potential is different from 
theoretical estimate.

Fig. 6 shows a comparison between the theory and simulat
for P22/P11. The computed values include the collision and hyd
dynamic parts also. Once again we see a reasonable agreeme
tween the two. More importantly, it must be noted that the d
persed-phase exhibits considerable normal stress difference

Fig. 3. Multiple steady states-ignited state transition. The solid
curve is the theory prediction from kinetic theory and
squares and triangles are, respectively, the results of simu-
lations with and without hydrodynamic interactions.

Fig. 4. Temperatures with respect to Reynolds numbers for φφφφ=
0.03 with theoretical predictions as shown dashed line. The
squares are the results obtained from the simulations with
soft-core potential, and diamonds are the results for hard
core potential.

Fig. 5. The kinetic, collisional, and hydrodynamic contributions to
the bubble-phase shear viscosity for Res=150 and φφφφ=0.03.

Fig. 6. P22/P11 as a function of time for Res=150 and φφφφ=0.03.
May, 2002
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Finally, we note that a discrepancy that still remains between the
theory and simulations is the rather high value of the maximum var-
iance seen in Fig. 1 for the quenched state simulation with Res=140.
Even after accounting for the shear-induced variance, our approxi-
mate theory estimates the variance of the unstable state 2 to be ap-
proximately 5 which is much lower than the maximum value of
about 15 obtained in the simulation. Thus, it appears that our theory
underestimates the magnitude of the variance in the unstable state.

CONCLUDING REMARKS

In this paper we have addressed the problem of the dispersed-
phase rheology in suspensions of spherical bubbles at relatively large
Reynolds numbers. We found that the rheology is quite complex
even when the microscale physics governing the bubble motion is
considerably simplified in terms of lift and viscous forces. The key
to understanding the results of simulations has been to appreciate
the dependence of the dispersed-phase viscosity on its temperature.
This dependence is nonlinear and gives rise to multiple steady states.
The calculations presented here also show a need to include the en-
ergy balance and temperature in the averaged description of flows
of suspensions.

Our simulations and theory have thus far been restricted to small
φ where the shear-induced fluctuations are the largest. We have ex-
tended the theory to higher volume fractions by using the theory of
dense gases and Grad’s moment expansion approximation (cf. (13)).
The predictions of this theory are being currently tested for non-
dilute suspensions.

One motivation of this study was to investigate the possibility
that the presence of shear may stabilize bubbly liquids. We can now
make a rough estimate of when stabilization is possible. At present
we are studying the flow of bubbly suspension under simple shear
in the presence of gravity.

In that case the dispersed-phase pressure depends on both the
mean relative velocity of the bubbles induced by buoyancy and lift
forces and mean shear rate. The mean relative motion gives a ne-
gative contribution to the pressure via hydrodynamic contribution
as shown in Sangani and Didwania [1993a], while the shear gives
a positive contribution via the kinetic and collision contributions.
An exact criterion for the stability has not been determined yet, but
preliminary calculations (simulations) already show that the sus-
pension is stable at least when the Reynolds number based on shear
is in the ignited state regime. Thus, let us take Res=ργa2/µ=100 for
the purpose of estimating when shear may play an important stabi-
lizing role. For 1 mm radius bubbles in water, this requires γ≈100s−1.
For air-water system with γa=10 cm/s, the small We approxima-
tion is justified since We≈0.14. To provide γ of 100 s−1 in a flow of
bubbly suspension through a pipe of radius R (in cm) we need the
mean flow rate to be 100R (in cm/s). Since we are dealing with large
Reynolds numbers, one question that immediately comes to mind
is what if the turbulence would set up much before the high shear
required for the ignited state. Taking the mean flow rate to equal
γR, the Reynolds number Rep based on the pipe radius will be100
(R/a)2. This will be indeed quite large for many practical applica-
tions. However, it should also be noted that the turbulence will be
considerably delayed due to high Reynolds stress created by the
velocity fluctuations induced by the presence of shear. A parameter

that is expected to be more important in determining the onse
turbulence is Rep

*=Repµ/µ*, the Reynolds number based on the e
fective viscosity µ* of the mixture. From the definition of the mix
ture stress given in Biesheuvel and Wijngaarden [1984] and S
gani and Didwania [1993a], we find that the effective viscosity
the mixture in the ignited state is close to the dispersed-phase vi
ity, or, in the present example, µ*≈100µ. Thus, in fact, it is pos-
sible to have a significant range of R/a and Rep values over which
the mean flow will be steady and one-dimensional. We hope to c
out a more detailed analysis based on averaged equations t
this speculation in our future work.
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