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Abstract—Simple shear flows of dilute suspensions of spherical bubbles at large Reynolds numbers are studied by
using numerical simulations and kinetic theory. It is shown that the mean-square bubble velocity is very sensitive to
the volume fraction and Reynolds number of the bubbles as well as on initial conditions. The balance of energy con-
tained in bubble velocity fluctuations plays an important role in the rheology of the dispersed phase, which is generally
non-Newtonian.
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INTRODUCTION in a suspension containing many bubbles, pairs of bubbles aligned
horizontally occur quickly and grow further with time to form clus-

Bubbles suspended in a liquid are found in nature and in manyers in horizontal planes. The observed instability in the numerical
industrial processes such as bubble columns [Bando et al., 2008jmulations was thus explained in terms of microscale forces occur-
Kim et al., 2002] and centrifuges in the petrochemical industry, cool+ing between pairs of bubbles. In either case, the mechanism that
ing devices of nuclear-reactor systems and air entrained in the forrmay tend to stabilize the homogeneous suspension is the positive
of bubbles in rivers and at the surface of the oceans. Therefore, it isubble pressure created by fluctuations in the bubble velocities.
desirable to develop an analytical framework for predicting macro- The purpose of the present work is to determine the distribution
scopic behavior of bubble suspensions. A series of recent papersf bubble velocities in a suspension of bubbles subject to simple
[Bieshuvel and Gorissen, 1990; Sangani and Didwania, 1993a; Zharghear flow with potential flow interactions among the bubbles. This
and Prosperetti, 1994; Bulthuis et al., 1994] provide a rigorous derwill be accomplished by using a numerical simulation method simi-
ivation of the equations of motion for a suspension of bubbles withar to that developed in Sangani and Didwania [1993b] and the re-
potential flow interactions. An important property arising in these sults of the simulation will be interpreted by using kinetic theories.
equations is the dispersed-phase pressure tensor, which dependslbwill be seen that the bubble collisions induced by shearing motion
hydrodynamic and collisional interactions between the bubbles andan provide a quite effective mechanism for enhancing the bubble
also on their velocity distribution. velocity fluctuations.

A uniform suspension of bubbles rising due to their buoyancy is The application of results based on the potential flow interac-
subject to instabilities that lead to volume fraction variations. Onetions to physical systems must be approached with caution. The po-
mechanism that has long been studied is the instability to void fractential flow approximation is rigorously valid for bubbles with slip
tion waves resulting from the bubble’s added mass and the depebeoundary conditions in the dual limits of high Reynolds number and
dence of the drag force on volume fraction [Bieshuvel, 1995]. Sanfow Weber number (so that bubble deformation can be neglected).
gani and Didwania [1993b] and Smereka [1993] have recently ob- The best system for approaching these limits is bubbles with di-
served a second instability mechanism in dynamic simulations ofameters of about 1 mm in water for which the Reynolds number is
potential flow. Their simulations showed that bubbles form largeabout 130 and the Weber number about 0.5. Even in this case the
clusters in planes normal to gravity. In other words, the uniformlimits are only approximately satisfied and the value of the poten-
state of bubble suspension in the presence of nonzero mean rekal flow approximation may depend upon the nature of the inter-
tive motion between the bubbles and surrounding liquid is generactions being described. For example, potential flow would be ex-
ally unstable. The basic mechanism by which this instability oc-pected to be more accurate for collision between bubbles moving
curs is as follows. According to the potential flow theory, the pres-with substantially different speeds in different directions than when
sure in the fluid between two bubbles rising side by side is lowerthe bubbles rise at nearly the same velocity. In more general cir-
than the pressure away from the bubbles. This Bernoulli effect causesimstances, such as solid-liquid or liquid-liquid suspensions and
an attractive force between pairs of bubbles that are oriented horsuspensions of bubbles with larger diameters (4 mm), which are
zontally. Similar consideration of two bubbles oriented vertically typical of most of the experimental literature, boundary layer sepa-
and rising through a liquid shows that there will be a repulsive forceration plays an important role in the dynamics.
between them causing them to move away from each other. Thus, Other methods currently under development [Ladd, 1990] show
promise for the possibility of simulating suspensions including bub-
*To whom correspondence should be addressed. ble deformation and continuous phase vorticity. However, we be-
E-mail: kangsa@mail.kaist.ac.kr lieve that the relatively extensive simulation results and the mecha-

363



364 S.-Y. Kang and A. A. Sangani

nistic understanding that can be developed for bubbles with poten- 0
tial flow interactions will provide a useful reference for understand-
ing these more complex suspensions.

N
=G X~y DIS,(x x°), @

. ) . . . . where $is a Green’s function for Laplace equation in a periodic

In section 2 we briefly describe the numerical simulation proce- . . } . ) .

dure and in section 3 we present the results of simulations and adomaln [Hasimoto, 1959; Sangani et al., 1991]nis the dipole
sr}rength. The condition that the average' of/er the unit cell must

approximate kinetic theory afilute bubbly liquids. We find that e . . . . .
the steady state velocity variance depends, in a rather complicatélff"n'Sh is satisfied by taking (cf. Sangani and Didwania [1993b])

manner, on the volume fractigrof bubbles and the Reynolds num-
ber Rebased on shear rate. At large &l smaltp, we find mul-

tiple steady states: if the initial variance is relatively large, then the
final state variance is very large, of O((Rg). We refer to this as wheret is the volume of the unit cell. Physicallyjs the back flow
an ignited state. On the other hand, if the initial variance is smalicaused by the relative motion of the bubbles. To calculate the trajec-
then the steady state, which we refer to as a quenched state, hato8/ of bubbles we must apply force balance on each bubble (as-
vanishingly small variance. sumed to be massless). The impulse defined bypjan)nds

The multiple steady states are shown to arise due to nonlinedflays a role analogous to the momentum of a particle in Newto-
dependence of the dispersed-phase shear viscosity on the velocfgn mechanics. We write the force balance as
variance of bubbles or, equivalently, the temperature of the dis- g« R
persed-phase. We also find that the multiple steady states are observedgt SFOSRHR PR R R Q)
are only when Re88 andpis sufficiently small ¢<@(Re)). For
smaller Re the final state is quenched regardless of the initial con-WhereF,=—4r&/3 gis a force due to buoyanéy,is a viscous force,
ditions, and for Re:88 andg>@(Re), the final steady state is al- F... is a force due to temporal and spatial variations in the ensem-
ways ignited. We also find that the dispersed-phase rheology exhitle-averaged velocityu= of the mixtureF is a force on the bub-
its normal stress differences. Finally, in section 4 we assess approkle during its collision with other bubblds; is a force due to po-
imate conditions under which the shear-induced variance may bential flow interactions. As shown in Sangani and Didwania [1993al,
significant in stabilizing flows of bubbly liquids through pipes.  the last quantity is evaluated from

The results presented here are preliminary and limited to dilute N
bubbly liquids. We plan to report more complete investigation in-  F; =—4mpy DD": OOOS,(x* -X), ®)
cluding the simulations and theory for non-dilute bubbly liquids and ~
the question of stability of bubbly liquids under simple shear andwhere the singular part of Bust be removed from #ry=a be-

G =(4m1)y D° @)

gravity in a future publication. fore evaluating the third derivative of $he viscous force is evalu-
ated by using a method described in Sangani and Didwania [1993b).
THE SIMULATION METHOD The main modifications in the present study are concerned with

the evaluation oF._,. andF.. In Sangani and Didwania [1993b]

The simulation method is described in detail in Sangani and Didwe considered a special case of constant average velocity, whereas
wania [1993b]. Here, we briefly summarize the method indicatingin the present study we are interested in the case of simple shear.
some maodifications we have made in the present study. We cor-or this purpose we use a slightly modified version of the expres-
sider motion of N spherical bubbles of radius a placed within a unitsion proposed by Auton et al. [1988]
cell of periodic array. The velocity” of a representative bublie D) i
is written as a sum of the ensemble-averaged mixture velogity < Fau :mTt'E&X") —l,"a“E&X"), (6)
and a relative velocity": '
where the derivatives ofi are evaluated at=x", m=4rpa’/3
is the mass of fluid having the same volume as the bubble and D/
wherex® is the position of the center of the bubble at time t. Sim- Dt=d/0t+<u>-0 is a time derivative following the average motion
ilarly, the velocity of the fluidu(x, t)=<u>+u' is written as a sum  of the mixture. While we do not discuss about using (6), this relation
of <u> andu’ whereu' is the disturbance flow induced by the bub- is consistent with several known results. The above expression can
bles moving with the relative velocity’(t). Disturbance)' is as- be shown to give the correct force on a bubble for the cases of (i) a
sumed to depend only on the position and the relative velocities oémall amplitude oscillatory flow examined in Sangani et al. [1991],
the bubbles. Thus, by definition==0. In simulations we enforce (i) pure extensional flow <®=gXx with =g, at least for which
this condition by requiring that the averagaiobver the unit cell  the flow is irrotational, and iii) the simple shear flow past a single
vanishes at any given instant. We are interested in a large Reynoldpherical bubble with weak shear. No restrictions on the magnitude
number situation where the hydrodynamic interactions are domiof ¢ are needed for the validity of (6) in the above two cases. Finally,
nated by potential flow, and therefore we wite(J$ and solve (6) also gives the correct lift force on a bubble in dilute dispersions
[’$=0, subject to the boundary conditioh-n=V*-n on the sur-  in the presence of simple shear, for which the magnitude of vortic-
face of bubbles. Here, is the unit outward normal vector on the ity is small compared fd/a whereV is a characteristic magnitude
surface of the bubble. As shown in Sangani et al. [1991] and in of bubbles’ relative velocity. Thus, we expect it to provide a very
Sangani and Didwania [1993b], the velocity potential can be detergood approximation for ignited states. Note that for the case of an
mined to a very good accuracy with a point-dipole approximation isolated bubble with velocity the expression (6) reduces to the

Wi () =X, 1) +VA(D), )
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one given by Auton et al. [1988] upon substitutifgrhV;'/2. bly liquids under microgravity, i.=0, and <¥=yx,8,. The dis-

In simulations of non-deformable bubbles with potential flow, it tances are rendered non-dimensional with a, the velocity with a,
is commonly observed that the bubbles will come into contact whileand the time with ¥/ Typical simulation results are illustrated in
still moving at a finite relative velocity. In a physical suspension Fig. 1 which shows velocity varianc&/%> as a function of time
such a collision could lead to a bubble bounce or to coalescender ¢=0.005 at three different Reynolds numbers=R&u. We
depending on the Weber number based on the relative velocity. Faee that the final steady state, at-R40, depends on the initial con-
the sake of simplicity in the simulation, it is convenient to assumeditions of velocity variance. If the bubble suspension is stirred suf-
that the bubbles always bounce and this can be achieved in praficiently before shearing, then the final state has very large velocity
tice without violating the free slip boundary condition on the bubble fluctuations. We shall refer to this as itheited statelf, on the other
surface through the addition of salt to the suspending water [Lessatthnd, the initial velocity fluctuations are small, then the final state
and Zieminski, 1971; Tsao and Koch, 1994]. Thus, we include ¢has very small velocity fluctuations; the bubbles essentially follow
collisional force in the simulations to achieve an energy and momerthe imposed shear. We shall refer to this aqubkached stat&uch
tum conserving bubble bounce. The collisional fétosas evalu-  multiple steady states are not observed for glaRe, the vol-
ated in Sangani and Didwania [1993b] by assuming the collisiorume fraction of bubbles. For example, as seen in Fig. 1, the final
process to be instantaneous and momentum conserving. This hatate is the ignited state when®R&0 regardless of the initial con-
some difficulties in numerical implementation. To overcome this ditions. And, similarly, the final state is always the quenched state
we used a soft core repulsive potential to model the collision processvhen Re=80.

Specifically, the collision force was taken to be Before we present an approximate kinetic theory and a more de-
- tailed comparison between the theory and numerical simulations, it
Fo=-0,0, with ¢.=5 Zruy[Za—Ix" -1 @ will help to have a qualitative understanding of the phenomenon.
v The steady state variance is determined by balancing between the
Herel",, if bubblesa andy are not overlapping. Otherwide, =T, energy input in shearing the dispersion and the viscous energy dis-

A, wherel . is a constant anfl;”  is the component of the relativesipation as shown in Fig. 2 graphically. The former can be approxi-
velocity V°—V" along the line joining the position of the bubbles at mated to equal.y’ while the latter to I@una</>. Energy input
the onset of overlap. by shearing has non-linear dependence on velocity variance where-
The numerical algorithm consisted of determining the force onas energy loss due to viscous dissipation is linearly dependent on
each bubble given position and impulse of all the bubbles in theemperature. From this balance, two stable solutions and one un-
suspension and integratihG=F" andx®=v® using a fourth-order  stable solution exist. The steady state is reached relying on the initial
Runge-Kutta scheme. This method is more efficient and faster thamelocity variance. When the initial variance is below the unstable
the modified Euler algorithm used in Sangani and Didwania [1993bjsolution, the quenched state is reached. The ignited state will be ac-
for the integration of time. In the Runge-Kutta scheme, bubbles cawomplished when the initial variance is above the unstable solu-
be slightly overlapped depending on the time step inducing the inclution. As volume fraction increases, the energy input line will shift
sion of collisional force from soft core potential in determining new to dotted line resulting in one stable steady state at higher volume
velocities of bubbles. The time step for integration was chosen tdractions. Here., is the (dimensional) dispersed-phase shear vis-

scale with the root-mean-squared velocity of the bubbles. cosity, n is the number density of bubbles, akf><is the di-
mensional velocity variance. In the ignited state, the collision time
SIMULATION RESULTS AND KINETIC THEORY T=a/(E<V*?>"?) is much shorter than the viscous relaxation time
FOR SIMPLE SHEAR MOTION 1,=pa/(184), and the leading order velocity distribution ag-Re»

is isotropic Maxwellian owing to rigorous collisions of bubbles.

In this paper we shall consider simple shear motion of dilute bub-Thus we can estimaté from the kinetic theory of gases by taking
the mass of bubbles to be their virtual mass m/2 and the mean free

a path to be g'to yield.~padv/?>'2 The energy balance then shows

30 | Re,=140 (ignited)
Re,=170 (ignitgd)

Energy

Temperature, T

ffienched state

0 10 20 30 40 50 60 70 80 >

time Velocity variance, <v’>
Fig. 1. Temperature as a function of time, initial condition at var- Fig. 2. Graphical demonstration of multiple steady states in shear-
ious Reynolds numbers and volume fractioip=0.005. ed bubble suspension.
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that />~(Re/@*/&. In the quenched statey% is very small, solution for f is rather difficult to obtain and hence we have devel-
and, consequently,<<t.. Thus, the majority of the bubbles move oped approximate methods. First, we develop an approximation in
with the velocity of the fluid. The velocity distribution is expected which the shear-induced collisions are neglected in evaluiting

be very different from Maxwellian because bubbles relax close tadt, i.e., the actual velocities, w,, etc. in (10) are replaced by the

the local fluid velocity. The initial conditions influence the final steady relative velocitied/, V,, etc. The resulting theory will explain the
state for intermediate values of,Rg setting up the initial value of  origin of multiple steady states but not the absence of quenched state
the collision time. At smaller Rethe viscous relaxation time is small  at high enough ReThe theory will be subsequently modified to
enough to dissipate the fluctuations leading always to the quenchedclude the shear-induced collisions which play an important role
state while the fluctuations induced by the imposed shear are sufn the behavior of quenched states.

ficient at large enough Rt eventually make.<<t, correspond- We have developed two approximate theories for evalu@ting
ing to the ignited state. (R). Both give identical results. One is based on the method due to
1. Kinetic Theory Grad [1949] in which & expanded in a series of Hermite polyno-
For a spatially homogeneous dispersion of bubbles, the velocitynials:
distribution function f{/) satisfies 1 1 e
o )= 1430 ~58adyy A i (13)

o FOVH =0 ®)

. . . . where {; corresponds to an isotropic Maxwellian distribution. The
Slnce(p IS very small, the bubbles iny undergo occasional INterac-cqnstant fis related to the second moments of velocity and tem-
tions. It is well known that potential flow bubbles often undergo perature T by

actual collisions and Tsao and Koch [1994] showed that for low
Weber number bubbles with short-range repulsive forces these col- Tv,FT(3; *+a;).

lisions are nearly elastic. In this simple kinetic theory we will neglect_l_he trace ais zero because the bubble bhase temperature is one
the hydrodynamic interactions between bubbles and treat the colli- A P P

sions as perfectly elastic. Substituting inA@F,=0, F,=—12ryiaV, third of the velocity variance. The series is truncated keeping only

I=mV/2,F_. =—(1/2)mV,3, (lift force), expressing the contribution tgebﬂf;t :\iNO ;[egspan'd (ll(i) an((jj (12|).aret;elvaluatiq n termtsi of a
due to the collisional force in the notation of Chapman and Cowl-thu S 'ulc?g 0 c;(Pij)Im ﬂ(q ) ;n S0 \,ﬂ? 9 d ehref]u ng dequgbons
ing [1970], and non-dimensionalizing we obtain on YIelds aand . fn The Oer metod, which we describe in

more detail here, we model the collision process as similar to that
of _ d -1 _0f between Maxwell molecules. Thus, we assume that theFHdree
[(5 2V1"'S't Vk)f] - (9) . . . S
ot oV, ot tween two bubbles is repulsive and along the line joining the center

where the Stokes number, StZB&=yt,=pye/(184), is a non-di- of the two bubbles separated by a distance ik wherex is a
mensional viscous relaxation time a?gizviat is the rate of change in constant of proportionality. For this special case it turns out that the

f at a fixed point due to collisional encounters. As shown in Chaptercollision term (10) assumes a particularly simple form and one finds
3 of Chapman and Cowling, this latter quantity is expressed in terms ®(P,) =\"@(p3, —P,), (14)

of an integral i . o
where p=1/3R andA is a constant related ko Now in the limit

of _ [fwadkky [f (W) F(w;) ~ f(W)F (ws)] (10) St—o0, we expect the variance to become very large and the col-

ot lision term on the right-hand side of (9) to dominate leading to an
Here,w=<u>+V is the velocity of a representative bubble in col- isotropic Maxwellian velocity distribution. The dispersed-phase vis-
lision with another bubble with velocity,, the velocities of the bub-  cosity will then be expected to approach the viscosity of dilute gas
bles at the end of the collision encounter b&ihgndw;, andk consisting of hard-sphere molecules. Matching with the known ex-
andk, are parameters that depend on the relative velocities and orpression for that viscosity requires

entation of the bubbles at the onset of the collision. For gzl 24

expect the dispersed-phase pressure to be dominated by its kineticA” =AT"? with A =-— (15)
part and therefore ;BPj=n<IV>=(L/2p@<V\V,> (cf. Sangani 5./m
and Didwania [1993a]). We shall non-dimensionalize pressure byl=<V?>/3 being the bubble phase temperature. This choieof
pyeri2. equivalent to choosing the force law conskaof Maxwell mole-
To determine the pressure and velocity variance, we multiply (9)cules to be proportional to T.
by @V,V, and integrate over the velocity space to obtain Since T?in due course will be shown to be @jf1it should be
P noted thah’=0(1) and the right-hand side of (11) is the same order
?tll +[P,8, +Pyd, +2St'P;] =0 (P,), (11) of magnitude as the other terms in that equation in theglimid.

. o o Thus, we need to keep the collision term in our analysis even for
where, in obtaining the terms inside the square brackets on the lefirery dilute suspensions. Now substituting (14) and (15) into (11),

hand side, use has been of integration by parts, and using p=<V,V,>/3=¢T, and solving for the steady state conditions,
a.f we obtain
D (P))=qf dVV,VJa—et. (12) s
P =Py Pz = )\(PZT (16)

To make further progress we need to determemelf,(P;). Exact CSCHHQAT? SEIHATY
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__ Py AT —4p.. =256 -_64 44T, 9
PTASTHAT) | ASTHTY (D PRSP G ) @Y
and B;=P;,=0. To complete the solution we need to determine T.  _ 64 Stz(pz[lJr In J 22)
.. - . . 12 .
This is accomplished by taking the trace of (11) to yield at steady 315 16St

state the energy equation for the dispersed phase Thus, the quenched state variance is dominated by the valugof <V

P, +3¢St ‘T =0 (18) and equals roughly (@#B15)Stpin the limit of smalkp for Stokes
. . ) . ~__numbers of magnitude 5 or greater.@0.005 and Re18St=
according to which the work done in shearing the suspension is dis40, the conditions for the simulations shown in Fig. 1, this gives
sipated by the viscous drag. Substituting fofrBm (17) into (18) an approximate variance of 1.5 whereas the simulation gave a vanish-
yields a cubic equation forAwhose three roots including zero are ingly small number. This occurs because the bubbles arrange them-
given by selves eventually in positions where avoid collisions making their

5/7S 12 > velocities the same as the local fluid velocity and it is therefore an

T,=0, ;3 :2_886 1‘521 1‘§} (19) artifact of the simulation with periodic boundary conditions. It is
possible to avoid this problem in simulations that neglect hydrody-
where we have used the numerical estimalefadm (15). namic interactions by using the Direct-simulation Monte Carlo meth-

It is easy to show that, Torresponds to an unstable state so thatod [Kumaran et al., 1993].
the quenched and ignited states we found in numerical simulations We have shown that the ignited state exists for aifke. Now
(cf. Fig. 1) correspond respectively toand T. Moreover, we see  we shall determine in what part of this regime, one has multiple
that the ignited state exists only when-R&8St exceeds a critical  steady states and in what portion only the ignited state exists. If the
value given by Re=18./24=88.18.... This explains why the final shear-induced variance &és greater than the variance of the un-
state is the quenched state regardless of the initial variance=for Restable state 2, i.e. O(Rg") (cf. (19)), then the imposed shear will
80. For Rg=140, the variance corresponding to the unstable state Zreate enough velocity fluctuations to take the suspension past the
is approximately 4.3 according to (19). Thus, as discussed in thenstable state 2 even when the initial variance is zero. Conse-
earlier, if initial variance is smaller than this value, the final state quently, only the ignited state will exist wheri@exceeds a certain
must be the quenched state, and a higher initial variance should le&{(1) number. To estimate this number we constructextidroc
to the ignited state. Simulations for/RE40 qualitatively agree with  approximation for®,(P,) by superimposing its values in the two
this prediction although we find that even a slightly higher initial limits as given by (14) and (20). Solving the resulting equations for
variance of 6 leads to a quenched state. In fact, the variance reacH@sat steady state yielded a quadratic equatior¥inGne root of
a maximum of about 15 before eventually decreasing to a vanistthis equation is always negative and the other three correspond qual-
ingly small value corresponding to the quenched state. This quantitatively to the three solutions (quenched, unstable, and ignited) given
tative discrepancy may arise due to a number of reasons includingy (19). However, wheg is increased from zero at a fixed value
(i) the neglect of shear-induced collisions in the theory, (ii) finite of St=Rg'18 that is greater tha/24 , we now find that the gquenched
number of bubbles (N=32) used in the numerical simulations, (iii)and unstable state variances approach each other. The variances of
the use of soft core repulsive potential in simulations, and (iv) thethese two states become equal at
neglect of hydrodynamic interactions in the theory. Finally, we see Vs
that the theory we have presented fails completely in the case of o, :%mfg St™°, or Stg, =3.231K (23)

. e . 23040
Re=170 in predicting the existence of only one stable state.

The theory we have presented so far is adequate for determininigor @>@. the two roots become complex so that the only physi-
the steady state variance in the ignited state for which the root-meaally meaningful solution to the equations corresponds to the ignited
squared velocity is much greater tharand for giving the crite-  state.
rion for extinction of the ignited state, i.e..R&e,. However, the The above criterion can also be used for estimatingdyend
preceding theory gives poor estimates foaffd T, because it ne-  which the only steady state is the ignited state for gpvekt ¢=
glects shear-induced collisions which are important for these twd).005, this yields the transition R 155.6. This is in agreement
states. with the simulations shown in Fig. 1 for which the multiple states

To improve the theory, we now consider the limit in which the are observed at Rel40 but only the ignited state at,R&70.
root-mean-square velocity is much smaller th@ra situation ap- 2. Comparison with Simulations
plicable to the quenched state. Since the collisions are infrequent in We now compare the theory and simulations in more detail. Fig.
this stateg,<<t, and the majority of bubbles travel with the ve- 3 is the phase diagram of quenched, ignited, and multiple (quenched
locity of the fluid. Therefore, in this imi®,(P;) (cf. (12)) can be  plus ignited) states for bubbly liquids. For sngallle expect only
determined from simple geometric considerations by wuging.> the quenched state when Rdess than 88 and the multiple (quench-
to yield ed plus ignited) states for R88 andgRe®>3.231x18=18843.

512 8 For each value ap, we carry out simulations at different values
D (Py) =2P(Py,) =8D(Ps,) =ﬁ¢2 , P(Pr) = —3—5432 (20) of Re with an initial variance of zero and determine the critical value
of Re for which the final state is ignited. The pluses are the results

and ®(P,5)=P(P,5)=0. Substituting fod,(P;) from (18) into (9) obtained by simulations with N=32 and full hydrodynamic inter-
and solving for steady state conditions yield actions together with the soft core repulsive potential for overlap-
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Fig. 3. Multiple steady states-ignited state transition. The solid  Fig. 5. The kinetic, collisional, and hydrodynamic contributions to
curve is the theory prediction from kinetic theory and the bubble-phase shear viscosity for Re150 and@=0.03.
squares and triangles are, respectively, the results of simu-
lations with and without hydrodynamic interactions.

as 147, the use of soft core potential results in a higher variance.
a0 To correct for this effect we carried out simulations with no hydro-
. dynamic interactions with both soft as well as hard core potentials.
250 The open circles in Fig. 4 represent the results obtained by multi-
- o plying the results of full hydrodynamic interactions with the cor-

o o rection ratio accounting for the use of soft core potential. We see

H - that with this correction, the theory and simulations are in very good

H e agreement with each other.

o Theorelalpreciction Fig. 5 shows the kinetic, collisional, and hydrodynamic (or poten-

tial) contributions [cf. Sangani and Didwania 1993a; Bulthuis et
50 ,‘ al., 1994 for definitions] to the dispersed-phase shear viscosity (non-
dimensionalized by 1) u=—P,, as time progresses. As expected,
P T = o . the collision and potential parts are seen to make negligible contri-
Re butions to the overall value of shear viscosityp=0.03. Note that
Fig. 4. Temperatures with respect to Reynolds numbers fap= potential interaction between bubbles is still significant in dynam-

0.03 with theoretical predictions as shown dashed line. The ics. The average value of the kinetic part is seen to be in a very good
squares are the_ results obtained from the simulations with agreement with the value predicted by theory (cf. (17)) provided
soft-core potential, and diamonds are the results for hard 5t e use the value of average variance computed in simulations
core potential. to substitute for T instead of using (19). This distinction is neces-
sary to make since T for the soft core potential is different from the
ping bubbles as described in section 2. For the purpose of comparistheoretical estimate.
with the theory which neglected the hydrodynamic interactions al- Fig. 6 shows a comparison between the theory and simulations
together and modeled the callision process as that corresponding for B,,/P,,. The computed values include the collision and hydro-
hard spheres, we also carried out another set of simplified simuladynamic parts also. Once again we see a reasonable agreement be-
tions in which these conditions were satisfied exactly. These simutween the two. More importantly, it must be noted that the dis-
lations with N=100 are shown by circles. The latter results werepersed-phase exhibits considerable normal stress differences.
also confirmed to be free from finite N effects by another method
[Direct-simulation Monte Carlo, Kumaran et al., 1993]. We believe ,,
that the better agreement obtained with the full hydrodynamic in-
teraction calculations represented by the pluses is fortuitous.
Fig. 4 shows a comparison between the theory (cf. (19)) and sim =
ulations atp=0.03 varying Reynolds number. For tipjshe criti-
cal Re for multiple steady states to exist is about 86 which approxi- -
mately coincides with the extinction of the ignited state branch sc*
that we observe only the ignited state at largerRe simulation
results indicated by filled circles were obtained with full hydrody-  +1
namic interactions and soft core potential. We find that there is con
siderable discrepancy between the theory and simulations. This r¢
sults from the use of soft core potential in simulations which allow °°, o0 20 200 P w00
bubbles to overlap considerably resulting in a decrease in the appa- fme:
ent volume fraction of bubbles. Since the variance varies roughlyFig. 6. P.,/P,; as a function of time for Rg=150 andg=0.03.
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Finally, we note that a discrepancy that still remains between thehat is expected to be more important in determining the onset of
theory and simulations is the rather high value of the maximum varturbulence is ReRe/l’, the Reynolds number based on the ef-
iance seen in Fig. 1 for the quenched state simulation witt & fective viscosityl™ of the mixture. From the definition of the mix-
Even after accounting for the shear-induced variance, our approxkure stress given in Biesheuvel and Wijngaarden [1984] and San-
mate theory estimates the variance of the unstable state 2 to be agani and Didwania [1993a], we find that the effective viscosity of
proximately 5 which is much lower than the maximum value of the mixture in the ignited state is close to the dispersed-phase viscos-
about 15 obtained in the simulation. Thus, it appears that our theority, or, in the present examp|g=100y. Thus, in fact, it is pos-
underestimates the magnitude of the variance in the unstable statesible to have a significant range of R/a angl\Réues over which

the mean flow will be steady and one-dimensional. We hope to carry
CONCLUDING REMARKS out a more detailed analysis based on averaged equations to test
this speculation in our future work.
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