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Abstract—Lubrication theory is applied to compute the deformation of two approaching particles suspended in a
Generalized Newtonian fluid with linear elastic theory estimating deformation and force on the particles with respect
to deformabilityd. The relative viscosity of concentrated suspension with deformable particles in a Generalized New-
tonian fluid is obtained for a simple cubic array configuration by using the results of deformation and force for two
particles. Since the deformation of particles generates the freedom of moving particles geometrically, the suspension
with deformable particles shows shear thinning behavior.
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INTRODUCTION cation force as the interactions of particles [Ball and Melrose, 1995,
1997; Catherall et al., 2000] as well as were investigated experimen-
The rheology of highly concentrated blends has been studied exally by Lee et al. [1999] and So et al. [2001] showing the shear thick-
perimentally by many investigators [Munstedt, 1981; Ellul et al., ening behavior due to clustering of particles caused by lubrication
1995; Abdou-Sabet et al., 1996; Araki and White, 1998; Kim andforce.
Chun, 1999; Moon et al., 2001] to understand the behavior of blend Local volume averaging [Batchelor, 1970] was used for averag-
during the process. However, a prominent barrier to the use of polying stresslet so as to estimate the concentrated suspension viscosity
mer blends and composite materials is the lack of adequate modéisr a static periodic configuration instead of spherical cell approxi-
that capture the complex interaction between microstructure andnating the stresslet of suspension from lubrication force and vector
rheology of these materials during processing. In determining theconnecting center of two neighboring rigid particles [van den Brule
rheological property of polymer blends, the most significant fea-and Jongschaap, 1991].
tures are hydrodynamic interaction between neighboring particles Suspended particles such as rubber or conducting drop can be
and deformation of particles. Thus, we would like to focus on thosedeformed by external force, e.g. hydrodynamic interaction between
two phenomena to establish a useful model of suspension rheologyarticles or electric field [Ha and Yang, 2000]. The deformation
with deformable particles. due to short range hydrodynamic force has been estimated for elastic
Many investigators have been working on understanding the hyparticles in Newtonian fluid medium by Christensen [1970] and
drodynamic interactions of highly concentrated systems of hardDavis et al. [1986] combined with Hertz contact theory [Landau
spheres. Since the hydrodynamic interactions between neighboringnd Lifshitz, 1986]. Different than the suspension of hard spheres,
particles are governed by lubrication force, the relative viscosity ofrheologically shear thinning behavior is observed for the suspen-
concentrated suspension with Newtonian fluid medium was develsion of deformable particles since deformation allows the mobility
oped from the rate of energy dissipation for two nearly touchingof particles to increase geometrically [Loewenberg and Hinch, 1996].
spherical rigid particles taking the spherical cell around particles In this paper we employ the volume averaging method to under-
[Frankel and Acrivos, 1967]. Jarzebski [1981] and Tanaka et alstand the rheological behavior of concentrated suspension with de-
[1980] extended to non-Newtonian fluid medium using the sameformable particles suspended in Newtonian as well as in non-New-
method. The stress between two particles was approximated as présnian fluid. However, it may be desirable to accomplish the dyn-
sure distribution by Tanaka et al. [1980] while stress was estimatedmic simulation of deformable particles to predict the relative vis-
as the shear contribution of deformation tensor in second invariantosity; the computational time is so tremendous that it will be worked
by Jarzebski [1981] claiming the more importance of elongation.on in the next paper. A periodic configuration is therefore used in
Jarzebski [1981] showed that the relative viscosity was lowered asstimating the relative viscosity of suspension with deformable par-
shear index n is decreased owing to the extensional motion of fluidicles.
at the surface of particles. Recently, the rheological behavior of con- In the following section, lubrication force and deformability be-
centrated suspension with rigid particles in Newtonian fluid was ex-tween two rubber particles are derived before calculating the rela-
amined with Stokesian dynamic simulations considering only lubri-tive viscosity of suspension along with the brief description of num-
erical scheme. Then the results of numerical computation for two
To whom correspondence should be addressed. deformable are presented for various shear indices and deformabil-
E-mail: kangsa@mail.kaist.ac.kr ities &. In the final section the relative viscosity of deformable par-
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nation of two physical phenomena, i.e. lubrication effect and elastic
propertiesallows us evaluate the deformation. By the coupling of
continuity and momentum equation, the well-known lubrication
equation for the gap of two particles is expressed as
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Since the deformation d(r, t) is incorporated in curvature equation
as (1), deformation owing to elasticity and lubrication force can be
combined into the equation through (5). The force F on the two de-
formable particles is estimated from the stress distribution obtained
from (5).
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Fig. 1. Schematic of two deformable particles. F=[,0.{2mrdr=2rKu’h ~ a 0 J(n.9)
_r2n+1fj w[ o R"
J(n,d) 0 2n D.IO _IR [1+R'2/2 +A(R, 6)]1+2n

dR-}RdR ©)
ticles is estimated from the results of previous section.
In evaluating normal stress,, only pressure P is included since
LUBRICATION THEORY AND DEFORMABILITY the magnitude of gradient of axial direction velocity w with respect
to z is much smaller, e.g. P~Gjand fw/0z)~O(h?) for Newto-
Two spherical elastic particles with radius a are approaching eachian fluid. The force equation is reduced to (7) wittB3+ when
other as shown in Fig. 1. As they get closer, the pressure betwedhe particles are rigid and fluid medium is Newtonian, implying
them is increased inducing the stronger stress on the surface of pdhat the magnitude of force is strongly dependent on the gap size h.
ticles. The curvature of deformed particle is approximately expressed

as anld = 29

gnua h @
2
z(r,1) =h(t) +£—a +d(r,t) 1) A complete solution of the lubrication equation coupled with elas-
ticity theory can be evaluated by numerical methods, e.g. finite dif-
Here h(t) is the hypothetical distance of two deformable particlesference, finite element etc., as a function of time. In this work, the
on the line connecting the centers of particles shown as a solid lineomputation of instant deformation and force acting on the surface
In other words, it is the distance of two particles assuming no deef deformed particles is enough to predict the relative viscosity for
formation occurs. For deformable particles, variable d(r, t) is detera given configuration. Therefore, we calculated thewih) the
mined by its elastic properties, e.g. Poissonvatiad Young's mod-  pressure distribution obtained from two approaching rigid spheres
ulus E. The total particle deformation d in narrow gaps between twas a first step, considering the left side of (5) as the relative velocity
approaching rubber particles suspended in Generalized Newtoniaof two particles. Consecutively, the newly obtained pressure distri-
fluid is evaluated as follows with the Hertz contact theory of linear bution P(r) from the previous step is used for the evaluation of d(r).
elasticity. This procedure is repeated until d(r) and P are converged. Once num-
erically converged d(r) and P is computed, the lubrication force writ-

! ten in (6) is estimated numerically. Romberg integration is used to

A:E =53,(R,n,8), R=

on+1 ﬂha)z R calculate Jand Jprecisely, changing variables to avoid the singu-
- n+1 D 1 T H
J(R,nd)=2""5 > DI:[I:[HR'Z/Z AR, e_))]dR}p(R,E)dE larity due to integrand.

@ SIMULATION RESULTS

whered is thedeformabilityof particle and is defined as
The distribution of particle curvature, integratigradd lubrica-
(3) tion forces are computed for Newtonian fluid and a non-Newto-
nian fluid satisfying power law with shear index as 0.5, varying de-
where K is the consistent coefficient of power law fluid, n is the formability. In Figs. 2 and 4, surface curvature in the radial direc-
shear index and u is the relative velocity of two particles. The function is plotted for several elastic parameters along with the pressure
tion @in J involves a complete elliptic integral of first kind and is distributions between two particles shown in Fig. 3 and 5. More

2K (1)

6 h(Sn +2)2 1 TE

given as follows. deformation occurs as deformability increases. About 40% of gap
4R size h is deformed f@=0.1, whereas almost no deformation is ob-
o(R,&) =E%RD[(EE—R)2} 4) served fod=10" as seen in Fig. 2. It is also shown that the most

deformation occurs at R=0, where the highest stress is applied, and
The bracketed integration term in (2) corresponds to the stress distihe extent of deformation is reduced as one moves along the radial
bution over the surface at time t, which is determined from the hy-direction. The pressure distribution plots confirm this trend show-

drodynamic interaction of two particles. As seen in (2), the combi-ing that the pressures at the center are distributed discretely while
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Fig. 2. The distribution of particle curvature with Newtonian fluid
medium. The lines have different deformabilityd as shown
in legend.
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Fig. 3. Pressure distribution curves along the surface of deform-
able particle suspended in Newtonian fluid for different de-
formability d. Scaled pressurdl is defined as PHuua.
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Fig. 4. The distribution of particle curvature with non-Newtonian
fluid medium with shear index as 0.5. The lines have dif-
ferent deformability & as shown in legend.
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Fig. 5. Pressure distribution curves along the surface of deform-
able particle suspended in non-Newtonian fluid with shear
index as 0.5 for different deformability & Scaled pressure
N is defined as Ph*YKu®%a"".
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Fig. 6. J, with respect to deformability & for Newtonian fluid me-
dium. Solid line is the trend line expressed with power law.

&

Fig. 7. J, with respect to deformability & for non-Newtonian fluid
medium with shear index as 0.5. Solid line is the trend line
expressed with power law.

they are converged to almost same as R increases. Note that the présformation of surface.

sure is decreased as the deformation increases and deformability The most significant part of lubrication force is the computation
increases. The stress acting on the surface of particles is already integration Jas shown in Figs. 6 and 7. The analyticgdbda
relaxed into the deformation resulting in letting gap size bigger. Therigid body in a Newtonian fluid is 0.75 as seen in (7) implicitly. Since
pressure is therefore lowered as seen in Figs. 3 and 5 owing to highe calculated force is used in predicting relative viscosity, the cor-
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Table 1. Power and coefficient for the trend line of Jin express- that of fluid medium since the suspending particles’ interactions
ing J,=C8™. G, is the value of Jand m=0 when particles  contribute very much to the bulk stress of suspension. In particular,

are rigid the pair interactions due to lubrication force between particles are
n 1 0.5 most significant at high particle volume fraction. Therefore, rela-
m 0.147 0.072 tive viscosity, as defined in (8), varies depending on the volume frac-
c 0.399 1.955 tion of particles, applied mean flow, viscosity of fluid medium, pro-
G, 0.750 2626 perties of suspending patrticles etc.

viscosity of suspension
viscosity of fluid mediumu,,’

relative viscosity(l,) = (8)
relation function between and deformability is necessary on the
basis of simulation results to obtain the proper rheological relationVan den Brule and Jongschaap [1991] approached the relative vis-
ship of suspension with deformable particles such as polymer blendsosity of a Newtonian fluid by using stress expression for suspen-
As deformability increases, i$ decreased following a power law. sion proposed by Batchelor [1970]. As seen in (9) the suspension
The power and coefficients are listed in Table 1. The solid lines instress T for the overall suspension volume V has the contribution
Figs. 6 and 7 represent trend lines by power laws. Lubrication forcef fluid medium and that of particle interactiopso called as par-
is proportional to 11 for deformable particles in Newtonian fluid ticle phase stress, after very small magnitude terms are neglected.
and is 7 for deformable particles in non-Newtonian power law P is the pressure,J is the deviatoric stress tensor of fluid me-
fluid with shear index as 0.5 while it is'tand h** respectively  dium and \{ is the volume of suspended particles.
for rigid particles. The dependency on h is shown slightly weaker
for deformable particles because force depends on h as well as de-T; =\l/ [ (=P3; +Tj())dV +\1/z [tdv 9)
formed curvature of surface in integratign J VR v
It is worthwhile to see the effect of deformation on the lubrica- In concentrated suspension the lubrication force between particles
tion force by a force rati® defined as the ratio of force with de- is most important and screens the long-range hydrodynamic forces
formable particles and force with rigid particles.@departs from  effectively. Only the short-range interaction is thus considered in
unity, the force acting on the surface of deformable particles is lesthe suspension stress to change the second term of (9) for a given
than that on the rigid particles. In other words, the deformation occonfiguration, e.g., simple cubic array or face centered array etc.
curring generates more space between two particles resulting in le3he stress due to particles’ pair interaction in a concentrated system
pressure in the gap. Since the deformafdligets bigger and big-  is therefore computed with
ger, the force rati@® is decreased as shown in Fig. 8. For the non-
Newtonian fluid medium with n=0.%p is changed about 15%, T =\%z Fr? (10)
whereas it is varied more than 25% for a Newtonian fluid. It is noted
that the particles in Newtonian fluid medium are more impactedwhere E* is the lubrication force between partidleandp, and
by deformation. Non-Newtonian fluids following the power law r* is the vector connecting the center to center of partictesd
intrinsically have extensional motion during the process, which may3. Thus, lubrication force for a pair particle is used, in the previous
create sliding at the surface and in turn produce comparatively smadlection, to predict the relative viscosity of suspension with deform-
deformation. able particles.
Including the deformation effects which were presented only in
RELATIVE VISCOSITY evaluating the integraj,the lubrication force can be rewritten dif-
ferently incorporating the approximate equation@f, 8) into (6).
The suspension viscosity has very different flow behavior with Therefore, the force between two particles in Generalized Newto-
nian fluids is

F. zcle ’mKl’ma(n(l’m) ’2m+3)/2h(3n(m’1) +2m+1)/2un’nm

1

01:2(1+n’nm’2m)/2.‘_[c. (ll)

This expression will be used in calculation of a particle’s contribu-
tion to bulk stress in the following. Here m is the power of elastic
parameter, C is the coefficient of power atiglthe unit vector. The
values of C and m can be found as listed in Table 1 from Figs. 6
and 7. Note that C=0.75, m=0 for rigid particles in Newtonian fluid
B and G=2.626, m=0 for rigid particles in non-Newtonian fluid with
shear index as 0.5. The relative veloocitgan be expressed with
distance r, macroscopic velocity gradiereind bulk rate of strain
tensorD as

0.9

08

07

0 o 02 03 u=rL-e=r(D: ede. 12)

8

Fig. 8. The ratio of force between deformable particle and rigid ~ Thus, particle phase stress (10) can be writterDnétfier the above
particle, @, as a function of deformability. velocity relation is substituted into (12).
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Fig. 9. Simple cubic array of particles arranged with the principal
axes of deformation tensor. The black sphere is the refer-
ence to other surrounding particles presented as semi-trans-
parent.

F| r] :Cle’mK 1’ma(n(1’m) —2m+3)/2 h(Sn(m’l) +2m+1)/2
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For the particle in a simple cubic array, the orientation of packec
array is arranged with principal axes of the rate of strain tensor a
seen in Fig. 9, saying that thare shearingleformation of cubic
array is considered here. In a given unit volume V, six particles sur
round the reference particle as shown black in the center of the bo
Writing (13) for an approaching particle,

(13)

':1r1 zcle’mK1’ma(n(1’m)’2m+3)/2h(3n(m’1)+2m+1)/2r1+n(1’m)DTl’melel. (14)

Similarly, other neighboring particles contribute to the overall stress
tensor. Summing up all the contributions of neighboring particles
to estimate the stress tensor of a suspension aligned in a cubic arr
(9) is simplified to (15) due to dominating pure shearing motion
when instantaneous configuration of neighbors is known.

T =2y +%nz F.ri, =Dy n: number density

-I-11 :2(n+1)/2Kyn[ 1+ 2* (n+ 1)/2(:1(K e)* ma(n(lf m)-2m+ 3)/2
h(Sn(m* 1)+2m+ 1)/2r1+ n(1-m) nv* nm]

The distance r and number density n can be approximated as :
and 1/ since the particles are so closely packed. Consequently, th
relative viscosity is expressed as

@éSn(l’m)’Zm’ll/Z
ChU

((p/(p )]/3 (3n(1-m)—2m-1)/2
20~(¢/ <Pm)”J

@,is the maximum volume fraction of arrangement. For the simple
cubic array it isT6=0.5236 and i$73./2=0.7405 for hexagonal

arrangement. The coefficient of large bracket is changed for the dif
ferent configurations of suspension, depending on how many parti

(15)

M =1+CA , G=2"EC, A =KeY

=1+cz/\’m[ (16)

375

80

—e—n=1 rigid particle
—&-n=1 deformable particle

40

20

052

Fig. 10. The relative viscosity, of deformable and rigid particles
for Newtonian fluid medium for various volume fractions
with A=2.

16 for the hexagonal arrangement [van den Brule, 1991]. The com-
parisons of effective viscosity of suspension between rigid particles
and deformable particles is shown in Figs. 10 and 11 for the simple
cubic array with Newtonian fluid medium as well as with non-New-
tonian fluid with shear index as 0.5 varying volume fraction. Here
m is taken as zero and C is taken @i Table 1. As discussed by
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~+-n=0.5 rigid particle
-a-n=0.5 deformable particle

0
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¢
Fig. 11. The relative viscosity, of deformable and rigid particles
for non-Newtonian fluid medium with shear index as 0.5
for various volume fractions with A=2.

10

—— Newtonian fluid

non-Newtonian fluid with shear index as 0.5

4

cles approach together. As for the rigid particles, the coefficient ofrig. 12. The relative viscosity, of deformable particles with re-

bracket is 816 for the simple cubic array and it is change

spect toA at volume fraction=0.5.
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Jarzebski [1981], suspension of a Newtonian fluid has higher rela- Brownian ForcesPhysica A247, 444 (1997).
tive viscosity in a concentrated system because the suspension 6atherall, A. A., Melrose, J. R. and Ball, R. C., “Shear Thickening and
non-Newtonian fluid satisfying the power law has extensional pro- Order-Disorder Effects in Concentrated Colloids at High Shear
perty at the surface of particle. The plots for deformable particles Rates;J. Rheal 44, 1 (2000).
are obtained taking as 2 for both fluid mediums, which is explic- Christensen, H., “Elastohydrodynamic Theory of Spherical Bodies in
itty connected to deformability paramedelAs seen in Fig. 8p is Normal ApproachyJ. Lub. Tech 92, 145 (1970).
changed less when the fluid medium is non-Newtonian, explainingDavis, R. H., Serayssol, J. and Hinch, E. J., “The Elastohydrodynamic
that the relative viscosity is changed more for deformable particles Collision of Two Spheres]. Fluid Mech,163 479 (1986).
in a Newtonian fluid. The deformation of particles gives room geo-Frankel, N. A. and Acrivos, A., “On the Viscosity of a Concentrated Sus-
metrically to move [Loewenberg and Hinch, 1996], when they meet pension of Solid Sphere§hem. Eng. Sg22, 847 (1967).
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