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Abstract −−−−Lubrication theory is applied to compute the deformation of two approaching particles suspended in a
Generalized Newtonian fluid with linear elastic theory estimating deformation and force on the particles with respect
to deformability δ. The relative viscosity of concentrated suspension with deformable particles in a Generalized New-
tonian fluid is obtained for a simple cubic array configuration by using the results of deformation and force for two
particles. Since the deformation of particles generates the freedom of moving particles geometrically, the suspension
with deformable particles shows shear thinning behavior.
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INTRODUCTION

The rheology of highly concentrated blends has been studied ex-
perimentally by many investigators [Munstedt, 1981; Ellul et al.,
1995; Abdou-Sabet et al., 1996; Araki and White, 1998; Kim and
Chun, 1999; Moon et al., 2001] to understand the behavior of blend
during the process. However, a prominent barrier to the use of poly-
mer blends and composite materials is the lack of adequate models
that capture the complex interaction between microstructure and
rheology of these materials during processing. In determining the
rheological property of polymer blends, the most significant fea-
tures are hydrodynamic interaction between neighboring particles
and deformation of particles. Thus, we would like to focus on those
two phenomena to establish a useful model of suspension rheology
with deformable particles.

Many investigators have been working on understanding the hy-
drodynamic interactions of highly concentrated systems of hard
spheres. Since the hydrodynamic interactions between neighboring
particles are governed by lubrication force, the relative viscosity of
concentrated suspension with Newtonian fluid medium was devel-
oped from the rate of energy dissipation for two nearly touching
spherical rigid particles taking the spherical cell around particles
[Frankel and Acrivos, 1967]. Jarzebski [1981] and Tanaka et al.
[1980] extended to non-Newtonian fluid medium using the same
method. The stress between two particles was approximated as pres-
sure distribution by Tanaka et al. [1980] while stress was estimated
as the shear contribution of deformation tensor in second invariant
by Jarzebski [1981] claiming the more importance of elongation.
Jarzebski [1981] showed that the relative viscosity was lowered as
shear index n is decreased owing to the extensional motion of fluid
at the surface of particles. Recently, the rheological behavior of con-
centrated suspension with rigid particles in Newtonian fluid was ex-
amined with Stokesian dynamic simulations considering only lubri-

cation force as the interactions of particles [Ball and Melrose, 19
1997; Catherall et al., 2000] as well as were investigated experim
tally by Lee et al. [1999] and So et al. [2001] showing the shear th
ening behavior due to clustering of particles caused by lubrica
force.

Local volume averaging [Batchelor, 1970] was used for aver
ing stresslet so as to estimate the concentrated suspension vis
for a static periodic configuration instead of spherical cell appro
mating the stresslet of suspension from lubrication force and ve
connecting center of two neighboring rigid particles [van den Br
and Jongschaap, 1991].

Suspended particles such as rubber or conducting drop ca
deformed by external force, e.g. hydrodynamic interaction betw
particles or electric field [Ha and Yang, 2000]. The deformati
due to short range hydrodynamic force has been estimated for e
particles in Newtonian fluid medium by Christensen [1970] a
Davis et al. [1986] combined with Hertz contact theory [Land
and Lifshitz, 1986]. Different than the suspension of hard sphe
rheologically shear thinning behavior is observed for the susp
sion of deformable particles since deformation allows the mobi
of particles to increase geometrically [Loewenberg and Hinch, 19

In this paper we employ the volume averaging method to un
stand the rheological behavior of concentrated suspension with
formable particles suspended in Newtonian as well as in non-N
tonian fluid. However, it may be desirable to accomplish the d
amic simulation of deformable particles to predict the relative v
cosity; the computational time is so tremendous that it will be wor
on in the next paper. A periodic configuration is therefore used
estimating the relative viscosity of suspension with deformable p
ticles.

In the following section, lubrication force and deformability b
tween two rubber particles are derived before calculating the r
tive viscosity of suspension along with the brief description of nu
erical scheme. Then the results of numerical computation for 
deformable are presented for various shear indices and deform
ities δ. In the final section the relative viscosity of deformable p
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LUBRICATION THEORY AND DEFORMABILITY

Two spherical elastic particles with radius a are approaching each
other as shown in Fig. 1. As they get closer, the pressure between
them is increased inducing the stronger stress on the surface of par-
ticles. The curvature of deformed particle is approximately expressed
as

(1)

Here h(t) is the hypothetical distance of two deformable particles
on the line connecting the centers of particles shown as a solid line.
In other words, it is the distance of two particles assuming no de-
formation occurs. For deformable particles, variable d(r, t) is deter-
mined by its elastic properties, e.g. Poisson ratio ν and Young’s mod-
ulus E. The total particle deformation d in narrow gaps between two
approaching rubber particles suspended in Generalized Newtonian
fluid is evaluated as follows with the Hertz contact theory of linear
elasticity.

(2)

where δ is the deformability of particle and is defined as

(3)

where K is the consistent coefficient of power law fluid, n is the
shear index and u is the relative velocity of two particles. The func-
tion φ in J1 involves a complete elliptic integral of first kind and is
given as follows.

(4)

The bracketed integration term in (2) corresponds to the stress distri-
bution over the surface at time t, which is determined from the hy-
drodynamic interaction of two particles. As seen in (2), the combi-

nation of two physical phenomena, i.e. lubrication effect and ela
properties, allows us evaluate the deformation. By the coupling
continuity and momentum equation, the well-known lubricati
equation for the gap of two particles is expressed as

(5)

Since the deformation d(r, t) is incorporated in curvature equa
as (1), deformation owing to elasticity and lubrication force can
combined into the equation through (5). The force F on the two
formable particles is estimated from the stress distribution obta
from (5).

(6)

In evaluating normal stress σzz, only pressure P is included sinc
the magnitude of gradient of axial direction velocity w with respe
to z is much smaller, e.g. P~O(h−2) and (∂w/∂z)~O(h−1) for Newto-
nian fluid. The force equation is reduced to (7) with J2=3/4 when
the particles are rigid and fluid medium is Newtonian, implyin
that the magnitude of force is strongly dependent on the gap siz

(7)

A complete solution of the lubrication equation coupled with el
ticity theory can be evaluated by numerical methods, e.g. finite 
ference, finite element etc., as a function of time. In this work, 
computation of instant deformation and force acting on the surf
of deformed particles is enough to predict the relative viscosity
a given configuration. Therefore, we calculated the d(r) with the
pressure distribution obtained from two approaching rigid sphe
as a first step, considering the left side of (5) as the relative velo
of two particles. Consecutively, the newly obtained pressure di
bution P(r) from the previous step is used for the evaluation of d
This procedure is repeated until d(r) and P are converged. Once 
erically converged d(r) and P is computed, the lubrication force w
ten in (6) is estimated numerically. Romberg integration is use
calculate J1 and J2 precisely, changing variables to avoid the sing
larity due to integrand.

SIMULATION RESULTS

The distribution of particle curvature, integration J2 and lubrica-
tion forces are computed for Newtonian fluid and a non-New
nian fluid satisfying power law with shear index as 0.5, varying 
formability. In Figs. 2 and 4, surface curvature in the radial dir
tion is plotted for several elastic parameters along with the pres
distributions between two particles shown in Fig. 3 and 5. M
deformation occurs as deformability increases. About 40% of 
size h is deformed for δ=0.1, whereas almost no deformation is o
served for δ≈10−4 as seen in Fig. 2. It is also shown that the m
deformation occurs at R=0, where the highest stress is applied
the extent of deformation is reduced as one moves along the r
direction. The pressure distribution plots confirm this trend sho
ing that the pressures at the center are distributed discretely w
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Fig. 1. Schematic of two deformable particles.
May, 2002
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they are converged to almost same as R increases. Note that the pres-
sure is decreased as the deformation increases and deformability
increases. The stress acting on the surface of particles is already
relaxed into the deformation resulting in letting gap size bigger. The
pressure is therefore lowered as seen in Figs. 3 and 5 owing to high

deformation of surface.
The most significant part of lubrication force is the computati

of integration J2 as shown in Figs. 6 and 7. The analytical J2 for a
rigid body in a Newtonian fluid is 0.75 as seen in (7) implicitly. Sin
the calculated force is used in predicting relative viscosity, the 

Fig. 2. The distribution of particle curvature with Newtonian fluid
medium. The lines have different deformability δδδδ as shown
in legend.

Fig. 3. Pressure distribution curves along the surface of deform-
able particle suspended in Newtonian fluid for different de-
formability δδδδ. Scaled pressure ΠΠΠΠ is defined as Ph2/µµµµua.

Fig. 4. The distribution of particle curvature with non-Newtonian
fluid medium with shear index as 0.5. The lines have dif-
ferent deformability δδδδ as shown in legend.

Fig. 5. Pressure distribution curves along the surface of deform-
able particle suspended in non-Newtonian fluid with shear
index as 0.5 for different deformability δδδδ. Scaled pressure
ΠΠΠΠ is defined as Ph1.25/Ku0.5a0.75.

Fig. 6. J2 with respect to deformability δδδδ for Newtonian fluid me-
dium. Solid line is the trend line expressed with power law.

Fig. 7. J2 with respect to deformability δδδδ for non-Newtonian fluid
medium with shear index as 0.5. Solid line is the trend line
expressed with power law.
Korean J. Chem. Eng.(Vol. 19, No. 3)
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relation function between J2 and deformability is necessary on the
basis of simulation results to obtain the proper rheological relation-
ship of suspension with deformable particles such as polymer blends.
As deformability increases, J2 is decreased following a power law.
The power and coefficients are listed in Table 1. The solid lines in
Figs. 6 and 7 represent trend lines by power laws. Lubrication force
is proportional to h−0.85 for deformable particles in Newtonian fluid
and is h−0.12 for deformable particles in non-Newtonian power law
fluid with shear index as 0.5 while it is h−1 and h−0.25 respectively
for rigid particles. The dependency on h is shown slightly weaker
for deformable particles because force depends on h as well as de-
formed curvature of surface in integration J2.

It is worthwhile to see the effect of deformation on the lubrica-
tion force by a force ratio Φ defined as the ratio of force with de-
formable particles and force with rigid particles. As Φ departs from
unity, the force acting on the surface of deformable particles is less
than that on the rigid particles. In other words, the deformation oc-
curring generates more space between two particles resulting in less
pressure in the gap. Since the deformability δ gets bigger and big-
ger, the force ratio Φ is decreased as shown in Fig. 8. For the non-
Newtonian fluid medium with n=0.5, Φ is changed about 15%,
whereas it is varied more than 25% for a Newtonian fluid. It is noted
that the particles in Newtonian fluid medium are more impacted
by deformation. Non-Newtonian fluids following the power law
intrinsically have extensional motion during the process, which may
create sliding at the surface and in turn produce comparatively small
deformation.

RELATIVE VISCOSITY

The suspension viscosity has very different flow behavior with

that of fluid medium since the suspending particles’ interactio
contribute very much to the bulk stress of suspension. In partic
the pair interactions due to lubrication force between particles
most significant at high particle volume fraction. Therefore, re
tive viscosity, as defined in (8), varies depending on the volume f
tion of particles, applied mean flow, viscosity of fluid medium, pr
perties of suspending particles etc.

(8)

Van den Brule and Jongschaap [1991] approached the relative
cosity of a Newtonian fluid by using stress expression for susp
sion proposed by Batchelor [1970]. As seen in (9) the suspen
stress Tij for the overall suspension volume V has the contribut
of fluid medium and that of particle interactions tij, so called as par-
ticle phase stress, after very small magnitude terms are negle
P is the pressure, Tij(m) is the deviatoric stress tensor of fluid me
dium and V0 is the volume of suspended particles.

(9)

In concentrated suspension the lubrication force between part
is most important and screens the long-range hydrodynamic fo
effectively. Only the short-range interaction is thus considered
the suspension stress to change the second term of (9) for a 
configuration, e.g., simple cubic array or face centered array 
The stress due to particles’ pair interaction in a concentrated sy
is therefore computed with

(10)

where Fi
αβ is the lubrication force between particle α and β, and

rj
αβ is the vector connecting the center to center of particles α and

β. Thus, lubrication force for a pair particle is used, in the previo
section, to predict the relative viscosity of suspension with defo
able particles.

Including the deformation effects which were presented only
evaluating the integral J2, the lubrication force can be rewritten dif
ferently incorporating the approximate equation of J2(n, ε) into (6).
Therefore, the force between two particles in Generalized New
nian fluids is

(11)

This expression will be used in calculation of a particle’s contrib
tion to bulk stress in the following. Here m is the power of elas
parameter, C is the coefficient of power and e is the unit vector. The
values of C and m can be found as listed in Table 1 from Fig
and 7. Note that C=0.75, m=0 for rigid particles in Newtonian flu
and C≈2.626, m=0 for rigid particles in non-Newtonian fluid with
shear index as 0.5. The relative velocity u can be expressed with
distance r, macroscopic velocity gradient L and bulk rate of strain
tensor D as

u=rL ·e=r(D : ee)e. (12)

Thus, particle phase stress (10) can be written with D after the above
velocity relation is substituted into (12).

relative viscosity µr( ) = 
viscosity of suspension µ

viscosity of fluid medium µm

---------------------------------------------------------------------.

T i j  = 
1
V
---- − Pδij  + T ij m( )( )

V − ΣV0

∫ dV  + 
1
V
---- tijdV

V0

∫∑

T i j
P

 = 
1
V
---- Fi

αβrj
αβ∑

Fi  = C1θ
− mK1 − ma n 1 − m( ) − 2m+ 3( ) 2⁄ h 3n m− 1( ) + 2m+ 1( ) 2⁄ un − nmei,

C1= 2 1 + n − nm− 2m( ) 2⁄ πC.

Table 1. Power and coefficient for the trend line of J2 in express-
ing J2=Cδδδδ−−−−m. C0 is the value of J2 and m=0 when particles
are rigid

n 1 0.5

m
C
C0

0.147
0.399
0.750

0.072
1.955
2.626

Fig. 8. The ratio of force between deformable particle and rigid
particle, ΦΦΦΦ, as a function of deformability.
May, 2002
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For the particle in a simple cubic array, the orientation of packed
array is arranged with principal axes of the rate of strain tensor as
seen in Fig. 9, saying that the pure shearing deformation of cubic
array is considered here. In a given unit volume V, six particles sur-
round the reference particle as shown black in the center of the box.
Writing (13) for an approaching particle,

(14)

Similarly, other neighboring particles contribute to the overall stress
tensor. Summing up all the contributions of neighboring particles
to estimate the stress tensor of a suspension aligned in a cubic array,
(9) is simplified to (15) due to dominating pure shearing motion
when instantaneous configuration of neighbors is known.

 n : number density

(15)

The distance r and number density n can be approximated as 2a
and 1/r3 since the particles are so closely packed. Consequently, the
relative viscosity is expressed as

(16)

φm is the maximum volume fraction of arrangement. For the simple
cubic array it is π/6=0.5236 and is π/3 =0.7405 for hexagonal
arrangement. The coefficient of large bracket is changed for the dif-
ferent configurations of suspension, depending on how many parti-
cles approach together. As for the rigid particles, the coefficient of
bracket is 3π/16 for the simple cubic array and it is changed to 3π /

16 for the hexagonal arrangement [van den Brule, 1991]. The c
parisons of effective viscosity of suspension between rigid parti
and deformable particles is shown in Figs. 10 and 11 for the sim
cubic array with Newtonian fluid medium as well as with non-Ne
tonian fluid with shear index as 0.5 varying volume fraction. He
m is taken as zero and C is taken as C0 in Table 1. As discussed byFirj  = C1θ

− mK1 − ma n 1 − m( ) − 2m+ 3( ) 2⁄ h 3n m− 1( ) + 2m+ 1( ) 2⁄

Dklekel( )n − nmeir
1 + n 1 − m( )ej

F1r1 = C1θ
− mK1 − ma n 1 − m( ) − 2m+ 3( ) 2⁄ h 3n m− 1( ) + 2m+ 1( ) 2⁄ r1 + n 1 − m( )D11

n − me1e1.

T11 = 2 n + 1( ) 2⁄ Kγn
 + 

1
2
---n F1r1, γ· = D11∑

T11 = 2 n + 1( ) 2⁄ Kγn 1+  2− n+ 1( ) 2⁄ C1 Kθ( )− ma n 1− m( )− 2m+ 3( ) 2⁄[
h 3n m− 1( )+ 2m+ 1( ) 2⁄ r1+ n 1− m( )nγ·− nm]

µr  = 1+ C2Λ
a
h
--- 

 
3n 1 − m( ) − 2m− 1( ) 2⁄

, C2 = 2 n − 2nm− 5( ) 2⁄ C1, Λ  = Kθγ·n

= 1+ C2Λ
− m φ φm⁄( )1 3⁄

2 1− φ φm⁄( )1 3⁄〈 〉
-----------------------------------

3n 1 − m( ) − 2m− 1( ) 2⁄

2

2

Fig. 9. Simple cubic array of particles arranged with the principal
axes of deformation tensor. The black sphere is the refer-
ence to other surrounding particles presented as semi-trans-
parent.

Fig. 10. The relative viscosity µµµµr of deformable and rigid particles
for Newtonian fluid medium for various volume fractions
with ΛΛΛΛ=2.

Fig. 11. The relative viscosity µµµµr of deformable and rigid particles
for non-Newtonian fluid medium with shear index as 0.5
for various volume fractions with ΛΛΛΛ=2.

Fig. 12. The relative viscosity µµµµr of deformable particles with re-
spect to ΛΛΛΛ at volume fraction=0.5.
Korean J. Chem. Eng.(Vol. 19, No. 3)



376 S.-Y. Kang

nd
ar

 in

mic

us-

ian

en-

ar

ta-

en-

bi-

nd

is-
on-

on-
Jarzebski [1981], suspension of a Newtonian fluid has higher rela-
tive viscosity in a concentrated system because the suspension of
non-Newtonian fluid satisfying the power law has extensional pro-
perty at the surface of particle. The plots for deformable particles
are obtained taking Λ as 2 for both fluid mediums, which is explic-
itly connected to deformability parameter δ. As seen in Fig. 8, Φ is
changed less when the fluid medium is non-Newtonian, explaining
that the relative viscosity is changed more for deformable particles
in a Newtonian fluid. The deformation of particles gives room geo-
metrically to move [Loewenberg and Hinch, 1996], when they meet
together, decreasing the relative viscosity. Fig. 12 confirms that the
deformation results in the decrease of relative viscosity as well as
that shear thinning is observed in the presence of deformable par-
ticles. As shear rate increases, the approaching velocity is higher
and higher to produce more deformation of particles so that pre-
vents the sticking of particles and decreases the relative viscosity.
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