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Abstract−−−−In biological wastewater treatment plants the biomass is separated from the treated wastewater in the se-
condary settler; thus, efficient operation of the secondary settler is crucial to achieving satisfactory effluent quality in
the wastewater treatment process (WWTP). In the present work, system identification and soft-computing techniques
were used to formulate a model for predicting the solid volume index (SVI) and classification of the sludge bulking
phenomenon in the settler. An adaptive time series model was applied to predict the SVI of the secondary settler; this
model uses the recursive least square (RLS) method to update the model parameters. The method for classifying the
current state of the secondary settler is based on the strong correlation that was observed between the settler state an
the values of the time series model parameters, which enabled the time series model parameters to be used as effectiv
features for monitoring the secondary settler. To classify the current state of the secondary settler, a neural network
(NN) was used to classify the adaptive time series model parameters, where a hybrid Genetic Algorithm (GA) was
used to decide the number of hidden nodes of the NN classifier. Application of the proposed method to a full-scale
WWTP demonstrated the utility of the method for simultaneously predicting the SVI value of the secondary settler
and classifying the current state of the settler.

Key words: Auto-regressive Exogenous (ARX) Model, Bulking, Genetic Algorithm (GA), Neural Network (NN) Classifier,
Recursive Least Square (RLS) Method, Solid Volume Index (SVI)

INTRODUCTION

Increasingly stringent environmental regulations demand ongo-
ing improvements in the quality of the effluent from wastewater
treatment plants. Achieving better effluent quality requires improved
modeling and control of plant performance. The first step in any
procedure aimed at reducing the pollutant level in effluent from the
biological wastewater treatment process (WWTP) should be to mod-
el and analyze the current state of each unit of the WWTP. The re-
covery of the WWTP from a ‘bad’ state to a ‘normal’ state is slow;
hence, good modeling and status classification in the biological pro-
cess are crucial to the process efficiency because they allow correc-
tive action to be taken well before the onset of a dangerous situation
[Olsson and Chapman, 1988; Hasselblad et al., 1996; Teppola et
al., 1997, 1999; Lee et al., 1998; Rosen and Olsson, 1998; Van Don-
gen et al., 1998; Bang et al., 2001; Choi et al., 2001; Yoo et al., 2000,
2001, 2002].

The activated sludge process (ASP) is the most extensively used
process in wastewater treatment plants. In the ASP, wastewater con-
taining organic matter, suspended solids, and nutrients enters an aer-
ated tank where it is mixed with biological floc particles. The mix-
ture is held in the tank for a predetermined contact time, after which
it is discharged into a settler that separates the suspended biomass
from the treated water. Most of the biomass is recirculated to the
aeration tank, and a small amount is purged daily (Fig. 1). The ASP
is a complex biological process that is difficult to fully understand
and therefore difficult to operate and control. Both the quantity and
quality of the inflow vary with time. In addition, the system con-

tains a living catalyst (the microorganisms), and the microorgan
population varies over time both in quantity and in the relative p
ulations of different species. Knowledge about the process is sc
because the few available on-line analyzers are unreliable, and 
existing data related to the process is subjective and cannot be n
ically quantified. The majority of the problems associated with po
effluent quality from the ASP result from the inability of the s
condary settler to efficiently remove the suspended biomass f
the treated water. When the biomass is heavily colonized by l
filamentous bacteria, which hold the flocs apart, sludge settlin
hindered and the solid volume index (SVI) increases. This p
nomenon is referred to as bulking [Belanche et al., 2000].

Sludge bulking is perhaps the most common cause of ASP 
ures (i.e., exceeding the permitted discharge levels). It has bee
timated, for example, that over 50% of the treatment plants in
world regularly experience bulking conditions. Bulking slows th
settling in the settler and, as a consequence, solids in these c
tions are more likely to escape the separation unit. Recent effor
understand the factors that lead to bulking have relied primarily
experimental observation of the bacterial species involved. Un

Fig. 1. A basic activated sludge process with an aerated tank and
a settler.
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tainty regarding the factors that trigger bacterial growth is a major
obstacle to the elucidation of the problem. However, the factors caus-
ing the bacterial growth have been established only in a few cases,
and even in these cases the experimental results are open to con-
tradictory interpretations. As a result, no models have been estab-
lished for the analysis and prediction of bulking conditions. In par-
ticular, no deterministic mathematical models have been formu-
lated to predict the behavior of filamentous organisms [Capodaglio
et al., 1991; Belanche et al., 2000].

As mentioned above, the performance of the secondary sedi-
mentation in the WWTP is crucial to the operation of activated sludge
systems. The operation of the secondary settler depends on the status
of the sludge, which in turn relies on a variety of parameters such
as the temperature, organic loading, influent flow rate and floc pro-
perties. In the present study the solid volume index (SVI) is used
to represent the bulking condition; it is easily measured and pro-
vides a good estimate of the settling properties of a sludge. In ad-
dition to being routinely collected at the majority of wastewater treat-
ment plants, the SVI has the advantage that it provides a measure
of bulking that is not associated with any particular species in the
system. Therefore, the SVI describes the bulking situation regard-
less of the population differentiation and dynamics of the system
biomass [Tcholanoglous and Burton, 1991]. High SVI values are
indicators of a bulking state and excessive numbers of filamentous
microbes, which is one of the major upsets of the ASP leading to
the deterioration of the purification efficiency. On the other hand,
the secondary settling tank itself evolves over time as the biomass
adapts to different conditions. The ability to predict the time evolu-
tion of the SVI value is very important to the effective operation of
the settler.

The development of a model that can predict with reasonable
accuracy the dynamics of the secondary settler, and that can pre-
dict the appearance of sludge bulking, is of great practical impor-
tance. Such a prediction model should accurately predict the SVI
of the mixture in the secondary settler based on the most relevant
variables of the process, such as flow rates, temperature and biom-
ass concentration.

In the present study, system identification and soft-computing
techniques were used for the modeling and classification of the con-
tents of the secondary settling tank. The SVI of the secondary settler
was forecast by using the recursive least squares (RLS) method.
We verified that the RLS model parameters provide a good model-
ing of the secondary settler by observing the evolution of the RLS
model parameters through a power spectrum analysis. Finally, we
proposed a scheme for monitoring the secondary settler by using a
neural network (NN) classifier combined with the adaptive pro-
cessing scheme. The proposed method is shown to be suitable for ap-
plication to the full-scale WWTP.

METHODS

In this section we propose a system for monitoring the second-
ary settler. The first subsection explains the use of time series mod-
eling to predict the SVI value and power spectrum analysis to verify
the classification capability, while the second subsection provides a
description of the NN classifier that is used to identify the current
state of the settler. The genetic algorithm used to design the NN

structure is introduced in the third subsection, and a proposed h
chical structure is described in the final subsection.
1. Time Series Modeling

To model SVI of the secondary settler, we apply the system id
tification methods, where the autoregressive exogenous (ARX) m
el is used [Ljung, 1987; Ko and Cho, 1996]. A general form of 
discrete ARX model is as follows.

y(t)+a1y(t−1)+Λ+ana
y(t−na)

=b1u(t−1)+b2u(t−2)+Λ+bnb
u(t−nb)+e(t) (1)

where ai and bi are coefficients, na and nb are model orders, y(t) is a
process output, u(t) is a process input, and e(t) is an unmeas
white noise. The objective of the ARX model is to estimate the 
justable parameters of ai and bi to minimize the difference between
the predicted process output and the measured process outpu
cause the secondary settler is a time varying process and has 
ently dynamic characteristics, it is required to use the adaptive 
ability. For this purpose, we use the with recursive least square (R
algorithm that makes the modeling technique well-suited for ti
varying environment.

The RLS algorithm is as follows.

(2)

where K(t) is a adaptation gain, θ(t) is a parameter vector, (t) is a
prediction value based on observations at time t−1, ϕ(t) is a regres-
sion vector, λ is a forgetting vector, and P(t) is a covariance mat
of estimates. This recursive form is very convenient for updat
the model at each time, so that the model follows the gradual ch
in the characteristic of the settling process. If the ARX model par
eters are well tuned, a change in dynamic characteristics of the
tling process will cause gradual change in the parameter vecto
prediction error. Therefore, the status of the settler can be obse
by a gradual change in the ARX model coefficients.

In order to see the sensitivity of the ARX coefficients at each s
and verify its discriminant ability, a comparison of the power sp
trum at each state is required. The power spectrum of a statio
process is defined as the Fourier transform of its covariance f
tion [Ljung, 1987]. While a deterministic signal can be express
as a mixture of sine and cosine functions at different frequencie
time series response or stochastic system response of a funct
time does not belong to the class of functions dealt with in the u
Fourier transform theory. The frequency decomposition of th
random functions can be obtained by taking the Fourier Transf
of the auto-covariance function for which the usual Fourier tra
form can be used.

For a stochastic process, y(t) can be given by

y(t)=G(q)u(t)+H(q)e(t) (3)

where u(t) is a quasi-stationary, deterministic signal with a sp
trum, and e(t) is white noise with a variance. Let G(q) and H(q)
stable filters. Then y(t) is quasi-stationary and

θ̂ t( )  = θ̂ t  − 1( ) + K t( ) y t( ) − ŷ t( )( )
ŷ t( ) = ϕT t( )θ̂ t  −  1( )

K t( ) = 
p t − 1( )ϕ t( )

λ + ϕT t( )P t − 1( )ϕ t( )
-----------------------------------------------

P t( ) = 

P t − 1( )  − 
P t − 1( )ϕ t( )ϕT t( )P t − 1( )

λ  + ϕT t( )P t − 1( )ϕ t( )
--------------------------------------------------------

λ
-------------------------------------------------------------------------------

ŷ

May, 2002
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Φy(ω)=|G(eiw)|2Φu(ω)+σa
2|H(eiw)|2 (4)

Φyu(ω)=G(eiw)Φu(ω) (5)

where Φy(ω) is a power spectrum of y(t) and Φyu(ω) is a cross spec-
trum of y(t) and u(t). It should be noted that these types of spec-
trum estimates are inherently smooth because they are obtained based
on a parameter representation of the system. The result has a physi-
cal interpretation, where |G(eiw)|2 is the steady-state amplitude of
the response of the system to sine wave with a frequency. The value
of the spectral density of the output is then the product of the power
|G(eiw)|2 and the spectral density of the input Φu(ω). If the power
spectrum is separated and has a dissimilarity value at a different
state, analyzing the power spectrum of the ARX coefficients can
make the decision on the state of the secondary settler.
2. Pattern Classification (Neural Network)

While different states are not completely separable in the origi-
nal input and output dimensional space under a wide range of con-
ditions, the classes can become separable in the dimensional fea-
ture of the ARX parameters space. Here, the ARX coefficients are
used as input features for NN classifier which has the ability of non-
linear mapping.

Pattern recognition methods such as multiplayer perceptron (MLP)
and radial basis function (RBF) have been known as an important
technique for the classification problems because they do not re-
quire accurate process models which are often difficult to obtain
for many biological and chemical processes. And the computing
ability of neural network outperforms the conventional statistical
approach in many engineering application because of its non-linear
transformation [Bishop, 1995; Lin and Lee, 1996; Haykin, 1999;
Himmelblau, 2000].

A neural network maps a set of input patterns (e.g., process oper-
ating conditions) to respective output classes (e.g., categorical groups).
We use an input vector (x) and an output vector (y) to represent the
input pattern and output class, respectively. The output vector, y,
from NN is bipolar, with −1 indicating that the input pattern is not
within the specific, and 1 indicating that it is within a specific class
(e.g., “−1”=not in class I; “1”=in class I). The actual output from
NN is a numerical value between −1 and 1, and can be viewed as
the probability that the input pattern corresponds to a specific class.
The output vector (y) contains three possible classes: y={class I,
class II, class III}. Note that for every point within the input space,
there must be only one class specified. In this paper, we have only
three possible output vectors for training the network, for example,
y={[1, −1, −1], [−1, 1, −1], [−1, −1, 1]}.

After the calculation of NN output, the values of output nodes
are passed to the maximum selector. The output node selected by
the maximum selector gives information on the class that includes
a current input. In theory, for an M-class classification problem in
which the union of the M distinct classes forms the entire input space,
we need a total of M outputs to represent all possible classification

decisions, as depicted in Fig. 2. In this figure the vector xj denotes
the jth prototype (i.e., unique samples) of an m-dimensional ran-
dom vector x to be classified by a NN classifier. It can be expres
as follows:

If y i(xj)>yk(xj) for all k (k=1, 2, …, M: k≠i) , then xj∈si (6)

where xj is jth input vector, yi is the ith output node value of NN
classifier for input xj, si is the ith state of secondary clarifier, and M
is the number of output nodes. A unique largest output value e
with probability 1 when the underlying posterior class distributio
are distinct [Haykin, 1999].
3. Genetic Algorithm (GA)

GA is a derivative-free stochastic optimization technique in wh
the stochastic search algorithm is based on the idea of the prin
of natures such as natural selection, crossover, and mutation
has largely been used in two major parts: optimization and mac
learning. GA is a probabilistically guided optimization techniqu
Unlike other classical optimization techniques, GA does not r
on computing local derivatives to guide the search process. On
the GA’s characteristics is the multiple points search, which discr
inates GA from other random search methods and helps GA a
getting trapped in local minima. Hence, GA reveals its full pow
when applied to very complex problems [Goldberg, 1989; Wa
et al., 1998].

Recently, GA has been successfully applied to WWTP for e
mating water quality model parameters, water quality parame
in a water quality modeling framework, calibrating rainfall-runo
models, solving ground water management problems, and si
water distribution networks [Mulligan and Brown, 1998].

Since the ultimate objective of a pattern classifier is to achi
an acceptable rate of correct classification, this criterion is use
judge when the variable parameters of NN are optimal. But the 
of a hidden layer is a fundamental question often raised in the
plication of NN to real-world problems. The exact analysis of t
issue is rather difficult because of the complexity of the netw
mapping and the nondeterministic nature of many successfully c
pleted training procedures. Hence, the size of a hidden layer is
ally determined experimentally.

This paper focuses on the application of GA as an important 
in the structure and parameters learning of NN. Structure and
rameter learning problems of NN are coded as genes (or chro
somes) and GA is used to search for better solutions (optimal s
ture and parameters). Here, the string of chromosomes repre
the number of hidden layers of NN. GA typically starts by ra
domly generating an initial population of strings. Each string is tra
formed into the fitness value to obtain a quantitative measure.
the basis of the fitness value, the strings undergo genetic op
tions. The goal of genetic operations is to find a set of parame
that search the optimal solution to the problem or to reach the lim
generation. The basic concept behind this technique comes 
that a complete set of weights is coded in a binary or decimal st
which has an associated “fitness” indicating its effectiveness [
and Lee, 1996].
4. Hierarchical Structure

The system proposed for monitoring the secondary settler is c
posed of three fundamental parts. Fig. 3 presents a schematic
gram of the proposed hierarchical structure. First, an adaptive mFig. 2. Block diagram of a pattern classifier.
Korean J. Chem. Eng.(Vol. 19, No. 3)
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el is used to predict the SVI value and provide a classifier with feature
vectors. This step utilizes the ARX model to predict the SVI value
in the secondary settler, where the model parameters are adaptively
estimated by the RLS method, and the ARX model parameters are
used as the input vector of the NN classifier. Second, an NN clas-
sifier is designed to identify the current state of the secondary clas-
sifier. After the NN is trained, the state class of the settler is chosen
from the values of the recognized output nodes according to the
maximum selection rule (i.e., a single value is chosen from the clas-
sifier output according to the rule “the minority is subordinated to
the majority”). Third, the structure of the NN classifier is decided
from the optimal number of hidden nodes by using a genetic al-
gorithm.

RESULTS AND DISCUSSION

In this paper, we used the industrial wastewater treatment facil-
ity data of the iron and steel making plant in Korea. It is a general
activated sludge process that has five aeration basins and a second-
ary settler. Fig. 4 shows the layout of the WWTP. It has two waste-
water sources, where one directly comes from a coke making plant
(called BET3) and the other comes from a pretreated wastewater
of upstream WWTP at other coke making plant (called BET2). The
coke-oven plant wastewater is produced during the conversion pro-
cess of coal to coke in the steel making industries. It is extremely
difficult to treat the coke wastewater because it is highly polluted
and most of the chemical oxygen demand (COD) originates from
large quantities of toxic, inhibitory compounds and coal-derived
liquors (e.g. phenolics, thiocyanate, cyanides, poly-hydrocarbons
and ammonium). The data set consist of daily mean values from
January 1, 1997 to December 22, 1999. The data are divided into
two parts. A training set consisting of the values during first two

years and a test data set during the remaining one year are us
see how well the proposed algorithm works.

First, the ARX model structure is as follows. Its inputs are fo
the influent flow rate, influent COD, dissolved oxygen (DO) of th
final aeration basin, and mixed liquor suspended solid (MLSS
the final aeration basin. Output variable is SVI of the settler. T
state of the secondary settler is divided three classes (normal
and bulking state) which are judged by an experienced oper
The ARX model is adapted by RLS method with the forgetting f
tor. At present there is no better method available to fundamen
determine the ARX model order. A most natural approach to se
for a suitable ARX model structure is simply to test a number
different ones and to compare the resulting models. Time-lag
scheme is adopted because the settler is considered as a dy
system (i.e., bacteria do not respond in a detectable manner 
stantaneous inputs of measurable parameters), and therefore a
lagged input scheme for the input parameters is deemed to re
actual conditions within the secondary settler. Two days lag is c
sen, which corresponds to the average hydraulic retention tim
the system, that is, the order of each exogenous input is 2 and 
of AR part is 3. The applied ARX model has a following form

y(t)+a1y(t−1)+a2y(t− 2)+a3y(t−3)

=b1, 1u1(t−1)+b1, 2u1(t− 2)+b2, 1u2(t−1)+b2, 2u2(t−2)
+b3, 1u3(t− 1)+b3, 2u3(t−2)+b4, 1u4(t−1)+b4, 2u4(t−2) (7)

where y(t) is SVI, u1(t) is influent flow rate, u2(t) is influent COD,
u3(t) is DO, and u4(t) is MLSS. To remove data redundancy, we no
malize the raw training data. The RLS method uses the dead-
method to remedy the estimation windup.

Fig. 5 shows the one-step ahead prediction result of SVI in
secondary settler during the test period. The dot point is real v
and solid line is the prediction value. The result during the test 
iod confirms the good prediction capability of the proposed me
od. In order to see the sensitivity of the ARX coefficients at ea
state, the parameter values of each state are shown in Fig. 6. I
Figure, the ARX model parameters have different values acc
ing to each state, which means that the state decision of the se
ary settler can be achieved by quantitatively analyzing the A
parameters. To confirm theoretically the difference between the A

Fig. 3. Schematic diagram of the proposed hierarchy structure.

Fig. 4. Plant layout of WWTP. Fig. 5. One-step ahead prediction value of SVI using RLS method.
May, 2002
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parameters in each class, we display the power spectrum analysis
of the ARX parameters in the Fig. 7, which shows the validity of
the recognition system of the state in the settler.

Second, we use an MLP structure with two hidden layers as an
NN classifier, where local features are extracted in the first hidden
layer and global features are extracted in the second hidden layer
[Haykin, 1999]. The number of the hidden layers is decided by the
hierarchical GA. To speed up training and stabilize the learning al-
gorithm, we use the momentum term, adaptive learning rate, nor-
malized weight updating and batch learning techniques. MLP is tra-
ined by using three patterns according to the state of the secondary
settler. The number of the ARX parameters, which is used as the
input variables of MLP, is eleven. And other operating conditions,
such as toxic occurrence, microorganism state and status of aera-
tion basin can be taken as additional features to compensate for sen-
sitivity of the ARX parameters to the variation of operation con-
ditions. The classification rate for these additional features does not
show any improvement. In this paper, for purposes of clarity, we
do not use this additional information. The input features are nor-
malized in [−0.9, 0.9] ranges in order to prevent saturation of an
activation function. The corresponding target values of output nodes
are set to normal state (0.9, −0.9, −0.9), bad state (−0.9, 0.9, −0.9),
bulking state (−0.9, −0.9, 0.9) for each state of three classes. In the
GA application of MLP structure, the initial population size of par-
ents is 30 and generation number is 100. Ranked-base selection as
a selection operator, and mutation and uniform crossover as a search

operator are used. We have set the mutation rate for 0.01 and c
over rate for 0.6. GA finds the optimal number of each hidden n
quickly, because the search space is small in the application.
number of first and second hidden layers is 7 and 4, respecti
In other simulations, MLP with two hidden layers shows better 
sult than that with only one hidden layer.

In testing mode, the maximum value of NN classifier outputs
chosen in determining the present states. It indicates what sta
the current state. The test data has not a bulking state but onl
normal and bad state. Table 1 shows the confusion matrix re
senting classification results from the test set. This is a matrix wh
i by j element indicates the number of samples that originate f
the ith distribution and are classified into the jth state. The diagonal
elements are the numbers of samples classified correctly, while
off-diagonals are the numbers of misclassified samples. Tho
output values do not completely agree with the corresponding
sired outputs, they are reasonable to recognize the present state
the NN classifier, the classification rate is about over 80.9% on
average, even though the settler was run under a wide range o
erating conditions. Because the process has an abrupt load v
tion during the latter part of test set, the misclassification rate 
higher in this period.

CONCLUSION

Recognition of the process state of the secondary settler en
effective decision-making in regard to the operation of the proc
and consequently enhances the treatment efficiency. In the pre
study we formulated a model for the prediction and classificat
of the SVI values in the secondary settler. We verified that the 
brid structure of the ARX model and NN classifier could pred
the SVI value and classify the current state of the secondary se
The theoretical analysis revealed a strong correlation between
settler states and the values of the ARX parameters. The prop
method was shown to be capable of simultaneously predicting
SVI value of the secondary settler and classifying the current s
of the secondary settler.
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