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Abstract−−−−This paper presents improved evolutionary operation based on D-optimal design and response surface
method. D-optimal design and response surface method allow us to overcome the disadvantages of conventional
evolutionary operation. Although evolutionary operation has been an effective alternative when fundamental models
are hard to build because of the lack of the necessary information, the disadvantages in the number of experiments,
experimental design and analysis and detection of the optimal point have prevented EVOP from being frequently ap-
plied to real processes. To compare the performance of the proposed method and the conventional EVOP, both of them
were applied to a pulp digester process. As a result, the comparable response variable value has been clearly obtained
with the proposed method while conducting much fewer numbers of experiments than the conventional evolutionary
operation. In addition, the proposed method flexibly handles the constraints in the experimental design and gives more
reliable experiment results than the conventional evolutionary operation. By virtue of these benefits, the proposed meth-
od can be utilized effectively for a process where prior knowledge for the process is not available.
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INTRODUCTION

It has been indispensable for industry to cut down operating costs
and to enhance the quality of products to survive in extreme com-
petition. To achieve these goals, we should find the optimal operat-
ing conditions at which to operate a plant. Although industrial op-
erators have improved operating conditions based on their previ-
ous experiences, their operating methods might be neither system-
atic nor economical. Thus, it usually takes a great deal of time to
reach the optimal operating condition and it may not be the glo-
bal optimum, even if they have found out an improved point. To
solve this problem, various optimization methods based on mathe-
matical programming have been proposed [Lee and Lim, 1999; Choi
et al., 2000; Janson, 2001; Choi and Manousiouthakis, 2002]. The
methods necessarily include first principle models for a process as
equality constraints in an optimization. Therefore, only if the mod-
els can describe the given system to an acceptable degree we can
use these methods to effectively locate the optimum point. On the
other hand, the necessity for the accurate first principle models re-
stricts usefulness of the methods because it is very difficult and time-
consuming to build the first principle models for an unknown pro-
cess whose static and dynamic behaviors cannot be exactly mod-
eled. For this reason, the mathematical programming based meth-
ods have been usually applied to relatively simple and well-known
processes such as utility plants [Lee et al., 1998a, b; Yi and Han,
2001].

Evolutionary operation (EVOP) proposed by Box [1957] can be
applied for this case since it allows us to find the optimal operating
condition without using the first principle models. There have been
many cases where EVOP was applied for the optimization of chem-

ical processes [Hunter and Kittrell, 1966]. Although the applicat
cases of EVOP have rapidly decreased since the 1970s beca
advances in modeling techniques, EVOP has many useful pro
ties as an optimization method. In particular, it is advantageou
the optimization of complex processes since EVOP does not req
accurate first principle models for a process.

This is proved by the fact that EVOP is again being used for
optimization of bioprocesses for which the inner phenomena 
not clearly understood. Banerjee and Bhattacharyya [1993] app
EVOP to a bioprocess, where information on the process wa
sufficient, to maximize enzyme activity using three inducers. Tun
et al. [1999] also used EVOP to maximize the production of p
tease by optimizing the concentrations of vitamin, metal ion a
plant hormone. Saad [1994] showed that EVOP could be used
the optimization of the porcelain enamel manufacturing proce
All of them mentioned that EVOP could be applied to unknow
processes as a superb optimization technique. However, severa
advantages of EVOP, such as a large number of experiments
biguousness of the analysis result on the direction of process
provement, and excessive reduction of experiment region in the 
ence of constraints, should be overcome for its more frequen
plications to real problems.

Consequently, in this paper, we propose an improved EVOP
overcomes the limitations of a conventional EVOP. In the p
posed method, D-optimal design and response surface method (R
are used to solve the problems. D-optimal design, which is kno
as one of the most efficient experimental design methods, has 
greatly developed by Mitchell [1974], Johnson and Nachtshe
[1983], and DuMouchel and Jones [1994]. Mitchell [1974] pr
posed DETMAX algorithm which is known as the origin of the m
dern D-optimal design algorithm. Johnson and Nachtsheim [19
suggested some guidelines to construct exact D-optimal des
on convex design spaces. They recommended Galil and Kie
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method [Galil and Kiefer, 1980] and Powells method [Powell, 1964]
to determine a good starting design and to efficiently find a D-optimal
experiment subset from the viewpoint of optimization, respectively.
D-optimal design was further advanced by DuMouchel and Jones
[1994]. They modified the algorithm of D-optimal design by com-
bining Bayesian paradigm with the notion of primary and potential
terms to make it more resistant to the biases caused by an incorrect
model. Response surface method (RSM) for building an empirical
model using experiment data was first addressed by Box and Wil-
son [1951], and then has been utilized in many fields including chem-
ical engineering, bioengineering, pulp and paper industry, and phar-
maceutical industry since it is a well-established method for inves-
tigating the causal relationship between inputs and outputs for a sys-
tem [Park et al., 1996].

In this study, first, we explain how the problems of the conven-
tional EVOP are solved by D-optimal design and response surface
method. Then, we compare the performance of the proposed meth-
od with that of the conventional EVOP by applying both methods
to the pulp digester benchmark model [Kayihan, 1997].

THEORETICAL BACKGROUND

1. EVOP and Its Improvement Based on D-optimal Design
and RSM

EVOP is a method for process improvement proposed by Box
in 1957 [Box, 1957]. The basic philosophy of EVOP is that indus-
trial processes should be run so as to generate not only products but
also the information on how the product can be improved. By ap-
plying EVOP to a process, operators explore an unexperienced oper-
ating region on the basis of results of 2n factorial design of experi-
ments. And then, they move an operating condition to a better point
by statistically investigating the effects of input factors. EVOP is
implemented in an actual process itself as an operation mode. That
is, it is virtually a permanent method of running a plant. Therefore,
it does not require special facilities and concessions.

Basically, a conventional EVOP can be carried out by following
several steps as shown in Fig. 1. Of the steps, the 2n factorial design
[Box and Draper, 1987] as an experimental design method and statis-

tical test procedure diminish the usefulness of EVOP and pre
it from being frequently applied to real plants as an optimizat
method in spite of its many advantages. First, the 2n factorial design
used in the conventional EVOP requires too large a number of
periments to be applied to a real problem. In addition, it exc
sively cuts off the original experiment region to make the irregular 
periment region symmetric when there are experimental constra
Finally, the statistical test procedure of a conventional EVOP s
as analysis of variance (ANOVA) [Neter et al., 1996] is cumb
some and its result may be ambiguous when a large number o
put factors are included in the procedure. For example, we ca
clearly determine where to move the operating condition for 
case that the main effects are not significant but the interaction
fects are significant or that only one experiment is conducted
each experiment position due to the limitation in the number of 
periments [Neter et al., 1996].

Therefore, we adopted D-optimal design and RSM in the p
posed method instead of the 2n factorial design and statistical tes
procedure to solve these problems of the conventional EVOP.
procedure of the improved EVOP based on these methods is s
in Fig. 2. In the figure, the distinctive parts of the improved EVO
are denoted in italic letters. The advantages of the improved EV
are as follows. First, the number of experiments greatly decre
especially when many input factors are used in the experime
Second, the experiment region is taken as broadly as possible
cutting off the original experiment region when the experiment 
gion is irregular due to various experimental constraints. Third, 
analysis results on the direction of process improvement are m
reliable since we can make sure that the results of experiment
correct by the repetitive experiments in D-optimal design. Fina
the best operating condition for an experiment region can be d
mined more clearly by applying an appropriate optimization alg
rithm to the model built by RSM. These advantages will be explai
in detail along with the properties of D-optimal design and RSM
2. D-optimal Design as an Experimental Design Method

Experimental design or design of experiments (DOE) [Box a
Draper, 1987] is a theory on how to arrange the experiment p
tions to extract important information from the results of experime

Fig. 1. Flow chart representing the procedure of the conventional
EVOP.

Fig. 2. Flow chart representing the procedure of the improved
EVOP. In the figure, MLR and PLS represent Multiple Lin-
ear Regression and Partial Least Squares, respectively [Gel-
adi and Kowalski, 1986].
July, 2002
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while minimizing the number of experiments. For a process for which
first principle models are not available, DOE can be used effec-
tively to understand the input-output structure of the process. Once
we know the causality of the process, we can optimally tune the
input factors to improve the performance of the process. In the pro-
posed method shown in Fig. 2, D-optimal design is used as a DOE
method instead of the 2n factorial design used in the conventional
EVOP. In D-optimal design, a simple polynomial model represent-
ing the relationship between input factors and a response variable
is built from the results of experiments to investigate the effects of
input factors on a response variable. This model is then used to max-
imize the performance of a process as well as to predict a response
variable value at a specific position.

The algorithm of D-optimal design is as follows [Mitchell, 1974;
DuMouchel and Jones, 1994].

Step 1. Determine the proper form of the model and the number
of experiments.

Step 2. Make a candidate set comprised of extreme vertices, cen-
ters of the edges, centers of faces and overall centroid of the con-
strained region [Piepel, 1988].

Step 3. Randomly select the initial experiment set from the can-
didate set so that the number of experiments in the selected subset
is equal to the predetermined number of experiments.

Step 4. Interchange each experiment position in the set with a
new one in the candidate set until determinant of XTX is maxi-
mized, where X is the design matrix containing the information on
the arrangement of input factors within specified ranges.

When selecting experiment positions, D-optimal design employs
the criterion of maximizing det(XTX), as described in the algorithm
of D-optimal design. The following equation shows the variance-
covariance matrix for the parameter vector b used in the model
[Neter et al., 1996]:

var{b}= σ2(XTX)−1 (1)

From the above equation, we can see that if we maximize XTX, the
variances of the parameters are minimized and thus an accurate mod-
el can be obtained. However, XTX cannot be maximized since it is
a matrix. Therefore, XTX should be made to a scalar which repre-
sents the magnitude of XTX and the determinant is used for this pur-
pose in D-optimal design. That is, D-optimal design can be said to
make the parameter variances as small as possible by arranging the
experiment positions as broadly as possible according to the crite-
rion, the maximization of det(XTX).

D-optimal design has several advantages over the factorial designs.
Theoretically, we can reduce the number of experiments to the num-
ber of parameters used in the model with D-optimal design. This
property of D-optimal design is effectively utilized when a large
number of input factors are included in the step of experimental
design. Table 1 shows the relationship between the number of in-
put factors and the minimum number of experiments for three well-
known DOE methods: 2n factorial design, 3n factorial design, and
D-optimal design [Box and Draper, 1987; Neter et al., 1996]. Note
that the D-optimal design requires the smallest number of experi-
ments among the methods, with increasing the number of input fac-
tors.

Fig. 3 shows the difference between the factorial designs and the
D-optimal design regarding the experiment region. In the figure,

the use of D-optimal design does not cut off the original exp
ment region when the region becomes irregular due to a const
This property results in the derivation of the correct causal relat
ship between input factors and a response variable.

Generally, since experiments can be repetitively conducted 
specific position in D-optimal design, it is an additional advanta
that the analysis results on the direction of process improvem
are more reliable than those of the factorial designs. For fact
design, usually only one experiment is conducted for each ex
ment position, otherwise the number of experiments increases
nificantly due to the symmetric property of the factorial designs. 
instance, if we use 2n factorial design, the number of experimen
increases to 1024 for only 10 input factors even though only 
experiment is conducted for each experiment position. On the o
hand, since experiments can be repetitively conducted at a spe
position in D-optimal design, we can confirm that all results for t
repetitive experiments produce the same response values. T
fore, we can be convinced that the results of the experiments
correct if all results for the repetitive experiments are equal to e
other, and otherwise we should carry out experiments again. 
fact means that the results for the experiments and analyses ob
by D-optimal design are more reliable than by the factorial desig
3. Response Surface Method

Response surface method is a method for building a resp
surface model which approximates the actual behavior of a resp
variable in a given experiment region by fitting response varia
values obtained from designed experiments [Box and Draper, 19
In a conventional EVOP, the direction of process improvemen
determined by analyzing the results of statistical tests with wh
the effects of input factors on a response variable are investig

Table 1. The number of experiments required for the three DOE
methods. As the number of input factors increases, the
numbers of experiments for the two factorial designs
rapidly increase

Number of
input factors

2 3 4 5 6

Number of experiments

2n factorial design 4 8 16 32 64
3n factorial design 9 27 81 243 729
D-optimal design 6 10 15 21 28

Fig. 3. Experiment regions of the factorial design and D-optimal
design. Gray-colored regions mean original experiment re-
gions.
Korean J. Chem. Eng.(Vol. 19, No. 4)
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Unfortunately, it happens frequently that we cannot obviously deter-
mine where to move the operating condition with the analysis re-
sults since the results are not typically clear, especially when there
are a large number of input factors or when mean squared error
(MSE) is small due to the small number of experiments. However,
if we apply the adequate optimization algorithm to the response sur-
face model built by RSM, the best operating condition within a given
experiment region can be clearly determined.

The following response surface model described by a set of the
second order polynomial equations is frequently used since it is the
simplest form of nonlinear models:

y=XTb (2)

where,

(3)

(4)

(5)

However, since the simplicity deteriorates the prediction capability
of the model in a broad region, it is required to adjust the experi-
ment region properly. If the region is too small, too many experi-
ments should be conducted to extract the necessary information for
the entire experiment region. By contrast, if the region is too large,
the response surface model built in the region has poor prediction
performance. Therefore, it is important to determine the optimal
size of the experiment region, which guarantees both the minimi-
zation of the number of experiments and the satisfactory prediction
capability of the response surface model, by using prior knowledge
for a process or sensitivity analysis and so forth.

The performance of the response surface model is generally evalu-
ated by calculating R2 and Q2 as follows, respectively:

(6)

(7)

where,

(8)

(9)

(10)

R2 represents the degree to which the variation of a response var-
iable is explained by the response surface model and Q2 the degree
to which the variation of a response variable is predicted by the re-
sponse surface model. With R2 approaching one, the variation of a
response variable explained by the response surface model increases.

And with Q2 approaching one, the prediction performance of t
response surface model increases.

CASE STUDY

1. Process Description
To test the proposed method, the pulp digester benchmark m

[Kayihan, 1997] was used which simulates the dynamics of a 
pulp digester process. The process aims at removing the lignin 
wood chips by causing reaction on the white liquor, the main con
uents of which are sodium hydroxide and hydrosulfide. The en
process is composed of four sub-processes: the impregnation
sel, the cook zone, the modified continuous cooking (MCC) zo
and the extended modified continuous cooking (EMCC) zone
Fig. 4, the manipulated variables of the process are the temper
of the mixture into the cook zone (TCook), the temperature of the trim
white liqure into MCC zone (TMCC), the temperature of the trim white
liquor into EMCC zone (TEMCC), the flowrate of the reacted white
liquor extracted from the cook zone (FUPEX), the flowrate of the trim
white liquor into MCC zone (FMCC), and the flowrate of the trim
white liquor into EMCC zone (FEMCC). These six variables are use
as input factors for the experiments. The Kappa number def
by the following expression represents the lignin content in wo
chips and is the response variable that should be minimized in
process:

(11)

Since both the conventional EVOP and the improved EVOP
the methods which are directly applied to a real process itself
the experiments in this study are regarded as actual experim
although they are simulations. On the assumption that the first p
ciple models cannot be built for the process, we apply both the 
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 = 1− 

SSE
SST
----------

Q2
 = 1− 

PRESS
SST

------------------

SSE Error Sum of Squares( ) = yi  − ŷi( )2,
i = 1

m

∑

SST Total Sum of Squares( ) = y i  − y( )2,
i = 1

m

∑

PRESS PREdiction Sum of Squares( )  = y j  − ŷj( )2

j = 1

s

∑

Kappa number = 654
the lignin mass

the total solid mass
-----------------------------------------------

Fig. 4. Process diagram of the pulp digester benchmark model.
MCC and EMCC stand for modified continuous cooking
and extended modified continuous cooking, respectively.
July, 2002
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ventional EVOP and the improved EVOP to the process to find the
optimal set of the input factors at which Kappa number is mini-
mized. Note that we assume that noises and disturbances, which
may occur in the real process, are filtered out to observe the effects
of the input factors apparently since there are no noises and distur-
bances in the simulated values.
2. Application of the Conventional EVOP

At first, we applied the conventional EVOP to the pulp digester
benchmark model. According to the procedure shown in Fig. 1, we
designed experiments with a 2n factorial design to determine the
experiment positions after specifying the appropriate ranges of the
input factors. Since there are the six input factors, 26 (=64) experi-
ments were run for each phase. A phase means one implementation
of the whole procedure shown in Fig. 1 or Fig. 2 and we com-
pleted three phases to find the optimal operating condition. If we
use a 3n factorial design instead of the 2n factorial design, the num-
ber of experiments increases to 36 (=729). In addition, it should be
noticed that the better operating condition which may exist between
the upper and lower levels of the input factors cannot be detected
with the 2n factorial design.

After 64 experiments were completed based on the results o
2n factorial design, we statistically tested the significance of vario
effects using ANOVA to find the direction of process improveme
(Table 2). At the first phase, all the terms except the TMCCFEMCC term
shown in Table 2 were significant at 99% confidence level sin
their p-values (right portion of the F statistics in the correspond
F-distribution) were smaller than 0.01. The result means that if
change the value of each input factor from one level to the o
level, the Kappa number changes in a statistically significant m
ner. The direction of change in the Kappa number can be infe
from the knowledge on the process. For example, the Kappa n
ber is expected to decrease because of the increase in the re
rate if we increase TCook. Based on the knowledge and ANOVA re
sults, we concluded that all of the main effect terms (TCook, TMCC,
TEMCC, FUPEX, FMCC, and FEMCC) had negative and significant effect
on the Kappa number. Therefore, we set all the input factors a
upper levels within their ranges to reduce the Kappa number. 
significance of the interaction effect terms (the terms except for
main effect terms in Table 2) implies that the effect of each in
factor is not additive and the process has nonlinearity in this reg

Table 2. ANOVA table for the first phase (MSE1=0.0214)

Term Degree of freedom2 Sum of squares3 Mean square4 F statistics5 P-value6

TCook 1 407.3722 407.3722 19048.5475 0.0001
TMCC 1 402.1474 402.1474 18804.2388 0.0001
TEMCC 1 389.3918 389.3918 18207.7928 0.0001
FUPEX 1 668.9536 668.9536 31279.9839 0.0001
FMCC 1 618.5026 618.5026 28920.9164 0.0001
FEMCC 1 1089.6477 1089.6477 50951.4602 0.0001
TCookTMCC 1 2.1118 2.1118 98.7482 0.0001
TCookTEMCC 1 1.6958 1.6958 79.2929 0.0001
TCookFUPEX 1 1.5778 1.5778 73.7781 0.0001
TCookFMCC 1 3.1690 3.1690 148.1801 0.0001
TCookFEMCC 1 4.4849 4.4849 209.7128 0.0001
TMCCTEMCC 1 4.7361 4.7361 221.4590 0.0001
TMCCFUPEX 1 0.7070 0.7070 33.0594 0.0001
TMCCFMCC 1 1.2893 1.2893 60.2886 0.0001
TMCCFEMCC 1 0.0245 0.0245 1.1447 0.2908
TEMCCFUPEX 1 1.0912 1.0912 51.0223 0.0001
TEMCCFMCC 1 0.6884 0.6884 32.1904 0.0001
TEMCCFEMCC 1 3.0772 3.0772 143.8873 0.0001
FUPEXFMCC 1 9.2102 9.2102 430.6668 0.0001
FUPEXFEMCC 1 11.0104 11.0104 514.8401 0.0001
FMCCFEMCC 1 13.7160 13.7160 641.3545 0.0001

Error 42 0.8982 0.0214

Total 63 3635.5031
1MSE=SSE/(Degree of freedom for error)
2Degree of freedom (for each term)=number of levels for the corresponding term−1=2−1=1. Degree of freedom for error and total da
is defined as “m−1−number of terms used” and “m−1”.
3Sum of Squares=total sum of (mean for the corresponding term− overall mean)2
4Mean Square=Sum of Squares/(Degree of freedom)
5F statistics=Mean Square/MSE
6P-value=right portion of the F statistics in the corresponding F-distribution, that is, the probability that the term is not significant com-
pared with error
Korean J. Chem. Eng.(Vol. 19, No. 4)
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However, the mean square values for the interaction effect terms
are so small compared with those for the main effect terms that the
interaction effects may be ignored. Moreover, it should be noted
that we may draw an erroneous conclusion from the ANOVA results
since the significance of all the terms was derived from a small mean
squared error value caused by the small number of experiments.

Since the Kappa number was reduced from 29.7091 to 15.0705
when all of the input factors were set at the upper level in the first
phase, we entered the second phase of the conventional EVOP. At
the second and third phases, experimental constraints described by
Eqs. (12) and (13) were introduced to the experimental design step
on the assumption that experiments at specific points cannot be con-
ducted due to environmental or economical reasons:

0.00185TCook+FUPEX≤0.893 (12)

0.419FUPEX+FEMCC≤0.0528 (13)

Eq. (12) means that if the temperature of the mixture into the cook

zone is too high, we must reduce the flowrate of the reacted w
liquor extracted from the cook zone. This constraint reflects the
vironmental restriction that hot wastewater should not be discha
into nature in a large amount. Eq. (13) takes into account the o
ating costs. That is, if the reacted white liquor is extracted sufficie
from the cook zone, the flowrate of the trim white liquor into EMC
zone should be reduced since most of the lignin in the wood c
is expected to be already removed at the cook zone. In additio
these constraints, the upper limits to which the input factors ca
adjusted were specified in the third phase since we cannot incr
the input factors infinitely. Considering these constraints, we de
mined the ranges of the input factors as shown in Table 3. As
the second phase, since all of the terms were significant at 99%
fidence level, all the input factors were again set at the upper le
within their ranges despite some ambiguity in the ANOVA resul

Because the Kappa number again decreased to 4.4173 at the
ating condition found in the second phase, we again entered the
phase. After performing the same procedure as the previous ph

Table 3. The determined ranges of the input factors for the conventional EVOP

Input factors Response variable
Kappa numberTCook (K) TMCC (K) TEMCC (K) FUPEX (m

3/min) FMCC (m
3/min) FEMCC (m

3/min)

Nominal operating condition 425 420 415 0.09 0.01 0.01 29.7091
Upper limit 435 430 432 0.1 0.02 0.017
1st phase ±3 ±2 ±5.0 ±0.0030 ±0.0020 ±0.0017
2nd phase ±5 ±4 ±10. ±0.0031 ±0.0040 ±0.0026
3rd phase ±5 ±4 ±4.3 ±0.0096 ±0.0046 ±0.0009

Table 4. ANOVA table for the third phase (MSE=0.9208)

Term Degree of freedom Sum of squares Mean square F statistics P-valu

TCook 1 10.5279 10.5279 11.4335 0.0016
TMCC 1 303.1830 303.1830 329.2608 0.0001
TEMCC 1 47.5748 47.5748 51.6669 0.0001
FUPEX 1 4196.3383 4196.3383 4557.2802 0.0001
FMCC 1 1834.0513 1834.0513 1991.8046 0.0001
FEMCC 1 174.2941 174.2941 189.2858 0.0001
TCookTMCC 1 6.7279 6.7279 7.3066 0.0099
TCookTEMCC 1 1.3117 1.3117 1.4245 0.2394
TCookFUPEX 1 18.3160 18.3160 19.8915 0.0001
TCookFMCC 1 0.0018 0.0018 0.0019 0.9651
TCookFEMCC 1 0.0739 0.0739 0.0802 0.7784
TMCCTEMCC 1 17.2698 17.2698 18.7553 0.0001
TMCCFUPEX 1 11.9633 11.9633 12.9923 0.0008
TMCCFMCC 1 4.1417 4.1417 4.4980 0.0399
TMCCFEMCC 1 0.4351 0.4351 0.4726 0.4956
TEMCCFUPEX 1 0.0316 0.0316 0.0343 0.8539
TEMCCFMCC 1 0.6475 0.6475 0.7032 0.4065
TEMCCFEMCC 1 0.1139 0.1139 0.1237 0.7268
FUPEXFMCC 1 876.4486 876.4486 951.8351 0.0001
FUPEXFEMCC 1 62.4882 62.4882 67.8631 0.0001
FMCCFEMCC 1 28.5015 28.5015 30.9530 0.0001

Error 420 38.6736 0 0.9208

Total 630 7633.1155
July, 2002
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we obtained the ANOVA table shown in Table 4. In this table, the
eight interaction effect terms (TCookTEMCC, TCookFMCC, TCookFEMCC, TMCC

FMCC, TMCCFEMCC, TEMCCFUPEX, TEMCCFMCC, and TEMCCFEMCC) are not sig-
nificant at 99% confidence level as their p-values are larger than
0.01. Moreover, the mean square values for TCook and TEMCC terms

are relatively small compared to those for the other main effect te
Therefore, the Kappa number may not change significantly w
these two variables are changed from one level to the other l
However, we set all the input factors at the upper levels since
the main effect terms were statistically significant at 99% con
dence level, and the Kappa number was again reduced to 2.84
3. Application of the Improved EVOP

We also applied the improved EVOP which is the proposed m
od to the pulp digester benchmark model according to the pr
dure shown in Fig. 2. As the first step of the D-optimal design, 
form of the model and the number of experiments were determ
in advance as a quadratic model and 33, respectively. Since the
dratic model requires 28 parameters concerning six input fac
at least 28 experiments should be conducted. Thus, we determ
the number of experiments per phase as 33, considering repe
experiments at the center point. Unlike the factorial design wh
only one experiment is usually conducted for each experiment p
tion, these repetitive experiments at a specific position in D-o
mal design allow us to know whether the same results are obta
or not at the position. Correspondingly, the results of experim
and analyses using the D-optimal design have more reliability t
using the factorial design. Table 6 shows the result of the D-opti
design and Kappa numbers obtained at each experiment po
for the first phase. Based on the experiment results, we built
quadratic response surface model regarding the six input fa
and one response variable which is the Kappa number. After 
forming the initial regression, we discarded seven terms in the m
el that have very small parameter values, and then rebuilt the 

Table 5. The determined ranges of the input factors for the improved EVOP

Input factors Response variable
Kappa numberTCook (K) TMCC (K) TEMCC (K) FUPEX (m

3/min) FMCC (m
3/min) FEMCC (m

3/min)

Nominal operating condition 425 420 415 0.090 0.000 0.0100 29.7091
Upper limit 435 430 432 0.100 0.020 0.0170
1st phase ±3 ±2 ±5 ±0.003± ±0.002± ±0.0017±
2nd phase ±6 ±4 ±10 ±0.005± ±0.004± ±0.0034±
3rd phase ±5.8 ±4.1 ±4.3 ±0.013± ±0.005± ±0.0019±

Table 6. The experiment set selected by the D-optimal design and
experiment results

Exp.
no.

TCook

(K)
TMCC

(K)
TEMCC

(K)
FUPEX

(m3/min)
FMCC

(m3/min)
FEMCC

(m3/min)
Kappa
number

1 422 418 410 0.0875 0.008 0.0083 50.4072
2 428 418 420 0.0875 0.008 0.0083 39.2747
3 422 422 420 0.0875 0.008 0.0083 40.3719
4 428 418 410 0.0925 0.008 0.0083 35.3751
5 422 422 410 0.0925 0.008 0.0083 37.1424
6 422 418 420 0.0925 0.008 0.0083 37.2859
7 422 418 420 0.0875 0.012 0.0083 37.0905
8 422 422 410 0.0875 0.008 0.0117 34.7424
9 422 418 420 0.0875 0.008 0.0117 33.7384

10 422 418 410 0.0925 0.008 0.0117 34.2205
11 422 422 420 0.0925 0.008 0.0117 23.4967
12 428 422 420 0.0875 0.012 0.0117 19.5513
13 428 422 410 0.0925 0.012 0.0117 18.8359
14 422 418 410 0.0925 0.011 0.0083 37.9273
15 422 418 413 0.0925 0.012 0.0083 34.4112
16 422 422 420 0.0925 0.012 0.0094 23.132
17 422 419 410 0.0875 0.012 0.0117 32.1861
18 428 418 410 0.0875 0.012 0.0106 31.9846
19 428 418 410 0.0892 0.008 0.0117 32.746
20 428 418 420 0.0925 0.009 0.0117 21.3095
21 428 422 410 0.0875 0.009 0.0083 36.3788
22 428 422 420 0.0925 0.008 0.0106 21.3935
23 428 422 420 0.0925 0.011 0.0083 22.8632
24 428 421 410 0.0875 0.008 0.0117 31.8598
25 428 419 420 0.0925 0.012 0.0083 23.9994
26 424 418 420 0.0925 0.012 0.0117 21.5992
27 424 422 410 0.0875 0.012 0.0083 34.0915
28 422 420 415 0.0900 0.010 0.0100 32.511
29 425 420 410 0.0900 0.010 0.0100 32.0554
30 425 420 415 0.0875 0.010 0.0100 33.1293
31 425 420 415 0.0900 0.010 0.0100 29.7091
32 425 420 415 0.0900 0.010 0.0100 29.7091
33 425 420 415 0.0900 0.010 0.0100 29.7091

Fig. 5. Column plot for the coefficients of the response surface
model built at the first phase. The coefficient values are
mean-centered and scaled to unit variance.
Korean J. Chem. Eng.(Vol. 19, No. 4)
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dratic model with 20 remaining important terms. The parameter val-
ues of the response surface model at the first phase are shown in
Fig. 5 in the form of mean-centered and unit-variance-scaled coef-
ficient values. This figure shows that the parameter values of the
first order terms are large compared to those of the second order
terms, which means that the nonlinearity in this experiment region
is not so severe. Besides, since all the parameter values of the first
order terms have negatives, if the input factors are increased in the
region, the Kappa number is expected to decrease. These results
agree with real phenomena. The fact that R2 is 0.9952 and Q2 0.8770
implies that the response surface model at the first phase explains
the variation of the experiment data quite accurately and well pre-
dicts the behavior of the Kappa number in the experiment region.

To clearly find the values of the input factors at which the Kap-
pa number was minimized in the region, we applied the Nelder-
Mead simplex method [Nelder and Mead, 1965] to the response
surface model, and obtained the optimal point in the experiment
region (Table 7). When we set the values as the operating condi-
tion of the pulp digester benchmark model, the Kappa number de-
creased from 29.7091 to 15.1897 as shown in Fig. 6.

The procedure implemented at the first phase was also repeated
at another two phases, and the constraints used at the second and
third phases of the conventional EVOP were also considered at these
phases. The determined ranges of the input factors at these phases
are shown in Table 5. The parameter values of the response surface
model built at the third phase are shown in Fig. 7. In this model,

only 19 important terms were used for the regression, and th2

and Q2 of this model were 0.9781 and 0.8322, respectively. N
that the coefficients of the response surface model in the ex
ment region are different from those of the response surface m
constructed at the first phase because of the constraints and n
earity. When the best point found in the region by applying the 
timization algorithm to the response surface model was set as
operating condition of the pulp digester benchmark model, the K
pa number finally decreased to 3.0394 as shown in Fig. 8.

Table 7. The best operating conditions and resultant kappa numbers for each phase

Input factors Response variable
Kappa numberTCook (K) TMCC (K) TEMCC (K) FUPEX (m

3/min) FMCC (m
3/min) FEMCC (m

3/min)

1st phase 428 422 420 0.0924 0.0120 0.0117 15.1897
2nd phase 429 426 428 0.0874 0.0154 0.0151 6.2836
3rd phase 429 430 429 0.0904 0.0157 0.0166 3.0394

Fig. 6. Decrease in the kappa number at the best operating con-
dition of the first phase. The kappa number rapidly de-
creases during the 8 hours from the start, and then reach
the new steady state.

Fig. 7. Column plot for the coefficients of the response surface
model built at the third phase. The coefficient values are
mean-centered and scaled to unit variance.

Fig. 8. Decrease in the kappa number at the best operating condi-
tion of the third phase. The kappa number remarkably de-
creases during the 8 hours from the start, and then reach
the new steady state.
July, 2002
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4. Comparison of the Conventional EVOP and the Improved
EVOP

We have applied both the conventional EVOP and the improved
EVOP to the pulp digester benchmark model to find the optimal
operating condition on the assumption that the characteristics of
the process were not known. We can summarize the comparison
results as follows (Table 8). First, the number of experiments for
each phase was 64 for the conventional EVOP and 33 for the im-
proved EVOP. Second, when there were experimental constraints,
the original experiment region was maintained for the improved
EVOP while it shrank for the conventional EVOP. If we compare
Tables 3 and 5, we can see that the ranges of TCook, FUPEX and FEMCC

for the improved EVOP are larger than those for the conventional
EVOP. Third, in the case of the improved EVOP, we can have con-
fidence in the results of experiments and analyses by repeating ex-
periments at a specific position. Finally, the best operating condi-
tions for each experiment region were obtained more clearly by virtue
of the response surface model adopted in the improved EVOP.

Although a smaller Kappa number, 2.8448, was obtained for the
conventional EVOP compared with 3.0394 for the improved EVOP,
the two values do not show significant differences. Moreover, it
can be surely said that the improved EVOP is a much more efficient
method than the conventional EVOP from the viewpoint of the pre-
viously mentioned advantages.

CONCLUSIONS

In this paper, an improved evolutionary operation (EVOP) based
on D-optimal design and response surface method (RSM) was pro-
posed. To test its performance and superiority to a conventional
EVOP, we applied both the conventional EVOP and the improved
EVOP to the pulp digester benchmark model. As a result, the im-
proved EVOP showed comparable performance with advantages
on the number of experiments, preservation of original experiment
region, reliability in the results of experiments and analyses, and
determination of the best operating condition for each experiment
region. These benefits are generated by the properties of D-optimal
design and RSM and make the proposed method more applicable
in practical problems than the conventional EVOP.

Although we enhanced the performance of the conventional
EVOP by modifying its several properties, we have to keep in mind
that the key point for the successful application of the proposed meth-
od to the real industry is the harmonious collaboration among all
the participants. In addition, the selection of the appropriate pro-
cess, pre-experiment on the pilot plant and education for industrial
operators should precede the real application of the method.
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NOMENCLATURE

b : parameter vector of a quadratic response surface mo

with the size of  by 1

bij : the coefficient for the cross product term of ith input fa
tor and jth input factor in the response surface mod

FEMCC : flowrate of the trim white liquor into the extended mod
ified continuous cooking zone [m3/min]

FMCC : flowrate of the trim white liquor into the modified con
tinuous cooking zone [m3/min]

FUPEX : flowrate of the reacted white liquor extracted from th
cook zone [m3/min]

Kappa number : mass fraction of the lignin content in wood ch
[-]

m : number of experiment data used in modeling
MSE : mean squared error [=SSE/(m−1−number of terms

used)]
n : number of input factors
PRESS : prediction sum of squares 
Q2 : the degree to which the variation of a response varia

is predicted by the response surface model [-]
R2 : the degree to which the variation of a response varia

is explained by the response surface model [-]
s : number of experiment data not used in modeling
SSE : error sum of squares
SST : total sum of squares
TCook : temperature of the mixture into the cook zone [K]
TEMCC : temperature of the trim white liquor into the extende

modified continuous cooking zone [K]
TMCC : temperature of the trim white liquor into the modifie

continuous cooking zone [K]

X : design matrix with the size of  by
m 

containing the information of the experiment pos
tions

xkl : kth experiment position of lth input factor
y : vector of a response variable with the size of m by 
yi : ith real response value used in modeling
yj : jth real response value not used in modeling

: overall mean of the response values
: ith response value fitted by the response surface mo
: jth response value predicted by the response surf
model

Greek Letter
σ2 : variance of model error

Subscripts
Cook : cook zone

1+ 2n + 
n n − 1( )

2
------------------ 

 

1+ 2n + 
n n − 1( )

2
------------------ 

 

y
ŷi

ŷj

Table 8. Comparison between the conventional EVOP and the improved EVOP

No. of exp.
(For one phase)

Preservation of 
original exp. region

Reliability
of results

Detection of
the optimum

Improved EVOP 33 Yes High Clear
Conventional EVOP 64 No Low Maybe ambiguous
Korean J. Chem. Eng.(Vol. 19, No. 4)
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DIL : dilution water
EMCC : extended modified continuous cooking zone
i : index of response values used in modeling
j : index of response values not used in modeling
k : index of experiment positions
l : index of input factors
LOWEX : lower extract from the modified continuous cooking

zone
MCC : modified continuous cooking zone
UPEX : upper extract from the cook zone
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