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Abstract—This paper presents improved evolutionary operation based on D-optimal design and response surface
method. D-optimal design and response surface method allow us to overcome the disadvantages of conventional
evolutionary operation. Although evolutionary operation has been an effective alternative when fundamental models
are hard to build because of the lack of the necessary information, the disadvantages in the number of experiments,
experimental design and analysis and detection of the optimal point have prevented EVOP from being frequently ap-
plied to real processes. To compare the performance of the proposed method and the conventional EVOP, both of them
were applied to a pulp digester process. As a result, the comparable response variable value has been clearly obtained
with the proposed method while conducting much fewer numbers of experiments than the conventional evolutionary
operation. In addition, the proposed method flexibly handles the constraints in the experimental design and gives more
reliable experiment results than the conventional evolutionary operation. By virtue of these benefits, the proposed meth-
od can be utilized effectively for a process where prior knowledge for the process is not available.
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INTRODUCTION ical processes [Hunter and Kittrell, 1966]. Although the application
cases of EVOP have rapidly decreased since the 1970s because of

It has been indispensable for industry to cut down operating costadvances in modeling techniques, EVOP has many useful proper-
and to enhance the quality of products to survive in extreme comties as an optimization method. In particular, it is advantageous to
petition. To achieve these goals, we should find the optimal operatthe optimization of complex processes since EVOP does not require
ing conditions at which to operate a plant. Although industrial op-accurate first principle models for a process.
erators have improved operating conditions based on their previ- This is proved by the fact that EVOP is again being used for the
ous experiences, their operating methods might be neither systenaptimization of bioprocesses for which the inner phenomena are
atic nor economical. Thus, it usually takes a great deal of time taot clearly understood. Banerjee and Bhattacharyya [1993] applied
reach the optimal operating condition and it may not be the glo-EVOP to a bioprocess, where information on the process was in-
bal optimum, even if they have found out an improved point. Tosufficient, to maximize enzyme activity using three inducers. Tunga
solve this problem, various optimization methods based on matheet al. [1999] also used EVOP to maximize the production of pro-
matical programming have been proposed [Lee and Lim, 1999; Chdease by optimizing the concentrations of vitamin, metal ion and
et al., 2000; Janson, 2001; Choi and Manousiouthakis, 2002]. Thelant hormone. Saad [1994] showed that EVOP could be used for
methods necessarily include first principle models for a process athe optimization of the porcelain enamel manufacturing process.
equality constraints in an optimization. Therefore, only if the mod- All of them mentioned that EVOP could be applied to unknown
els can describe the given system to an acceptable degree we garcesses as a superb optimization technique. However, several dis-
use these methods to effectively locate the optimum point. On thedvantages of EVOP, such as a large number of experiments, am-
other hand, the necessity for the accurate first principle models rebiguousness of the analysis result on the direction of process im-
stricts usefulness of the methods because it is very difficult and timeprovement, and excessive reduction of experiment region in the pres-
consuming to build the first principle models for an unknown pro- ence of constraints, should be overcome for its more frequent ap-
cess whose static and dynamic behaviors cannot be exactly moghications to real problems.
eled. For this reason, the mathematical programming based meth- Consequently, in this paper, we propose an improved EVOP that
ods have been usually applied to relatively simple and well-knownovercomes the limitations of a conventional EVOP. In the pro-
processes such as utility plants [Lee et al., 1998a, b; Yi and Harposed method, D-optimal design and response surface method (RSM)
2001]. are used to solve the problems. D-optimal design, which is known

Evolutionary operation (EVOP) proposed by Box [1957] can beas one of the most efficient experimental design methods, has been
applied for this case since it allows us to find the optimal operatinggreatly developed by Mitchell [1974], Johnson and Nachtsheim
condition without using the first principle models. There have been1983], and DuMouchel and Jones [1994]. Mitchell [1974] pro-
many cases where EVOP was applied for the optimization of chemposed DETMAX algorithm which is known as the origin of the mo-
dern D-optimal design algorithm. Johnson and Nachtsheim [1983]
To whom correspondence should be addressed. suggested some guidelines to construct exact D-optimal designs
E-mail: chan@postech.ac.kr on convex design spaces. They recommended Galil and Kiefer's
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Identification of response variables and input factors

method [Galil and Kiefer, 1980] and Powells method [Powell, 1964] |
to determine a good starting design and to efficiently find a D-optimal ] v

Specification of ranges for the input factors

experiment subset from the viewpoint of optimization, respectively. (]

D-optimal design  to determine the experiment positions and order

D-optimal design was further advanced by DuMouchel and Jone: |
[1994]. They modified the algorithm of D-optimal design by com- | |
bining Bayesian paradigm with the notion of primary and potential l
I
I

Caonstruction of the response surface model by MLR or PLS

terms to make it more resistant to the biases caused by an incorre
model. Response surface method (RSM) for building an empirica
model using experiment data was first addressed by Box and Wil
son [1951], and then has been utilized in many fields including chem
ical engineering, bioengineering, pulp and paper industry, and phai
maceutical industry since it is a well-established method for inves:
tigating the causal relationship between inputs and outputs for a sy: L
tem [Park et al., 1996].
In this study, first, we explain how the problems of the conven-Fig. 2. Flow chart representing the procedure of the improved
tional EVOP are solved by D-optimal design and response surface ~ EVOP. Inthe figure, MLR and PLS represent Multiple Lin-
method. Then, we compare the performance of the proposed meth- €& Regression and Partial Least Squares, respectively [Gel-
od with that of the conventional EVOP by applying both methods adi and Kowalski, 1986]
to the pulp digester benchmark model [Kayihan, 1997].

¥

Application of proper optimization algorithm to the model

Experiments and acquisition of the response variable values I

Determination of the best operating condition for the region

At the condition, is the process really improved?

Setting the condition as the center point of the next experiment region |

the
optimum
point

tical test procedure diminish the usefulness of EVOP and prevent
THEORETICAL BACKGROUND it from being frequently applied to real plants as an optimization
method in spite of its many advantages. First, tfactrial design
1.EVOP and Its Improvement Based on D-optimal Design  used in the conventional EVOP requires too large a number of ex-
and RSM periments to be applied to a real problem. In addition, it exces-

EVOP is a method for process improvement proposed by Boxsively cuts off the original experiment region to make the irregular ex-
in 1957 [Box, 1957]. The basic philosophy of EVOP is that indus- periment region symmetric when there are experimental constraints.
trial processes should be run so as to generate not only products Heihally, the statistical test procedure of a conventional EVOP such
also the information on how the product can be improved. By ap-as analysis of variance (ANOVA) [Neter et al., 1996] is cumber-
plying EVOP to a process, operators explore an unexperienced opeseme and its result may be ambiguous when a large number of in-
ating region on the basis of results dbfattorial design of experi-  put factors are included in the procedure. For example, we cannot
ments. And then, they move an operating condition to a better pointlearly determine where to move the operating condition for the
by statistically investigating the effects of input factors. EVOP is case that the main effects are not significant but the interaction ef-
implemented in an actual process itself as an operation mode. Thétcts are significant or that only one experiment is conducted for
is, it is virtually a permanent method of running a plant. Therefore,each experiment position due to the limitation in the number of ex-
it does not require special facilities and concessions. periments [Neter et al., 1996].

Basically, a conventional EVOP can be carried out by following  Therefore, we adopted D-optimal design and RSM in the pro-
several steps as shown in Fig. 1. Of the steps] taet@rial design ~ posed method instead of thefactorial design and statistical test
[Box and Draper, 1987] as an experimental design method and statiprocedure to solve these problems of the conventional EVOP. The

procedure of the improved EVOP based on these methods is shown
in Fig. 2. In the figure, the distinctive parts of the improved EVOP

| Tdentification of response variables and input factors ] are denoted in italic letters. The advantages of the improved EVOP
] are as follows. First, the number of experiments greatly decreases
™ Specification °f'a"ge; [or the Input fctors | especially when many input factors are used in the experiments.
[ 2" faciorial design_to determine the experiment positions and order | Second, the experiment region is taken as broadly as possible, not
] cutting off the original experiment region when the experiment re-
| Experiments and ‘"’°““ism"";’“m response variable values | gion is irregular due to various experimental constraints. Third, the
ion for the significance of the inpui factors analysis results on the direction of process improvement are more
with statistical test reliable since we can make sure that the results of experiments are
v correct by the repetitive experiments in D-optimal design. Finally,

I Determination of the best operating condition for the region |

the best operating condition for an experiment region can be deter-
e mined more clearly by applying an appropriate optimization algo-
optimum rithm to the model built by RSM. These advantages will be explained
port in detail along with the properties of D-optimal design and RSM.
2. D-optimal Design as an Experimental Design Method
Experimental design or design of experiments (DOE) [Box and

Fig. 1. Flow chart representing the procedure of the conventional ~ Draper, 1987] is a theory on how to arrange the experiment posi-
EVOP. tions to extract important information from the results of experiments

—| Setting the condition as the center point of next experiment region J
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while minimizing the number of experiments. For a process for whichTable 1. The number of experiments required for the three DOE
first principle models are not available, DOE can be used effec- methods. As the number of input factors increases, the
tively to understand the input-output structure of the process. Once numbers of experiments for the wo factorial designs
we know the causality of the process, we can optimally tune the rapidly increase
input factors to improve the performance of the process. In the pro- Number of
posed method shown in Fig. 2, D-optimal design is used as a DOE input factors
method instead of the factorial design used in the conventional Number of experiments
EVOP. In D-optimal design, a simple polynomial model represent-
ing the relationship between input factors and a response variable
is built from the results of experiments to investigate the effects of
input factors on a response variable. This model is then used to max-
imize the performance of a process as well as to predict a response
variable value at a specific position.

The algorithm of D-optimal design is as follows [Mitchell, 1974;
DuMouchel and Jones, 1994]. &

Step 1.Determine the proper form of the model and the number
of experiments. 'E

Step 2.Make a candidate set comprised of extreme vertices, cen &
ters of the edges, centers of faces and overall centroid of the col
strained region [Piepel, 1988].

Step 3.Randomly select the initial experiment set from the can-
didate set so that the number of experiments in the selected sub:

is equal to the predetermined number of experiments. ) ) ) ) ] )
Step 4.Interchange each experiment position in the set with aF9- 3 Experiment regions of the factorial design and D-optimal
design. Gray-colored regions mean original experiment re-

new one in the candidate set until determinarX'of is maxi- gions.
mized, whereX is the design matrix containing the information on
the arrangement of input factors within specified ranges.
When selecting experiment positions, D-optimal design employshe use of D-optimal design does not cut off the original experi-
the criterion of maximizing def(X), as described in the algorithm ment region when the region becomes irregular due to a constraint.
of D-optimal design. The following equation shows the variance- This property results in the derivation of the correct causal relation-
covariance matrix for the parameter vedtarsed in the model  ship between input factors and a response variable.
[Neter et al., 1996]: Generally, since experiments can be repetitively conducted at a
specific position in D-optimal design, it is an additional advantage
that the analysis results on the direction of process improvement
From the above equation, we can see that if we maxithiethe are more reliable than those of the factorial designs. For factorial
variances of the parameters are minimized and thus an accurate matksign, usually only one experiment is conducted for each experi-
el can be obtained. Howev&r,X cannot be maximized since itis ment position, otherwise the number of experiments increases sig-
a matrix. ThereforeX"X should be made to a scalar which repre- nificantly due to the symmetric property of the factorial designs. For
sents the magnitude ¥fX andthedeterminant is used for this pur-  instance, if we use” 2actorial design, the number of experiments
pose in D-optimal design. That is, D-optimal design can be said tancreases to 1024 for only 10 input factors even though only one
make the parameter variances as small as possible by arranging terperiment is conducted for each experiment position. On the other
experiment positions as broadly as possible according to the critdiand, since experiments can be repetitively conducted at a specific
rion, the maximization of dext(X). position in D-optimal design, we can confirm that all results for the
D-optimal design has several advantages over the factorial designepetitive experiments produce the same response values. There-
Theoretically, we can reduce the number of experiments to the nunfere, we can be convinced that the results of the experiments are
ber of parameters used in the model with D-optimal design. Thiscorrect if all results for the repetitive experiments are equal to each
property of D-optimal design is effectively utilized when a large other, and otherwise we should carry out experiments again. This
number of input factors are included in the step of experimentafact means that the results for the experiments and analyses obtained
design. Table 1 shows the relationship between the number of inby D-optimal design are more reliable than by the factorial designs.
put factors and the minimum number of experiments for three well-3. Response Surface Method
known DOE methods:"Zactorial design, 3factorial design, and Response surface method is a method for building a response
D-optimal design [Box and Draper, 1987; Neter et al., 1996]. Notesurface model which approximates the actual behavior of a response
that the D-optimal design requires the smallest number of experivariable in a given experiment region by fitting response variable
ments among the methods, with increasing the number of input facralues obtained from designed experiments [Box and Draper, 1987].
tors. In a conventional EVOP, the direction of process improvement is
Fig. 3 shows the difference between the factorial designs and thdetermined by analyzing the results of statistical tests with which
D-optimal design regarding the experiment region. In the figurethe effects of input factors on a response variable are investigated.

2 3 4 5 6

2" factorial design 4 8 16 32 64
3" factorial design 27 81 243 729
D-optimal design 6 10 15 21 28
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Unfortunately, it happens frequently that we cannot obviously deterAnd with & approaching one, the prediction performance of the

mine where to move the operating condition with the analysis retesponse surface model increases.

sults since the results are not typically clear, especially when there

are a large number of input factors or when mean squared error CASE STUDY

(MSE) is small due to the small number of experiments. However,

if we apply the adequate optimization algorithm to the response sutt. Process Description

face model built by RSM, the best operating condition within a given  To test the proposed method, the pulp digester benchmark model

experiment region can be clearly determined. [Kayihan, 1997] was used which simulates the dynamics of a real
The following response surface model described by a set of th@ulp digester process. The process aims at removing the lignin from

second order polynomial equations is frequently used since it is thevood chips by causing reaction on the white liquor, the main constit-

simplest form of nonlinear models: uents of which are sodium hydroxide and hydrosulfide. The entire

. process is composed of four sub-processes: the impregnation ves-
y=Xb @ sel, the cook zone, the modified continuous cooking (MCC) zone,

where, and the extended modified continuous cooking (EMCC) zone. In

Fig. 4, the manipulated variables of the process are the temperature

of the mixture into the cook zone(J), the temperature of the trim

white ligure into MCC zone (F.), the temperature of the trim white

liquor into EMCC zone (d,c0), the flowrate of the reacted white

liquor extracted from the cook zongR), the flowrate of the trim

2 2 2
1 Xll X12 Xln Xll X12 Xln X11X12 X11X13 Xln’lxln

2 2 2
X = 1 Xa1 Xop +++ Xon X1 X2z -+ Xon X21Xa2 Xo1Xag -+ Xan-1Xan (3)
. - . . - . - . . . 1

1 X Xz -+ Xonn Xoat Xz +++ Xoan Xen1Xomz XenaXons +++ Xemni=1Xomn white liquor into MCC zone (f.), and the flowrate of the trim
. white liquor into EMCC zone (.0). These six variables are used
B =[ i big b - Brobis Dz - By bbby ] @) as input factors for the experiments. The Kappa number defined
_ T by the following expression represents the lignin content in wood
Y=ly,y,...y,] ®)

chips and is the response variable that should be minimized in the

However, since the simplicity deteriorates the prediction capabilityPrOCess:

of the model in a broad region, it is required to adjust the experi- K ber6sa_the lignin mass
ment region properly. If the region is too small, too many experi- ~aPP& NUMDEFGS4 =~ olid mass
ments should be conducted to extract the necessary information for

the entire experiment region. By contrast, if the region is too large i ) i .
P 9 y g 9 e methods which are directly applied to a real process itself, all

the response surface model built in the region has poor predictiof'[: . o :
the experiments in this study are regarded as actual experiments

performance. Therefore, it is important to determine the optimal . . ; ;
size of the experiment region, which guarantees both the minimi-a.IthOngh they are simulations. On the assumption that the first prin-

zation of the number of experiments and the satisfactory predictior? iple models cannat be built for the process, we apply both the con-

capability of the response surface model, by using prior knowledge

1)

Since both the conventional EVOP and the improved EVOP are

for a process or sensitivity analysis and so forth. white liquor ————— —1
The performance of the response surface model is generally evall  wet chips A
ated by calculating Rand @ as follows, respectively: Cook
A zone
_._SSE Instant /Q/)/v |
Rz—l gl_ (6) nlllixi:g —4 TCOOK FUPEX
F
:, _PRESS , I " Frowsx
Q SST Y {MCC
zone
Iy it
where, e (V) é’
SSH Error Sum of Squaljefsi (v, =9 ) Tree
i=1
Y FMCC
SST Total Sum of Squargs (v, =), ) [EMCC
i=1 zone
PRES$ PREdiction Sum of Squ@rei(yj -9)° (10) Kappa # 1
=1 ) “ ,@x Tmec
R? represents the degree to which the variation of a response ve " Fomce
—— F

iable is explained by the response surface model 4t @egree

to which the variation of a response vallriable is predict'ed. by the rerig. 4. process diagram of the pulp digester benchmark model.
sponse surface model. With &proaching one, the variation of a MCC and EMCC stand for modified continuous cooking
response variable explained by the response surface model increases.  and extended modified continuous cooking, respectively.
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Table 2. ANOVA table for the first phase (MSE=0.0214)

Term Degree of freedom Sum of squarés Mean square F statistics P-valué

T cook 1 407.3722 407.3722 19048.5475 0.0001
Tuec 1 402.1474 402.1474 18804.2388 0.0001
Temec 1 389.3918 389.3918 18207.7928 0.0001
Fupex 1 668.9536 668.9536 31279.9839 0.0001
Fucc 1 618.5026 618.5026 28920.9164 0.0001
Femec 1 1089.6477 1089.6477 50951.4602 0.0001
T coorl mcc 1 2.1118 2.1118 98.7482 0.0001
T coorl emce 1 1.6958 1.6958 79.2929 0.0001
T cooFupex 1 1.5778 1.5778 73.7781 0.0001
T cooFvce 1 3.1690 3.1690 148.1801 0.0001
T cooFemce 1 4.4849 4.4849 209.7128 0.0001
Tucel emce 1 4.7361 4.7361 221.4590 0.0001
TuccFupex 1 0.7070 0.7070 33.0594 0.0001
TuccFuce 1 1.2893 1.2893 60.2886 0.0001
TuecFemce 1 0.0245 0.0245 1.1447 0.2908
TemecFupex 1 1.0912 1.0912 51.0223 0.0001
TemedFuce 1 0.6884 0.6884 32.1904 0.0001
TemedFemec 1 3.0772 3.0772 143.8873 0.0001
FurexFuce 1 9.2102 9.2102 430.6668 0.0001
FurexFemce 1 11.0104 11.0104 514.8401 0.0001
FuccFemcc 1 13.7160 13.7160 641.3545 0.0001
Error 42 0.8982 0.0214

Total 63 3635.5031

'MSE=SSE/(Degree of freedom for error)

*Degree of freedom (for each term)=number of levels for the correspondingltein 1=1. Degree of freedom for error and total data
is defined as “m1—-number of terms used” and *nl”.

*Sum of Squares=total sum of (mean for the corresponding-trarall mearf)

“Mean Square=Sum of Squares/(Degree of freedom)

°F statistics=Mean Square/MSE

®*P-value=right portion of the F statistics in the corresponding F-distribution, that is, the probability that the terngmificansicom-
pared with error

ventional EVOP and the improved EVOP to the process to find the After 64 experiments were completed based on the results of the
optimal set of the input factors at which Kappa number is mini- 2" factorial design, we statistically tested the significance of various
mized. Note that we assume that noises and disturbances, whidffects using ANOVA to find the direction of process improvement
may occur in the real process, are filtered out to observe the effect@able 2). At the first phase, all the terms except thg T term
of the input factors apparently since there are no noises and distushown in Table 2 were significant at 99% confidence level since
bances in the simulated values. their p-values (right portion of the F statistics in the corresponding
2. Application of the Conventional EVOP F-distribution) were smaller than 0.01. The result means that if we
At first, we applied the conventional EVOP to the pulp digester change the value of each input factor from one level to the other
benchmark model. According to the procedure shown in Fig. 1, wdevel, the Kappa number changes in a statistically significant man-
designed experiments with & factorial design to determine the ner. The direction of change in the Kappa number can be inferred
experiment positions after specifying the appropriate ranges of thérom the knowledge on the process. For example, the Kappa num-
input factors. Since there are the six input factré;&4) experi- ber is expected to decrease because of the increase in the reaction
ments were run for each phase. A phase means one implementaticate if we increase ], Based on the knowledge and ANOVA re-
of the whole procedure shown in Fig. 1 or Fig.2 and we com-sults, we concluded that all of the main effect termag,{Myce
pleted three phases to find the optimal operating condition. If WeTyce, Furexs Fiice, @Nd Fvec) had negative and significant effects
use a 3factorial design instead of thefactorial design, the num-  on the Kappa number. Therefore, we set all the input factors at the
ber of experiments increases tq(=3729). In addition, it should be  upper levels within their ranges to reduce the Kappa number. The
noticed that the better operating condition which may exist betweersignificance of the interaction effect terms (the terms except for the
the upper and lower levels of the input factors cannot be detectedhain effect terms in Table 2) implies that the effect of each input
with the 2 factorial design. factor is not additive and the process has nonlinearity in this region.
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However, the mean square values for the interaction effect termgone is too high, we must reduce the flowrate of the reacted white
are so small compared with those for the main effect terms that thiiquor extracted from the cook zone. This constraint reflects the en-
interaction effects may be ignored. Moreover, it should be notedvironmental restriction that hot wastewater should not be discharged
that we may draw an erroneous conclusion from the ANOVA resultanto nature in a large amount. Eq. (13) takes into account the oper-
since the significance of all the terms was derived from a small meaating costs. That is, if the reacted white liquor is extracted sufficiently
squared error value caused by the small number of experiments. from the cook zone, the flowrate of the trim white liquor into EMCC
Since the Kappa number was reduced from 29.7091 to 15.070%0one should be reduced since most of the lignin in the wood chips
when all of the input factors were set at the upper level in the firsis expected to be already removed at the cook zone. In addition to
phase, we entered the second phase of the conventional EVOP. ftese constraints, the upper limits to which the input factors can be
the second and third phases, experimental constraints described bgjusted were specified in the third phase since we cannot increase
Egs. (12) and (13) were introduced to the experimental design stefe input factors infinitely. Considering these constraints, we deter-
on the assumption that experiments at specific points cannot be comined the ranges of the input factors as shown in Table 3. As for
ducted due to environmental or economical reasons: the second phase, since all of the terms were significant at 99% con-
fidence level, all the input factors were again set at the upper levels
0.00185 T, Fupex<0.893 (12) within their ranges despite some ambiguity in the ANOVA results.
0.419F oo, +Fuy o <0.0528 (13) .Becausgithe Kappr.;\ number again decreased to. 44173 atthe oper-
ating condition found in the second phase, we again entered the third
Eq. (12) means that if the temperature of the mixture into the coolphase. After performing the same procedure as the previous phases,

Table 3. The determined ranges of the input factors for the conventional EVOP

Input factors Response variable
Teook (K) Tuce (K) Teuee (K) Fupe (MYMIN) - Fyee (MYMin) - Feyec (M?min) - Kappa number

Nominal operating condition 425 420 415 0.09 0.01 0.01 29.7091

Upper limit 435 430 432 0.1 0.02 0.017

1* phase +3 +2 15 +0.003 +0.002 +0.0017

2" phase 15 +4 +10 +0.0031 +0.004 +0.0026

3" phase 15 +4 4.3 +0.0096 +0.0046 +0.0009

Table 4. ANOVA table for the third phase (MSE=0.9208)

Term Degree of freedom Sum of squares Mean square F statistics P-value
Teook 1 10.5279 10.5279 11.4335 0.0016
Tucce 1 303.1830 303.1830 329.2608 0.0001
Temce 1 47.5748 47.5748 51.6669 0.0001
Fupex 1 4196.3383 4196.3383 4557.2802 0.0001
Fuce 1 1834.0513 1834.0513 1991.8046 0.0001
Femce 1 174.2941 174.2941 189.2858 0.0001
T ool mcc 1 6.7279 6.7279 7.3066 0.0099
T ool emce 1 1.3117 1.3117 1.4245 0.2394
T coolFupex 1 18.3160 18.3160 19.8915 0.0001
TeoolFmce 1 0.0018 0.0018 0.0019 0.9651
TcoolFemce 1 0.0739 0.0739 0.0802 0.7784
TyceT emce 1 17.2698 17.2698 18.7553 0.0001
TyccFupex 1 11.9633 11.9633 12.9923 0.0008
TuccFuce 1 4.1417 4.1417 4.4980 0.0399
TuccFemce 1 0.4351 0.4351 0.4726 0.4956
TemccFupex 1 0.0316 0.0316 0.0343 0.8539
Temed vee 1 0.6475 0.6475 0.7032 0.4065
TemecFemee 1 0.1139 0.1139 0.1237 0.7268
FuresFuce 1 876.4486 876.4486 951.8351 0.0001
FuresFemce 1 62.4882 62.4882 67.8631 0.0001
FuccFemce 1 28.5015 28.5015 30.9530 0.0001
Error z 38.6736 0.9208
Total 63 7633.1155
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Table 5. The determined ranges of the input factors for the improved EVOP

Input factors Response variable
Toos (K)  Tuce (K)  Tewee(K)  Fupex (MP/Min)  Fyce (MYMin) - Feyee (MYmin) - Kappa number
Nominal operating condition 425 420 415 C.09 0.0 0.01 29.7091
Upper limit 435 430 432 0.1 0.0z 0.017
1* phase +3 +2 +5 +0.003 +0.002 +0.0017
2" phase +6 +4 +10 +0.005 +0.004 +0.0034
3" phase +5.8 4.1 +4.3 +0.013 +0.005% +0.001%

we obtained the ANOVA table shown in Table 4. In this table, the are relatively small compared to those for the other main effect terms.
eight interaction effect terms {JTevce: Teoucer Tcoodemcer Tee Therefore, the Kappa number may not change significantly when
Fucer TuecFemce Temeduree Temedmee @nd FucdFemcd @re not sig-  these two variables are changed from one level to the other level.
nificant at 99% confidence level as their p-values are larger thaHowever, we set all the input factors at the upper levels since all
0.01. Moreover, the mean square values fgf, and T, terms the main effect terms were statistically significant at 99% confi-
dence level, and the Kappa number was again reduced to 2.8448.
3. Application of the Improved EVOP
Table 6. The e_xperiment set selected by the D-optimal design and We also applied the improved EVOP which is the proposed meth-
experiment results od to the pulp digester benchmark model according to the proce-

EXP. Teook Twee Temce  Fupex Fuce  Femce Kappa dure shown in Fig. 2. As the first step of the D-optimal design, the

no. (K) (K) (K) (m¥min) (m¥min) (m*%min) number form of the model and the number of experiments were determined
1 422 418 410 0.0875 0008 00083 504072 in advance as a quadratic model and 33, respectively. Since the qua-
5 428 418 420 00875 0008 00083 39.2747 dratic model requires 28 parameters concerning six input factqrs,
3 422 422 420 00875 0.008 00083 403719 ?r;tleast ZbS ex?enmepts sr:suld behconductgg. Thusf,dwle determtll?ed
¢ 4 43 a0 oo ooos oooma ssarsy DETLTLEofeGees bt prose o 5 conserg e
5 422 422 410 0.0925 0.008 0.0083 37.1424 . . . .

only one experiment is usually conducted for each experiment posi-

6 422 418 420 00925 0008 00083 37.2859 tion, these repetitive experiments at a specific position in D-opti-
7 422 418 420 00875 0.012 0.0083 37.0905 design allow us to know whether the same results are obtained
8 422 422 410 0.0875 0.008 0.0117 34.7424 4 ot the position. Correspondingly, the results of experiments
9 422 418 420 0.0875 0.008 0.0117 33.7384

and analyses using the D-optimal design have more reliability than

10 422 418 410 00925 0.008 0.0117 34.2205 ging the factorial design. Table 6 shows the result of the D-optimal
11 422 422 420 0.0925 0.008 0.0117 23.4967 design and Kappa numbers obtained at each experiment position
12 428 422 420 0.0875 0.012 0.0117 19.5513 for the first phase. Based on the experiment results, we built the
13 428 422 410 0.0925 0.012 0.0117 18.8359 quadratic response surface model regarding the six input factors
14 422 418 410 0.0925 0.011 0.0083 37.9273 and one response variable which is the Kappa number. After per-
15 422 418 413 0.0925 0.012 0.0083 34.4112 forming the initial regression, we discarded seven terms in the mod-
16 422 422 420 0.0925 0.012 0.0094 23.132 el that have very small parameter values, and then rebuilt the qua-
17 422 419 410 0.0875 0.012 0.0117 32.1861

18 428 418 410 0.0875 0.012 0.0106 31.9846

19 428 418 410 0.0892 0.008 0.0117 32.746 <

20 428 418 420 0.0925 0.009 0.0117 21.3095 1 T 4

21 428 422 410 0.0875 0.009 0.0083 36.3788 T

22 428 422 420 00925 0.008 0.0106 21.3935 £ " T ++£"L'I'fﬂ:'!;'ﬁ

23 428 422 420 0.0925 0.011 0.0083 22.8632 & . o -

24 428 421 410 0.0875 0.008 0.0117 31.8598 E I

25 428 419 420 0.0925 0.012 0.0083 23.9994 =

26 424 418 420 0.0925 0.012 0.0117 21.5992 | A L

27 424 422 410 0.0875 0.012 0.0083 34.0915 -

28 422 420 415 0.0% 0.01 0.01 32.511 1 84 SETEEIREEE

29 425 420 410 0.09 0.01 001 32.0554 TR R E L A LA A i,

30 425 420 415 0.0875 0.01 0.01 33.1293 Al i S P JEssl g2 g8

31 425 420 415 0.0% 0.01 0.01 29.7091 . -

© iz 4 415 000 001 00 2ezosn PSSO olotier e coeieni of e esponse sutae

33 425 420 415 0.09 0.01 001 29.7091 mean-centered and scaled to unit variance.

Korean J. Chem. Eng.(Vol. 19, No. 4)



542 Y.-H. Chu et al.

Table 7. The best operating conditions and resultant kappa numbers for each phase

Input factors Response variable
Toon(K)  Twee(K)  Tewoc (K)  Fupex (MYmin)  Fyoe (MMin)  Feyec (MP/min)  Kappa number
1I*'phase 428 422 420 0.0924 0.012 0.0117 15.1897
2" phase 429 426 428 0.0874 0.0154 0.0151 6.2836
3“phase 429 430 429 0.0904 0.0157 0.0166 3.0394

dratic model with 20 remaining important terms. The parameter valonly 19 important terms were used for the regression, and the R

ues of the response surface model at the first phase are shownamd G of this model were 0.9781 and 0.8322, respectively. Note

Fig. 5 in the form of mean-centered and unit-variance-scaled coefthat the coefficients of the response surface model in the experi-

ficient values. This figure shows that the parameter values of thenent region are different from those of the response surface model

first order terms are large compared to those of the second ordeonstructed at the first phase because of the constraints and nonlin-

terms, which means that the nonlinearity in this experiment regiorearity. When the best point found in the region by applying the op-

is not so severe. Besides, since all the parameter values of the fittitnization algorithm to the response surface model was set as the

order terms have negatives, if the input factors are increased in thgperating condition of the pulp digester benchmark model, the Kap-

region, the Kappa number is expected to decrease. These resutia number finally decreased to 3.0394 as shown in Fig. 8.

agree with real phenomena. The fact tias R.9952 and t9.8770

implies that the response surface model at the first phase explair

the variation of the experiment data quite accurately and well pre

dicts the behavior of the Kappa number in the experiment region. i
To clearly find the values of the input factors at which the Kap- _

pa number was minimized in the region, we applied the Nelder- £

Mead simplex method [Nelder and Mead, 1965] to the responst E “‘I‘IT '
surface model, and obtained the optimal point in the experimen £ -
1

T++%iﬁi

region (Table 7). When we set the values as the operating cond ¢
tion of the pulp digester benchmark model, the Kappa number de
creased from 29.7091 to 15.1897 as shown in Fig. 6. &
The procedure implemented at the first phase was also repeatt
at another two phases, and the constraints used at the second ¢ . bk TR E ¥ 3
third phases of the conventional EVOP were also considered at the: ool BES ARTERS EEYY
phases. The determined ranges of the input factors at these phac.. E e w
are shown in Table 5. The parameter values of the response surfaggy. 7. Column plot for the coefficients of the response surface
model built at the third phase are shown in Fig. 7. In this model, model built at the third phase. The coefficient values are
mean-centered and scaled to unit variance.
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Fig. 6. Decrease in the kappa number at the best operating con-  Fig. 8. Decrease in the kappa number at the best operating condi-
dition of the first phase. The kappa number rapidly de- tion of the third phase. The kappa number remarkably de-
creases during the 8 hours from the start, and then reach creases during the 8 hours from the start, and then reach
the new steady state. the new steady state.
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Table 8. Comparison between the conventional EVOP and the improved EVOP

No. of exp. Preservation of Reliability Detection of
(For one phase) original exp. region of results the optimum
Improved EVOP 33 Yes High Clear
Conventional EVOP 64 No Low Maybe ambiguous
4, Comparison of the Conventional EVOP and the Improved NOMENCLATURE

EVOP

We have applied both the conventional EVOP and the improved
EVOP to the pulp digester benchmark model to find the optimal
operating condition on the assumption that the characteristics of
the process were not known. We can summarize the comparisdn
results as follows (Table 8). First, the number of experiments for
each phase was 64 for the conventional EVOP and 33 for the imfgycc
proved EVOP. Second, when there were experimental constraints,
the original experiment region was maintained for the improvedr,,..
EVOP while it shrank for the conventional EVOP. If we compare
Tables 3 and 5, we can see that the ranges QfHrex and Eycc Fupex
for the improved EVOP are larger than those for the conventional

: parameter vector of a quadratic response surface model,

with the size o@+2n+mn2—_llE by 1

: the coefficient for the cross product term of ith input fac-

tor and jth input factor in the response surface model

: flowrate of the trim white liquor into the extended mod-

ified continuous cooking zone ffmin]

: flowrate of the trim white liquor into the modified con-

tinuous @oking zone [rmin]

: flowrate of the reacted white liquor extracted from the

cook zone [rfimin]

EVOP. Third, in the case of the improved EVOP, we can have conKappa nhumber : mass fraction of the lignin content in wood chips

fidence in the results of experiments and analyses by repeating ex-
periments at a specific position. Finally, the best operating condim
tions for each experiment region were obtained more clearly by virtudMSE
of the response surface model adopted in the improved EVOP.
Although a smaller Kappa number, 2.8448, was obtained for then

conventional EVOP compared with 3.0394 for the improved EVOP,PRESS

the two values do not show significant differences. Moreover, it Q?
can be surely said that the improved EVOP is a much more efficient
method than the conventional EVOP from the viewpoint of the pre-R?
viously mentioned advantages.
S
SSE
SST
In this paper, an improved evolutionary operation (EVOP) basedT ..,
on D-optimal design and response surface method (RSM) was proFeycc
posed. To test its performance and superiority to a conventional
EVOP, we applied both the conventional EVOP and the improvedT,,cc
EVOP to the pulp digester benchmark model. As a result, the im-
proved EVOP showed comparable performance with advantag
on the number of experiments, preservation of original experimen
region, reliability in the results of experiments and analyses, and
determination of the best operating condition for each experiment
region. These benefits are generated by the properties of D-optimal,
design and RSM and make the proposed method more applicable
in practical problems than the conventional EVOP. Vi
Although we enhanced the performance of the conventionaly,
EVOP by modifying its several properties, we have to keep in mindy
that the key point for the successful application of the proposed methy,
od to the real industry is the harmonious collaboration among ally,
the participants. In addition, the selection of the appropriate pro-
cess, pre-experiment on the pilot plant and education for industrial
operators should precede the real application of the method.

CONCLUSIONS

[-]

: number of experiment data used in modeling
:mean squared error [=SSEAfMr-number of terms

used)]

: number of input factors

: prediction sum of squares

: the degree to which the variation of a response variable

is predicted by the response surface model [-]

: the degree to which the variation of a response variable

is explained by the response surface model [-]

: number of experiment data not used in modeling

: error sum of squares

: total sum of squares
: temperature of the mixture into the cook zone [K]
: temperature of the trim white liquor into the extended

modified continuous cooking zone [K]

: temperature of the trim white liquor into the modified

continuous cooking zone [K]

: design matrix with the size (%l+2n+i—2n n2—1 E by

m containing the information of the experiment posi-
tions

. kth experiment position of Ith input factor

: vector of a response variable with the size of m by 1

. ith real response value used in modeling

: jth real response value not used in modeling

. overall mean of the response values

. ith response value fitted by the response surface model
: jth response value predicted by the response surface

model

Greek Letter

o’ : variance of model error
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