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Abstract−−−−In cases of the microfluidic channel, where the thickness of electric double layer is often comparable with
the characteristic size of flow channels, the electrokinetic influence on the flow behavior can be found. The externally
applied body force originating from the electrostatic interaction between the linearized Poisson-Boltzmann field and
the flow-induced electrical field is applied in the equation of motion. An analytical solution to this Navier-Stokes equa-
tion of motion for well-defined geometry of slit-like microchannel is obtained by employing Green’s function. Also,
an explicit analytical expression for the induced electrokinetic potential is successfully derived as functions of relevant
physicochemical parameters. The effects of the ionic concentration of the fluid, the zeta potential of the solid surface,
and the width of microchannels on the velocity profile as well as the streaming potential are examined. The electric
double layer effect on the velocity profile becomes stronger as the channel width decreases, where the average fluid
velocity is entirely reduced with the decrease in ionic concentration. The induced electrokinetic potential increases with
an increase in pressure gradient, while it decreases as the ionic concentration increases.

Key words: Electrokinetic Flow, Electrostatic Interaction, Microfluidic Channel, Navier-Stokes Equation, Poisson-Boltz-
mann Equation

INTRODUCTION

When a charged surface is in contact with an electrolyte, the elec-
trostatic charges on the solid surface will influence the distribution
of nearby ions in the electrolyte solution. Then an electric field is
established, where the charges on the solid surface and the balanc-
ing charges in the liquid is called the Debye electric double layer.
The inner boundary of double layer is referred to as the Stern layer,
and the ions located beyond the Stern plane form the shear plane
as well as the diffuse mobile part of the double layer. Electrokinet-
ics refers to those processes in which the boundary layer between
one charged phase and another is forced to undergo some sort of
shearing process. The charge attached to solid will then move in
one direction and that associated with the adjoining phase will move
in the opposite direction. The no-slip fluid flow boundary condi-
tion is assumed on the shear plane, and the potential at this plane is
referred to as the electrokinetic potential, more commonly known
as the zeta potential [Russel et al., 1989].

The electrokinetic principle is closely related to electroosmosis,
electrophoresis, and streaming potential phenomena. Further, an
understanding of the fundamental behavior of the fluid flow in micro-
channels is of considerable importance in the research fields of micro-
and nanofluidics. Microchannels currently have wide applications
in the design and utilization of microfluidic devices, such as diag-
nostic microdevices, biomedical microchips, microreactors, and other
MEMS (micro-electro mechanical system) devices [Manz et al.,
1994; Hu et al., 1999]. It should be noted that laminar flow is the
definitive characteristic of microfluidics. Fluid flowing in micro-

channels with dimensions on the order of tens or hundreds of m
meters and at readily achievable flow speeds is characterized by
Reynolds number [Stone and Kim, 2001]. Pressure-driven mot
termed Poiseuille flow, is well understood, but the fluid flow beha
ior in charged microchannels is influenced by the electrokinetic
fect and hence deviates from that described by the traditional f
of the Navier-Stokes equation.

Earlier studies dealing with electrokinetic flow in cylindrical cha
nels can be favorably found. The effect of the surface potentia
fluid transport through narrow cylindrical capillary with the Deby
Hückel approximation was discussed [Rice and Whitehead, 19
Later, the same problem with higher surface potential was inve
gated by developing an approximate solution to the Poisson-Bo
mann (P-B) equation pertaining to an imposed electric field [Lev
et al., 1975]. In this study, the electrokinetic flow behavior in a s
like channel is analyzed by employing the Green’s function form
lation. The electrostatic potential is firstly considered by solving 
linearized P-B equation, and then the equation of motion is de
oped by dealing with the external body force and the relevant fl
induced electrical field. The velocity profile is predicted with vari
tions of channel width, Debye layer thickness, and zeta potentia
the channel wall.

ELECTRIC FIELD IN A CHARGED MICROCHANNEL

The P-B equation is a mean-field approximation in that the p
tions of the individual ions in solution are replaced by the mean c
centration of ions. The nonlinear P-B equation governing the e
tric field is given as

(1)∇2Ψ = κ2sinhΨ.
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Here, the dimensionless potential Ψ denotes zieψ/kT and the in-
verse Debye double layer thickness κ is defined by

(2)

where ni, b is the concentration of type i ions in the bulk solution, zi

the valence of type i ions, e the elementary charge, ε the dielectric
constant, and kT the Boltzmann thermal energy. For low potential
of Ψ≤1 (i.e., less than kT/e=25.69 mV) with 1 : 1 electrolyte sys-
tem, the P-B equation may be linearized. This linearized version is
called the Debye-Hückel equation [Russel et al., 1989].

We consider a slit-like channel confined between parallel planes
of width 2H as shown in Fig. 1, then the linearized P-B equation
leads to

(3)

The following boundary conditions are presented in a half of the
slit cross section,

at y=H, (4a)

at y=0. (4b)

The solution to Eq. (3) can be obtained with these boundary condi-
tions, which is derived as

(5)

From Eq. (5), it is straightforward to determine the local net charge
density as follows

ρe=zie(n+−n−)=−2zieni, bsinhΨ. (6)

FLOW FIELD COUPLED WITH ELECTROKINETIC
INTERACTION

1. Flow through a Charged Slit-like Channel
In principle, the Navier-Stokes equation furnishes the paradigm

for describing the equation of motion for an incompressible ionic
fluid, given by

(7)

where ρ and η are the density and viscosity of the fluid, respec-

tively. Let us consider the one-dimensional laminar flow through
slit-like channel, then v=[0, 0, vz(y)] is taken with Cartesian coordi-
nates [Happel and Brenner, 1983]. Neglecting gravitational forc
the body force per unit volume F ubiquitously caused by the z
rectional action of an induced electrical field Ez on the net charge
density ρe can be written Fz=ρeEz. With these identities, Eq. (7) is
reduced to

(8)

In view of taking a flow only in the z-direction in a slit spaced
distance 2H apart, the velocity profile known as a plane Poise
flow is obtained as

(9)

One obtains the nondimensionalized equation of motion, such 

(10)

with the following dimensionless parameters

(11)

where dh means the hydraulic diameter (i.e., 4H), U the refe
ence velocity, and ψo the reference electrical potential. The boun
ary conditions are applied as

(12a)

(12b)

The Green’s function formulation with the differential operat
�, which is described in the reference books [see, e.g., Arfken, 19
can be used for V(Y, t) as follows:

(13)

Solution of this equation proceeds by standard techniques. We
consider Green’s function as a linear combination of the eigen
ues and corresponding eigenfunctions φn, established as

(14)

where t is normalized by ρdh
2/η, and a convenient representatio

for the eigenvalues

(15)

Utilization of the Dirac delta function with orthogonal propertie
leads to the following expression

(16)

Then, the solution of Eq. (13) subjected to the above boundary 

κ = 
2ni b, zi

2e2

εkT
-------------------

1 2⁄

∂2Ψ
∂y2
--------- = κ2Ψ.

Ψ = Ψs

dΨ
dy
------- = 0

Ψ = Ψs

coshκy
coshκH
------------------.

ρ∂v
∂t
------  + ρ v ∇⋅( )v  = − ∇p + F  + η∇2v

ηd2ν
dy2
--------  = 

dp
dz
------  − ρeEz.

νz = 
H2

2η
------dp

dz
------ 1− 

y
H
---- 

 
2

.

d2V

dY2
---------  = 

dP
dZ
------  + Γ1EΨ

Z  = 
z

dhRe
-----------, Y  = 

y
dh

----, V  = 
ν
U
----, Re = 

ρdhU
η

------------.

P = 
p

ρU2
---------, E = 

EzdhRe
ψo

-----------------, Γ1 = 
2zienbψo

ρU2
--------------------

V  = 0 at Y = 
H
dh

----,

dV
dY
-------  = 0 at Y = 0.

LV  = η ∂
∂t
----  − 

∂2

∂Y2
--------- V  = − 

∂P
∂Z
------  − EΓ1Ψ Y( ).

G Y Y' t, ,( ) = e
− βntφn Y( )φn Y'( )

n

∞

∑

βn = 
2n − 1( )πdh

2H
--------------------------

2

.

LG Y Y' t, ,( ) δ Y  − Y'( )δ t( ).≡

Fig. 1. A fluid flow within charged slit-like microchannel.
September, 2002
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(17)

Green’s function is explicitly found by using the separation of vari-
ables method, yielding

(18)

The solution for velocity profile yields as

(19)

Both integrating and rearranging give the velocity profile as follows,

(20)

where Vinert is the velocity profile in the absence of the electrostatic
interaction, that equals to the plane Poiseuille flow profile given in
Eq. (9). Ultimately, the average fluid velocity is obtained as

(21)

2. Flow-induced Electrokinetic Potential (Streaming Poten-
tial)

As derived in Eq. (10), both the local velocity and the average
fluid velocity can be calculated when the nondimensional induced
electrical field E is known. Ions from the double layer region are
transported along with the streaming solution, resulting in a stream-
ing current Is, in the direction of flow. The resultant induced elec-
trokinetic potential, which is generally called the streaming poten-
tial Ez, then induces a flow of ions in the opposite direction known
as the electrical conduction current Ic. When the flow reaches a steady
state, the summation of the streaming and conduction current should
be zero, so that

(22)

The streaming current Is caused by the pressure-driven liquid flow
is called the electrical convection current. For a slit-like microchan-
nel with the specified width W, it is defined by

(23)

The electrical conduction current Ic can be expressed as

(24)

where λt is the total electrical conductivity and Ac is the cross-sec-
tional area of the channel. Note that the electrical conduction 
rent consists of bulk electrical conductivity and surface electr
conductivity. The bulk conductivity of the monovalent symmet
electrolyte system (e.g., NaCl, KCl solution) is almost much gre
than the surface conductivity of the channels made on inorgan
polymeric materials [Lee et al., 2000]. In this respect, the λt in this
study can be determined by the value of the bulk conductivity. S
stituting Eqs. (23) and (24) into Eq. (22), the nondimensional indu
electrokinetic potential E is derived as

(25)

With defining the dimensionless variable Γ2=2zienbdhU/λtψo, Eq.
(25) can be finally expressed as follows,

(26)

RESULTS

Illustrative computations are performed by considering a fu
developed laminar flow of an aqueous NaCl solution through a 
like microchannel made on inorganic materials such as fused s
At room temperature, the dielectric constant and the viscosity
the fluid can be taken as ε=(80)×(8.854×10−12) Coul/N·m2 and η=
1×10−3 kg/m·sec, in respect. From the applied pressure gradien
dz, the reference velocity U is estimated as (H2/4η)(dp/dz). Both the
double layer thickness and the bulk conductivity with variations
ionic concentrations are provided in Table 1, where the bulk c
ductivity is chosen from the literature value [Lide, 1999]. For 1
type of NaCl electrolyte, the ionic concentration equals the io
strength of the solution.

Eq. (20) is an exact solution to the equation of motion by apply
Green’s function. In Figs. 2-4, the velocity profiles are plotted w
variations of electrostatic repulsion, for which both the Debye dou
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Table 1. The condition of NaCl aqueous solution environment
 Ionic strength,1)

Cb (mM)
Double layer thickness,2) 

κ−1 (nm)
Bulk conductivity

(1/Ω⋅m)

10−2 3.1 1.2×10−1

10−2 9.7 1.2×10−2

10−2 96.5 1.6×10−4

10−4 964.7 1.8×10−6

1)ni, b (1/m3)=NA
 [Cb (mM)], where NA is Avogadro’s number.

2)for 1 : 1 type electrolytes, Double layer thickness (nm)=[Cb (M)]−1/2/
3.278.
Korean J. Chem. Eng.(Vol. 19, No. 5)
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layer thickness and surface potentials are changed. It is possible to
assume here that the surface potential Ψs is identical to the zeta po-
tential. This points out that the flow situations are verified as a low
Reynolds number condition, which is certainly less than 1. A de-
crease of NaCl electrolyte concentration Cb corresponds to an in-
crease of Debye double layer thickness κ−1. The ionic strength of
10−4 mM nearly satisfies to the range for distilled water. As shown

in Fig. 2, the Debye electric double layer exhibits weak effects
the flow pattern for the channel width of 30µm. The dashed curves
obtained with dimensional surface potentials above 25.69 mV (
Ψs=2.5 and 4.0) are hypothetical predictions, since the present s
deals with the linearized P-B field provided in Eq. (5). Howev
these dashed curves show a strong dependency of the surfac
tential upon the velocity profile, although they are not necessa
true.

As demonstrated in Figs. 3 and 4, it is obvious that the dou
layer effect on the flow pattern becomes stronger as the cha
width decreases. The maximum velocity in the center of the ch
nel is much lower than that in the original Poiseuille flow, with i
creasing of the electrostatic interaction. It is shown that as the 
face potential increases the flow velocity near the channel wall
proaches zero due to the action of the electric double layer field
the induced electrokinetic potential.

As described before, the charge concentration difference betw
the upstream and the downstream results in an induced elec
netic potential Ez, namely streaming potential. Therefore, a larg
pressure gradient will generate a larger volume transport, and a
played in Fig. 5, a higher charge accumulation as well as a stro
induced electrical field will occur. Fig. 5 also shows that the induc
electrical field increases as the ionic concentration of the aque
solution for a given pressure gradient decreases, due to a large
ble layer thickness. In Fig. 6, on the other hand, the average 
velocity <v> is entirely reduced with the decrease in ionic conc
tration. This behavior leads us to understand the electrokinetic e
in the fluid flow through microchannels.

The predicted results indicate the fact that the velocity prof
dramatically change when the microchannel wall is charged w
higher surface potentials. Therefore, the behavior of electrokin
flows with respect to the full P-B field needs to be elucidated, a

Fig. 2. Velocity profile in a slit-like microchannel with channel
width 2H=30 µµµµm for several Debye double layer thickness
as well as surface potentials, where pressure gradient dp/
dz is 2.026×105 N/m3.

Fig. 3. Velocity profile in a slit-like microchannel with channel
width 2H=10 µµµµm for several Debye double layer thickness
as well as surface potentials, where pressure gradient dp/
dz is 2.026×105 N/m3.

Fig. 4. Velocity profile in a slit-like microchannel with channel
width 2H=2 µµµµm for several Debye double layer thickness
as well as surface potentials, where pressure gradient dp/
dz is 2.026×105 N/m3.
September, 2002
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a fortiori, this problem should be analyzed in future study.

CONCLUSIONS

Although earlier studies exist for electrokinetic flow in cylindri-
cal channels, microchannel analysis of the requisite microfluidic
problems has not been confronted until recently. The main thrust
of the present study is an analysis on the electrokinetic flow of ionic
fluids in slit-like microchannels. The additional body force origi-

nating from the presence of the electric field and the flow-induc
electrical field was considered in the equation of motion. Applyi
Green’s function formula could derive the expressions in exp
forms for the velocity profile, the induced electrokinetic potenti
and the average fluid velocity as functions of relevant paramete

Theoretical results emphasize that the velocity profile is clea
affected by the Debye double layer for the cases of low ionic c
centrations and high zeta potentials. The induced electrokinetic
tential increases with the pressure gradient, while it decreases a
ionic concentration increases. Since both the electric double l
and the induced electrokinetic potential act against the liquid fl
they result in a reduced flow rate and this behavior is related to
electroviscous effect. Further studies are needed to explore 
regard to corresponding behavior for the nonlinear P-B field.
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NOMENCLATURE

Ac : cross-sectional area of the channel [m2]
Cb : solution ionic strength [M]
dh : hydraulic diameter [m]
E : dimensionless induced electrokinetic potential, or strea

ing potential [-]
Ez : dimensional E [V/m]
e : elementary charge [Coul]
F : body force [N/m3]
G : Green’s function [-]
H : half channel width [m]
I : net electrical current [A]
Ic : electrical conduction current [A]
Is : electrical convection current [A]
kT : Boltzmann thermal energy [J]
NA : Avogadro’s number
ni, b : concentration of charged ions [1/m3]
P : dimensionless hydraulic pressure [-]
p : hydraulic pressure [N/m2]
Re : Reynolds number [-]
t : dimensionless time [-]
U : reference velocity [m/s]
V : dimensionless fluid velocity [-]
<V> : dimensionless average fluid velocity [-]
v : fluid velocity component [m/s]
W : specified channel width [m]
Y : non-dimensional y-coordinate [-]
Z : non-dimensional z-coordinate [-]
zi : valence of ion [-]

Greek Letters
βn : set of eigenvalues [-]
ε : dielectric constant [Coul2 /J·m]
φn : set of eigenfunctions [-]
κ : inverse Debye double layer thickness [1/m]

Fig. 5. The variations of induced electrical field Ez with pressure
gradient at different solution ionic concentrations as well
as surface potentials, where the channel width 2H is 10µµµµm.

Fig. 6. The variations of average fluid velocity <v> with pressure
gradient at different solution ionic concentrations as well
as surface potentials, where the channel width 2H is 10µµµµm.
Korean J. Chem. Eng.(Vol. 19, No. 5)
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s,
ρ : fluid density [kg/m3]
ρe : net charge density [Coul/m3]
η : fluid viscosity [kg/m·s]
Γ1, Γ2 : non-dimensional parameters [-]
λt : total electrical conductivity [1/Ω·m]
Ψ : dimensionless electrostatic potential [-]
Ψs : dimensionless electrostatic surface potential [-]
ψo : reference electrical potential [V]
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