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Abstract−−−−Fixed bed adsorption kinetics is analyzed to test the validity of the simplified model based on the linear
driving force approximation by comparison with the exact model by using the orthogonal collocation method. The
axial dispersion, the external film diffusion, and the intraparticle diffusion are considered to be the major mass transfer
phenomena involved with the fixed bed adsorption kinetics in this study. It is assumed that a local equilibrium is at-
tained at the fluid-solid interface and the equilibrium can be described by the Langmuir isotherm. A homogeneous
particle diffusion model is employed to describe the intraparticle diffusion.

Key words: Adsorption, Fixed Bed, Breakthrough Curve, Orthogonal Collocation, Linear Driving Force Approximation

INTRODUCTION

Various mass transfer phenomena are involved with fixed bed
adsorption kinetics: axial dispersion, external diffusion, adsorption
on the fluid-particle interface, and intraparticle diffusion. For sys-
tems with nonlinear adsorption isotherm, it is difficult to obtain an
exact analytical solution for the breakthrough curve at the exit of
the adsorption bed. Thus, the design and modeling of the fixed bed
adsorption kinetics, especially in case of systems with nonlinear
isotherm, requires numerical computations of a mathematical model.

For the numerical solution of the model, the finite difference [Crit-
tenden and Weber, Jr., 1978; Yun, 2000], the orthogonal collocation
[Raghavan and Ruthven, 1983; Xiu and Li, 2000], and the com-
bined orthogonal collocation (along the particle radius) and finite
difference (along the bed) [Chatzopoulos and Varma, 1995] have
been adopted. It is commonly known that orthogonal collocation
has difficulty in describing steep concentration profiles. However,
for a relatively smooth concentration profile, orthogonal collocation
is preferred over finite difference because of the greater stability and
less computation time of the former [Raghavan and Ruthven, 1983].

A rigorous numerical solution of the fixed bed adsorption kinet-
ics is quite time-consuming, since it has to account for temporal
evolution as well as multivariable spatial distribution of adsorbate
concentration. However, the computational effort can be greatly
reduced if we replace the original intraparticle diffusion equation
by the linear driving force (LDF) approximation [Moon et al., 1992;
Lee and Moon, 2001; Kim et al., 2002], which was originally pro-
posed by Gluckauf and Coates [1947].

In this study, we will test the validities of several simplified mod-
els based on the LDF approximation by comparison with the exact
model. We will adopt orthogonal collocation in the numerical com-
putation. All the computations in the present study will be carried
out by using the MATLAB programming language.

MATHEMATICAL MODEL

We consider an isothermal bed packed with porous spherical par-

ticles. Initially an inert material flows through the bed. At time ze
a step amount of adsorbing species is introduced to the inlet o
bed. As the adsorbing species flows through the bed, the axia
persion, the external film diffusion, and the intraparticle diffusio
of the adsorbing species take place.

The mass balance in the bed is

(1a)

where Cb is the concentration in the fluid phase, Cs is the concen-
tration in the fluid phase at the surface of a particle, R is the c
acteristic length of the particle, DL is the axial dispersion coefficient
εb is the void fraction of the bed, v is the interstitial velocity throu
the bed, and kf is the external mass transfer coefficient.

The initial and boundary conditions for Eq. (1a) are

at t=0, Cb=0 (1b)

at z=0, (1c)

at z=L, (1d)

where C0 is the magnitude of the step amount introduced to the i
of the bed at time zero. Eqs. (1c) and (1d) are the Danckwerts bo
ary conditions, which are correct for a dispersed plug-flow syst
as discussed by Wehner and Wilhelm [1956].

To describe the mass transfer phenomena in the particle, we
employ a homogeneous particle diffusion model that accounts
the external-film diffusion followed by the surface diffusion in th
particle. Other models (e.g., dual diffusion model of pore and s
face diffusion in the particle) could be solved in exactly the sa
way. We assume that a local equilibrium is attained between
fluid phase and particle phase concentrations at the particle sur
and the equilibrium can be described by the Langmuir isotherm

The mass balance equation (for the homogeneous particle d
sion model) describing the distribution of concentration inside 
particle is:

(2a)

where Cµ is the concentration in the particle phase and De is the ef-
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fective diffusivity, which is assumed constant in the present study.
The initial and boundary conditions are

at t=0, Cµ=0 (2b)

at r=0, (2c)

at r=R, (2d)

where Cs is the concentration in the fluid phase at the surface of
the particle.

Equilibrium at the particle surface is:

(3)

where Cµs and b are the Langmuir isotherm parameters.
The problem defined by Eqs. (1) and (2) is identical to the prob-

lem solved numerically by Raghavan and Ruthven [1983] who em-
ployed a linear isotherm instead of the Langmuir isotherm of Eq.
(3). Note that the Langmuir isotherm of Eq. (3) reduces to a linear
isotherm when the value of the adsorption affinity b is sufficiently
small.

NON-DIMENSIONALIZATION OF THE MODEL

The dimensionless variables and parameters are defined and listed
in Table 1. Then the resulting dimensionless equations in terms of
the dimensionless variables and parameters are as follows:

Mass Balance in the Bed:

(4a)

at τ=0, yb=0 (4b)

at x=0, (4c)

at x=1, (4d)

Mass Balance in the Particle:

(5a)

at τ=0, yµ=0 (5b)

at η=0, (5c)

at η=1, (5d)

Adsorption Isotherm:

(6)

LDF MODEL

For adsorption in a spherical particle, the adsorption rate ba
on the LDF approximation has the following dimensionless form

(7)

where kd is the dimensionless intraparticle mass transfer coeffici
and <yµ> is the dimensionless mean solid-phase concentration,
fined as

(8a)

(8b)

Based on Eq. (8a), kd can be obtained from the reference as follow

From Do and Rice [1986]

kd=15 (9a)

From Do and Mayfield [1987]

(9b)

From Hsuen [2000]

(9c)

From the analytical solution of Crank [1975] for the particle d
fusion

(9d)

Substituting Eq. (7) into Eq. (4a), we have the following mass b
ance equation in the bed, based on the LDF model:

(10)

NUMERICAL SOLUTION USING THE
ORTHOGONAL COLLOCATION

Eqs. (4), (5), and (6) formulate a nonlinear boundary value pr
lem, which could be solved numerically by orthogonal collocatio
For LDF models, the mass balance equation of Eq. (4a) shoul
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Table 1. Definition of dimensionless variables and parameters

; ; ;

; ; ;

; ;

Distribution parameter 

Bed length parameter θ=δ/ψ, where 

Film resistance parameter 
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replaced by Eq. (10). If M interior collocation points for the axial
domain and N interior collocation points for the radial domain were
selected, the original system of partial differential equations [Eqs.
(4) and (5)] could be transformed into a system of (M+MN) or-
dinary differential equations of initial value type by means of the
collocation analysis.

Examining LDF model of Eq. (10), the concentration in the solid
phase should be computed as a function of the particle radius first
by using Eqs. (5), and then the surface concentration and the mean
concentration in Eq. (10) could be obtained. Hence, there is no bene-
fit of the less computer time of the LDF model over the exact mod-
el when we employ orthogonal collocation. Note that all (M+MN)
ordinary differential equations should be solved simultaneously in
the orthogonal collocation, contrasted with the step-by-step solution
of the finite difference. However, the orthogonal collocation usu-
ally requires less computer time and gives more stable solution than
the finite difference for a given accuracy of the numerical compu-
tation. Thus, the orthogonal collocation could be useful enough to
test the validity of the LDF model through the comparison of the
LDF model with the exact model.

Eight interior collocation points (M) for the axial domain and
four interior collocation points (N) for the radial domain were se-
lected, respectively, to solve the mathematical model in the present
study. With more numbers of collocation points (e.g., M=13 and
N=10), similar numerical results could be obtained. The built-in
function “ODE15S.M” of MATLAB was used as the integration
routine to solve the resulting initial value problem of the (M+MN)
coupled ordinary differential equations

RESULTS AND DISCUSSION

As defined by Eqs. (4) and Eqs. (5), the model in the present study
is identical to the problem solved numerically by Raghavan and
Ruthven [1983] except that they employed a linear isotherm instead
of the Langmuir isotherm of the present study. The Langmuir iso-
therm will reduce to a linear isotherm when the value of the ad-
sorption affinity b is sufficiently small. This provides a convenient

check on the accuracy of the numerical computation of the mo
in the present study because the numerical solution of the linear
sion of the model has been reported in the reference [Raghava
Ruthven, 1983; Chen and Hsu, 1987].

Fig. 1 and Fig. 2 show the orthogonal collocation solutions 
representative sets of parameters. Fig. 1 is the result for a shor
umn with high ξ (probably in the particle diffusion regime), while
Fig. 2 is the result for a long column with small ξ (probably in the
external film diffusion regime). The data points in both Figs. 1 a
2 are from Raghavan and Ruthven [1983] and curves are c
puted by the orthogonal collocation solutions in the present stu
Comparing the breakthrough curves for 1>>bC0 (i.e., for a linear
system) with the data points in Figs. 1 and 2, we can conclude
the agreement between the numerical results from Raghavan
Ruthven [1983] and from the present study is excellent. When
adsorption affinity becomes larger, the breakthrough curve beco

Fig. 1. Effect of adsorption affinity on the breakthrough curve in
a short bed: ψψψψ=10,000, θθθθ=3, Pe=5, ξξξξ=1,000.

Fig. 2. Effect of adsorption affinity on the breakthrough curve in
a long bed: ψψψψ=10,000, θθθθ=0.03, Pe=10, ξξξξ=0.05.

Fig. 3. Comparison of breakthrough curves in a short bed between
the exact model and the LDF model: ψψψψ=10,000, θθθθ=3, Pe=
10, ξξξξ=1,000, bC0=1.
Korean J. Chem. Eng.(Vol. 19, No. 6)
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much steeper, as shown in Figs. 1 and 2.
Figs. 3, 4, and 5 show the breakthrough curves predicted by both

the exact model and the LDF model for a short, a medium, and a
long bed, respectively. Among four LDF models used in the present
study, the model of Do and Rice [1986], which is based on the par-
abolic concentration profile in the particle, shows to be the best agree-
ment with the exact model. For the shorter bed (i.e., for the larger
value of the bed length parameter θ), there is some deviation be-
tween the exact model and the LDF model of Do and Rice. For the
longer bed (i.e., for the smaller value of the bed length parameter
θ), however, the agreement is seen to be excellent, noting in Fig. 5
that the breakthrough curves predicted by the model of Do and Rice
and the exact model nearly coincide with each other. This is not
surprising if we remember that the model of Do and Rice is based
on the assumption of a symmetric intraparticle concentration pro-

file, which can be practically attained in a sufficiently long be
The accuracy of the LDF model depends on that of the intra

ticle mass transfer coefficient kd. Fig. 6 shows the time dependenc
of the mass transfer coefficient. We can see in this figure that t
are some discrepancies between the mass transfer coefficients
various LDF models. It has been known, since Gluckauf and Co
[1947], that the LDF model with kd=15 approximates the exact mod
el very closely. The values of kd from other LDF models except for
the model of Do and Rice deviate largely from 15 in the range
0.1<τ, which is a practically important range for the breakthrou
curves (note that there are also large deviations in the range oτ<
0.1). This is the reason why the breakthrough curves predicted 
the LDF models deviate from the exact model more or less, dep
ing on the magnitude of the deviation of kd from 15, as shown in
Figs. 3-5.

Figs. 7 and 8 show the comparison of the breakthrough cu
predicted from the model of Do and Rice and the exact model: 

Fig. 4. Comparison of breakthrough curves in a medium bed be-
tween the exact model and the LDF model: ψψψψ=10,000, θθθθ=
0.3, Pe=10, ξξξξ=10, bC0=1.

Fig. 5. Comparison of breakthrough curves in a long bed between
the exact model and the LDF model: ψψψψ=10,000, θθθθ=0.03, Pe=
10, ξξξξ=0.05, bC0=1.

Fig. 6. Comparison of the dimensionless intraparticle mass trans-
fer coefficients of various LDF models.

Fig. 7. Effect of ξξξξ on the breakthrough: ψψψψ=10,000, θθθθ=0.3, Pe=10,
bC0=1.
November, 2002
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7 for the effect of Pe and Fig. 8 for the effect of ξ on the break-
through curve. As we can see in Fig. 7, the deviation of the LDF
model based on the parabolic concentration profile from the exact
model becomes smaller as Pe decreases. This is because the intra-
particle diffusion resistance becomes relatively less important as Pe
decreases. This argument is also true on the effect of ξ; that is, the
deviation of the LDF model from the exact model becomes smaller
as ξ decreases. Thus, we can conclude that the LDF model based
on the parabolic concentration profile approximates the exact mod-
el more closely as the intraparticle diffusion resistance becomes re-
latively less important compared to both the axial diffusion resis-
tance and the external diffusion resistance.

CONCLUSION

In the present study, we analyzed numerically the fixed bed ad-
sorption kinetics using orthogonal collocation to test the validity of
the simplified model based on the LDF approximation by compar-
ison with the exact model.

Among four LDF models cited in the present study, the model
from Do and Rice [1986], which is based on the parabolic concen-
tration profile in the particle, shows to be best agreement with the
exact model.

The LDF model based on the parabolic concentration profile de-
viates to some extent from the exact model in shorter bed. How-
ever, the deviation becomes negligible in a sufficiently long bed, in
which the intraparticle concentration profile approaches a symmet-
ric form.

As the intraparticle diffusion resistance becomes relatively less
important compared to both the axial diffusion resistance and the
external diffusion resistance, the LDF model based on the parabolic
concentration profile approximates the exact model more closely.
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NOMENCLATURE

b : Langmuir isotherm parameter, defined by Eq. (3) [cm3/
mol]

Bi : Biot number, defined in Table 1
Cb : concentration in the fluid phase [mol/cm3]
C0 : intensity of step concentration at the inlet of bed [mol/cm3]
Cs : concentration in the fluid phase at the particle surface [m

cm3]
Cµ : concentration in the particle phase [mol/cm3]
Cµ0 : reference concentration, defined in Table 1 [mol/cm3]
Cµs : Langmuir isotherm parameter, defined by Eq. (3) [mol/cm3]
De : effective diffusivity, defined by Eq. (2a) [cm2/s]
DL : axial dispersion coefficient, defined by Eq. (1a) [cm2/s]
kd : dimensionless intraparticle mass transfer coefficient, defin

by Eq. (8a)
kf : external mass transfer coefficient, defined by Eq. (2d) [c

s]
L : bed length [cm]
M : number of interior collocation points in axial domain
N : number of interior collocation points in radial domain
Pe : Peclet number, defined in Table 1
r : radial variable within the particle [cm]
R : radius of the spherical particle [cm]
t : time variable [s]
v : interstitial velocity of fluid in the bed [cm/s]
x : dimensionless axial variable in the bed, defined in Tabl
yb : dimensionless concentration in the fluid phase, defined

Table 1
ys : dimensionless concentration in the fluid phase at the p

ticle surface, defined in Table 1
yµ : dimensionless concentration in the particle phase, defi

in Table 1
<yµ> : mean value of yµ
yµs : dimensionless Langmuir isotherm parameter, defined

Table 1
z : axial variable in the bed [cm]

Greek Letters
εb : void fraction of the bed
δ : ratio of time constants, defined in Table 1
η : dimensionless radial variable within the particle, define

in Table 1
θ : dimensionless bed length parameter, defined in Table
τ : dimensionless time variable, defined in Table 1
ξ : dimensionless film resistance parameter, defined in Tab
ψ : dimensionless distribution parameter, defined in Table
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