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Abstract—Fixed bed adsorption kinetics is analyzed to test the validity of the simplified model based on the linear
driving force approximation by comparison with the exact model by using the orthogonal collocation method. The
axial dispersion, the external film diffusion, and the intraparticle diffusion are considered to be the major mass transfer
phenomena involved with the fixed bed adsorption kinetics in this study. It is assumed that a local equilibrium is at-
tained at the fluid-solid interface and the equilibrium can be described by the Langmuir isotherm. A homogeneous
particle diffusion model is employed to describe the intraparticle diffusion.
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INTRODUCTION ticles. Initially an inert material flows through the bed. At time zero,
a step amount of adsorbing species is introduced to the inlet of the

Various mass transfer phenomena are involved with fixed beded. As the adsorbing species flows through the bed, the axial dis-
adsorption kinetics: axial dispersion, external diffusion, adsorptionpersion, the external film diffusion, and the intraparticle diffusion
on the fluid-particle interface, and intraparticle diffusion. For sys- of the adsorbing species take place.
tems with nonlinear adsorption isotherm, it is difficult to obtain an  The mass balance in the bed is
exact analytical solution for the breakthrough curve at the exit of ) :
the adsorption bed. Thus, the design and modeling of the fixed bed 9G, =&a—i" —v‘% —%1—8"%.'%(‘%0[, -C) (1a)
adsorption kinetics, especially in case of systems with nonlinear & 0z z &
isotherm, requires numerical computations of a mathematical modelwhere G is the concentration in the fluid phasejsthe concen-

For the numerical solution of the model, the finite difference [Crit- tration in the fluid phase at the surface of a particle, R is the char-
tenden and Weber, Jr., 1978; Yun, 2000], the orthogonal collocatiocteristic length of the particle, i3 the axial dispersion coefficient,
[Raghavan and Ruthven, 1983; Xiu and Li, 2000], and the com-, is the void fraction of the bed, v is the interstitial velocity through
bined orthogonal collocation (along the particle radius) and finitethe bed, andks the external mass transfer coefficient.
difference (along the bed) [Chatzopoulos and Varma, 1995] have The initial and boundary conditions for Eq. (1a) are
been adopted. It is commonly known that orthogonal collocation at t=0, G=0 (1b)
has difficulty in describing steep concentration profiles. However, ’ D aC
for a relatively smooth concentration profile, orthogonal collocation — at FO,[E_:(,—Z“
is preferred over finite difference because of the greater stability and ac,
less computation time of the former [Raghavan and Ruthven, 1983]. at z=L,5-"=0 (1d)

A rigorous numerical solution of the fixed bed adsorption kinet- ] ) . )
ics is qite time-consuming, since it has to account for temporatVhere Gis the magnitude of the step amount introduced to the inlet
evolution as well as multivariable spatial distribution of adsorbate ©f the bed at time zero. Egs. (1c) and (1d) are the Danckwerts bound-
concentration. However, the computational effort can be greatly2y conditions, which are correct for a dispersed plug-flow system
reduced if we replace the original intraparticle diffusion equation @S discussed by Wehner and Wilhelm [1956]. _ .
by the linear driving force (LDF) approximation [Moon et al.,, 1992; 10 describe the mass transfer phenomena in the particle, we wil
Lee and Moon, 2001; Kim et al., 2002], which was originally pro- employ a homoggnequs particle diffusion model thgt apcognts for
posed by Gluckauf and Coates [1947]. the gxternal-ﬂlm diffusion followed py the surface diffusion in the

In this study, we will test the validities of several simplified mod- Particle. Other models (e.g., dual diffusion model of pore and sur-
els based on the LDF approximation by comparison with the exactace diffusion in the particle) could be solved in exactly the same
model. We will adopt orthogonal collocation in the numerical com- Way. We assume that a local equilibrium is attained between the
putation. All the computations in the present study will be carriedfluid phase and particle phase concentrations at the particle surface,

| =vied —Cl) = C Gl o)

z=0

out by using the MATLAB programming language. and the equilibrium can be described by the Langmuir isotherm.
The mass balance equation (for the homogeneous particle diffu-
MATHEMATICAL MODEL sion model) describing the distribution of concentration inside the
particle is:
We consider an isothermal bed packed with porous spherical par- 9C,_19 Blz ac, O-p 9°C, ,20C, 17 2a)
T ot yorQ "cord T*Up2 rorQU
To whom correspondence should be addressed.
E-mail: ispark@kyungnam.ac.kr where G is the concentration in the particle phase and the ef-
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fective diffusivity, which is assumed constant in the present study.  att=0, y.=0 (5b)
The initial and boundary conditions are
y atn=0, % =0 (5¢)
at t=0, G=0 (2b) )
atn=1, —yEJ = A 5d
atr=0, =g (20) f [0n . o0y )
or
atr=R, [De%“} ~k,(C,~C.) (2d) Adsorption Isotherm:
=BG, ©)
where Gis the concentration in the fluid phase at the surface of “*771 1+bCy,
the particle.
Equilibrium at the particle surface is: LDF MODEL
cmq;%%g: 6) For adsorption in a spherical particle, the adsorption rate based

on the LDF approximation has the following dimensionless form:
where G, and b are the Langmuir isotherm parameters. 9y,0
The problem defined by Egs. (1) and (2) is identical to the prob- 3¢~ Ka(Yily= "0 =38(y, 7y )
lem solved numerically by Raghavan and Ruthven [1983] who em-
ployed a linear isotherm instead of the Langmuir isotherm of Eq_where k is the dimensionless intraparticle mass transfer coefficient
(3). Note that the Langmuir isotherm of Eq. (3) reduces to a Iineaﬁ}nd <y> is the dimensionless mean solid-phase concentration, de-
isotherm when the value of the adsorption affinity b is sufficiently fined as

small.
T ®2)
NON-DIMENSIONALIZATION OF THE MODEL S
[y,C3f, yn“dn (8b)

The dimensionless variables and parameters are defined and listed ) _
in Table 1. Then the resulting dimensionless equations in terms dpased on Eq. (8a), kan be obtained from the reference as follows:

the dimensionless variables and parameters are as follows: From Do and Rice [1986]
Mass Balance in the Bed k=15 (9a)
) 1 9° ) From Do and Mayfield [1987]
Yo =yo P -yo e -ayE(y, -y) (42)
ot Pegx 0x 1.15% 0.3
at 1=0, y=0 (4b) ky=9+ 1068 (9b)
i)
at x=0, [%’} =-Pe( W oy Yol og) = P17V, ) (4C) From Hsuen [2000]
x=0
- We_ _ 1.6926
at x=1, 3=0 (4d) k,=3.8776+ 7 (9c)
Mass Balance in the Particle From the analytical solution of Crank [1975] for the particle dif-
, fusion
ay, =[Ja_y§ +2%% (5a) .
ot Lon* non Y exp(—n’TeT)
ky=gi——— (od)
_ ) ) . > =exp(—n’TeT)
Table 1. Definition of dimensionless variables and parameters &t
n=_: x=2: T =D_e2t ; Substituting.Eq.. (7) into Eq. (4a), we have the following mass bal-
R L R ance equation in the bed, based on the LDF model:
Yo =2, y.= y, =2 = 2
- sT ~ s - ’ s ™ 2
"G Co " Cuo " Cu We = ot O g% —yi(y,),.,~13,0) (10)
CubCy kR vl ot TPegx’ TUox TN
Cpo=7=0 Bj=": Ppe=
¥ 1+bC) D.’ D, /g,
Distribution paramete :QEEC@E NUMERICAL SOLUTION USING THE
& o . ORTHOGONAL COLLOCATION
Bed length paramet@=4&/y), whered =RT\[/)E

Egs. (4), (5), and (6) formulate a nonlinear boundary value prob-
lem, which could be solved numerically by orthogonal collocation.
For LDF models, the mass balance equation of Eq. (4a) should be

Bi
Cu/Co

Film resistance parametér
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replaced by Eq. (10). If M interior collocation points for the axial t ' <
domain and N interior collocation points for the radial domain were
selected, the original system of partial differential equations [Egs.
(4) and (5)] could be transformed into a system of (M+MN) or- %3]
dinary differential equations of initial value type by means of the
collocation analysis.

Examining LDF model of Eg. (10), the concentration in the solid
phase should be computed as a function of the patrticle radius fir¢>"

0.67
Lines

H . (1) : bC_=0.001
by using Egs. (5), and then the surface concentration and the mei . @):6C, = 1
- (3):bC, =10

concentration in Eq. (10) could be obtained. Hence, there is no ben
fit of the less computer time of the LDF model over the exact mod-
el when we employ orthogonal collocation. Note that all (M+MN) 02f
ordinary differential equations should be solved simultaneously in

the orthogonal collocation, contrasted with the step-by-step solutior

of the finite difference. However, the orthogonal collocation usu- 0
ally requires less computer time and gives more stable solution tha T
the finite difference for a given accuracy of the numerical compu-
tation. Thus, the orthogonal collocation could be useful enough td:
test the validity of the LDF model through the comparison of the
LDF model with the exact model.

Eight interior collocation points (M) for the axial domain and check on the accuracy of the numerical computation of the model
four interior collocation points (N) for the radial domain were se- in the present study because the numerical solution of the linear ver-
lected, respectively, to solve the mathematical model in the preserdion of the model has been reported in the reference [Raghavan and
study. With more numbers of collocation points (e.g., M=13 andRuthven, 1983; Chen and Hsu, 1987].

N=10), similar numerical results could be obtained. The built-in  Fig. 1 and Fig. 2 show the orthogonal collocation solutions for
function “ODE15S.M” of MATLAB was used as the integration representative sets of parameters. Fig. 1 is the result for a short col-
routine to solve the resulting initial value problem of the (M+MN) umn with high€ (probably in the particle diffusion regime), while

Data Points

Linear System
from Raghavan & Ruthven [1983]

ig. 2. Effect of adsorption affinity on the breakthrough curve in
a long bed:=10,000,6=0.03, Pe=10§=0.05.

coupled ordinary differential equations Fig. 2 is the result for a long column with sné&lprobably in the
external film diffusion regime). The data points in both Figs. 1 and
RESULTS AND DISCUSSION 2 are from Raghavan and Ruthven [1983] and curves are com-

puted by the orthogonal collocation solutions in the present study.
As defined by Egs. (4) and Egs. (5), the model in the present studZomparing the breakthrough curves for 1>3(@., for a linear
is identical to the problem solved numerically by Raghavan andsystem) with the data points in Figs. 1 and 2, we can conclude that
Ruthven [1983] except that they employed a linear isotherm insteathe agreement between the numerical results from Raghavan and
of the Langmuir isotherm of the present study. The Langmuir iso-Ruthven [1983] and from the present study is excellent. When the
therm will reduce to a linear isotherm when the value of the ad-adsorption affinity becomes larger, the breakthrough curve becomes
sorption affinity b is sufficiently small. This provides a convenient

0.6f

0.81

0.6

Lines >
>
(1) bCo =0.001 0.4
0.4 (2):bC0=1
(®):6C, =10 : Exact model
O] (2) : LDF from Do and Rice [1986]
02k (3) : LDF from Do and Mayfield {1987]
(2 Data Points (4) : LDF from Hseun [2000]
02r (5) : LDF from Crank [1975]
3) Linear System
from Raghavan & Ruthven [1983]
0 ‘ ‘ , ‘
0 ‘ ‘ ‘ ) 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 T
T . . .
Fig. 3. Comparison of breakthrough curves in a short bed between
Fig. 1. Effect of adsorption affinity on the breakthrough curve in the exact model and the LDF model=10,000,8=3, Pe=

a short bed: =10,000,0=3, Pe=5£=1,000. 10,&=1,000, bG=1.
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1 10
(1) : LDF from Crank {1975]
4) (2) : LDF from Do and Rice [1986]
0.8F (3) : LDF from Do and Mayfield [1987]
(4) : LDF from Hseun [2000]
3
( )\ 10°
0.6
4
= i €
-~ ®
0.4 2)
10'F ()
: Exact model (3)

(2) : LDF from Do and Rice [1986]
02 (3) : LDF from Do and Mayfield [1987] 7

(4) : LDF from Hseun [2000] )

(5) : LDF from Crank [1975]

0 - ; . ' 0 . . \ . \ .
0 2 4 6 8 10 10 3 2 _1 0 { 2

10 10 10 10 10 10 10 10

Fig. 4. Comparison of breakthrough curves in a medium bed be-  Fig. 6. Comparison of the dimensionless intraparticle mass trans-
tween the exact model and the LDF modelp=10,000,6= fer coefficients of various LDF models.

0.3, Pe=10§=10, bG=1.

file, which can be practically attained in a sufficiently long bed.
The accuracy of the LDF model depends on that of the intrapar-

ticle mass transfer coefficient IEig. 6 shows the time dependence

of the mass transfer coefficient. We can see in this figure that there

are some discrepancies between the mass transfer coefficients from

various LDF models. It has been known, since Gluckauf and Coates

[1947], that the LDF model with&15 approximates the exact mod-

el very closely. The values of fkkom other LDF models except for

the model of Do and Rice deviate largely from 15 in the range of

0.1<t, which is a practically important range for the breakthrough

curves (note that there are also large deviations in the ramge of

‘Exactmodel Rice [1986] 0.1). This is the reason why the breakthrough curves predicted from

M&@
0.8F

0.6[

0.41

()
@ .

02 (3) : LDF from Do and Mayfield [1987] 7 the LDF models deviate from the exact model more or less, depend-
(4) : LDF from Hseun [2000] . . .. .
(5) : LDF from Crank [1975] ing on the magnitude of the deviation gffftom 15, as shown in

Figs. 3-5.
% 20 40 60 80 100 Figs. 7 and 8 show the comparison of the breakthrough curves
T predicted from the model of Do and Rice and the exact model: Fig.

Fig. 5. Comparison of breakthrough curves in a long bed between
the exact model and the LDF modely=10,0008=0.03, Pe= 1 i i
10,&=0.05, bG=1.

0.8 iy X

much steeper, as shown in Figs. 1 and 2. ®)
Figs. 3, 4, and 5 show the breakthrough curves predicted by bot
the exact model and the LDF model for a short, a medium, and . o6t 1
long bed, respectively. Among four LDF models used in the presen _
study, the model of Do and Rice [1986], which is based on the par™

abolic concentration profile in the particle, shows to be the best agret 041 (1):Pe=1

ment with the exact model. For the shorter bed (i.e., for the large @ Pex 10

value of the bed length parame®r there is some deviation be- ) '

tween the exact model and the LDF model of Do and Rice. For the ~ %2| \ (o) COF from Do and Rice [1986] |
longer bed (i.e., for the smaller value of the bed length paramete (@)

0), however, the agreement is seen to be excellent, noting in Fig. . i ] \

that the breakthrough curves predicted by the model of Do and Ric % 2 4 6 8 10
and the exact model nearly coincide with each other. This is no. T

surprising if we remember that the model of Do and Rice is basegig. 7. Effect of & on the breakthrough: (=10,000,8=0.3, Pe=10,
on the assumption of a symmetric intraparticle concentration pro- bC,=1.
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b
0.8F
Bi
C,
0.6F
C
> C,
04
W:g =1
2):£ =3 CH
(3):£ =100 CH0
0.2 (a) : Exact model Cl‘S
(b) : LDF from Do and Rice [1986] De
D,
00 2 zlt 8 8 10 Kq
T
k
Fig. 8. Effect of on the breakthrough: {y=10,000,6=0.3, Pe=10, !
bC,=1.
L
M

7 for the effect of Pe and Fig. 8 for the effec€ain the break- N
through curve. As we can see in Fig. 7, the deviation of the LDFPe
model based on the parabolic concentration profile from the exact
model becomes smaller as Pe decreases. This is because the infRa-
particle diffusion resistance becomes relatively less important as Pe
decreases. This argument is also true on the efféctratt is, the \%
deviation of the LDF model from the exact model becomes smallex
as¢ decreases. Thus, we can conclude that the LDF model baseg
on the parabolic concentration profile approximates the exact mod-
el more closely as the intraparticle diffusion resistance becomes rex,
latively less important compared to both the axial diffusion resis-

tance and the external diffusion resistance. Y.
CONCLUSION <y,>
Yis

In the present study, we analyzed numerically the fixed bed ad-
sorption kinetics using orthogonal collocation to test the validity of z
the simplified model based on the LDF approximation by compar-
ison with the exact model.

Among four LDF models cited in the present study, the modele,
from Do and Rice [1986], which is based on the parabolic concend
tration profile in the particle, shows to be best agreement with the
exact model.

The LDF model based on the parabolic concentration profile de
viates to some extent from the exact model in shorter bed. Howz
ever, the deviation becomes negligible in a sufficiently long bed, in&
which the intraparticle concentration profile approaches a symmett
ric form.

As the intraparticle diffusion resistance becomes relatively less
important compared to both the axial diffusion resistance and the
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NOMENCLATURE

: Langmuir isotherm parameter, defined by Eg. (3))[cm

mol]

: Biot number, defined in Table 1

: concentration in the fluid phase [mol/@m

: intensity of step concentration at the inlet of bed [md)/cm

: concentration in the fluid phase at the particle surface [mol/

cm’]

: concentration in the particle phase [mofEm

: reference concentration, defined in Table 1 [moilcm

: Langmuir isotherm parameter, defined by Eqg. (3) [md)/cm

: effective diffusivity, defined by Eq. (2a) [éfg]

: axial dispersion coefficient, defined by Eq. (1a) ¥sin

: dimensionless intraparticle mass transfer coefficient, defined

by Eq. (8a)

. external mass transfer coefficient, defined by Eq. (2d) [cm/

s]

: bed length [cm]
: number of interior collocation points in axial domain
: number of interior collocation points in radial domain
: Peclet number, defined in Table 1
: radial variable within the particle [cm]
: radius of the spherical particle [cm]
: time variable [s]
: interstitial velocity of fluid in the bed [cm/s]
: dimensionless axial variable in the bed, defined in Table 1
: dimensionless concentration in the fluid phase, defined in

Table 1

: dimensionless concentration in the fluid phase at the par-

ticle surface, defined in Table 1

: dimensionless concentration in the particle phase, defined

in Table 1

: mean value of y
: dimensionless Langmuir isotherm parameter, defined in

Table 1

: axial variable in the bed [cm]

Greek Letters

: void fraction of the bed

: ratio of time constants, defined in Table 1

: dimensionless radial variable within the particle, defined

in Table 1

: dimensionless bed length parameter, defined in Table 1
: dimensionless time variable, defined in Table 1

: dimensionless film resistance parameter, defined in Table 1
: dimensionless distribution parameter, defined in Table 1
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