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Abstract −−−−The constant molar flow (CMF) method has been successfully applied to measure equilibrium and
dynamic parameters in porous adsorbent particles. However, the application of this method is confined to a linear sys-
tem without the external film resistance. The aim of the present study is two-fold: to derive the exact analytical solution
of the linear CMF model with the external film resistance and to extend the theory of the CMF model to the nonlinear
system. As time becomes sufficiently large, the solution of the linear CMF model asymptotes to a straight line, of which
the slope is a function of the equilibrium parameters only and the intercept is a function of the dynamic parameters
such as the effective diffusivity and the external film mass transfer coefficient. On the contrary, the solution of the non-
linear CMF model has two asymptotes: the early time asymptote and the late time asymptote. Numerical analysis using
the orthogonal collocation in the radial domain of the particle phase is also used to interpret the behavior of the non-
linear CMF model.
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INTRODUCTION

Several techniques have been proposed for measuring the effec-
tive diffusivity in porous particles. The microbalance method [Gray
and Do, 1991], the diffusion cell method [Dogu and Smith, 1976],
the chromatography method [Schneider and Smith, 1968], the fre-
quency response method [Yasuda, 1982; Park et al., 2000, 2001],
the differential adsorption bed method [Do et al., 1991], the zero
length column method [Eic and Ruthven, 1988] are used for this
purpose. Each of these methods has advantages and disadvantages
or limitations [Park et al., 1996].

As an alternative technique, the constant molar flow (CMF) meth-
od has been successfully applied to measure equilibrium and dy-
namic parameters in porous particles. The CMF method was first
proposed by Do [1995]. Park and Do [1996] extended the theory
of the CMF method to systems with bidisperse porous particles.
Do and co-workers [Prasetyo and Do, 1998, 1999; Do et al., 2000]
applied this technique to measure the effective diffusivity of several
hydrocarbons in activated carbon particles. Do and Do [2001] com-
pared the effective diffusivity obtained from the CMF method to
the effective diffusivity from the differential adsorption bed and the
differential permeation methods.

In the CMF method, a constant flow of adsorbate is introduced
in a pre-evacuated adsorption reservoir. The pressure of the reser-
voir is monitored as a function of time and then analyzed to extract
equilibrium and dynamic parameters such as the adsorption equi-
librium constant and the effective diffusivity. Isothermal condition
is assumed in this method. However, the application of this method
is confined to a linear system without external film resistance. The
aim of the present study is to extend the CMF method to account
for the external film resistance. The exact solution for the linear sys-

tem with the external film resistance will be derived. A numeric
solution using the orthogonal collocation in the radial domain wit
the particle phase is also used to interpret the behavior of the 
linear CMF model.

MATHEMATICAL MODEL

The following assumptions are made to formulate the CMF m
el [Park and Do, 1996]:

(1) ideal mixing in the reservoir
(2) local adsorption equilibrium at the particle surface
(3) homogeneous particle diffusion within the particle
(4) isothermal condition
(5) constant effective diffusivity
(6) zero initial concentrations in the reservoir and in the partic

The mathematical formulation based on the above assump
is as follows [Do, 1995; Park and Do, 1996]:

Intraparticle Mass Balance:

(1a)

(1b)

(1c)

where Cµ is the concentration in the particle, Cb is the concentra-
tion in the reservoir outside the particles, Cs is the concentration in
the gas phase at particle surface, De is the effective diffusivity, kf is
the external mass transfer coefficient, σ is the geometric factor of
particle (0 for slab, 1 for cylinder and 2 for sphere) and r is the 
ordinate variable of particle. Note that the original boundary con
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tion at the particle surface of Do [1995] (i.e., at r=R, Cµ=KCb) is
replaced by Eq. (1c) to account for the external film resistance.

Mass Balance around the Reservoir:

(1d)

where V is the volume of reservoir outside particles, Vµ is the vol-
ume of particles,  is the constant molar flow-rate into reservoir, t
is the time variable, and R is the particle radius.

Initial Conditions :

at t=0, Cb=0, Cµ=0 (1f)

Equilibrium at the Particle Surface:

for the linear CMF model (2a)
for the nonlinear CMF model with the Langmuir isotherm

(2b)

In Eq. (2a) K is Henry constant for the linear isotherm, and in Eq.
(2b) Cµs and b are the Langmuir isotherm parameters.

NONDIMENSIONALIZATION OF THE MODEL

With the dimensionless variables and parameters defined in Table
1, the model is rewritten in a dimensionless form as follows:

Intraparticle Mass Balance:

(3a)

at x=0, (3b)

at x=1 (3c)

Mass Balance around the Reservoir:

(3d)

Initial Conditions :

at τ=0, yb=0, yµ=0 (3e)

Adsorption Isotherm:

for the linear CMF model (4a)

for the nonlinear CMF model (4b)

We note that the Langmuir isotherm of Eq. (4b) reduces to the lin
isotherm of Eq. (4a) when bC0<<1.

ANALYTICAL SOLUTION OF THE LINEAR
CMF MODEL

Eqs. (3a)-(3e) and Eq. (4a) give a set of linear equations, w
can be solved by the Laplace transform technique.

The solution in the Laplace domain can be obtained as:

(5)

where the function F(s) is defined as

for σ=0 (6a)

for σ=1 (6b)

for σ=2 (6c)

By taking the inverse transform of Eq. (5) using the method of
sidues, the analytical solution for the reservoir concentration 
be obtained as follows:

(7)

where the eigenvalues λn of the infinite series are obtained by th
following transcendental equations:

for σ=0 (8a)

for σ=1 (8b)

for σ=2 (8c)

V
dCb

dt
--------  + Vµ

d Cµ〈 〉
dt
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Table 1. Definition of dimensionless variables and parameters

; ; ;

; ;

where C0 is a reference concentration and Cµ0 is defined as
where Cµ0=KC0 for linear isotherm

where  for Langmuir isotherm

Distribution parameter 

Film resistance parameter 

Inlet molar flow rate parameter 
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Note that the analytical solution given by Eq. (7) reduces to the solu-
tion of Do [1995] when ξ is infinity.

NUMERICAL SOLUTION

For the nonlinear CMF model, the set of governing equations
Eqs. (3a)-(3e), (4b) are nonlinear partial differential equations, which
are solved by the collocation analysis in the radial domain within
the particle.

Selecting N interior collocation points for the radial domain within
the particle, N ordinary differential equations (ODEs) of the initial
value type can be obtained [Villadsen and Michelsen, 1978]. These
N ODEs and Eq. (3d), together with the initial condition of Eq. (3e),
make a set of (N+1) ODEs of the initial value type to be solved
numerically. Eight interior collocation points (i.e., N=8) for the radial
domain are used. The built-in function “ODE15S.M” of MATLAB
is used as the integration routine to solve the initial value problem
of the (N+1) coupled ODEs.

We note that the Langmuir isotherm of Eq. (4b) reduces to the
linear isotherm of Eq. (4a) when bC0<<1. Thus, the numerical solu-
tion of the nonlinear model should reduce to the solution of the linear
model when bC0<<1.

ASYMPTOTIC BEHAVIOR

When time is large enough, the solution of the linear CMF model
approaches a straight line (i.e., asymptote), the slope of which is
dependent on β only, but the intercept is a strong function of ξ, as
we can see in Eq. (7).

As a matter of fact, a quasi-equilibrium condition prevails in the
adsorption system after long time of operation of the CMF semi-
batch adsorber. This quasi-equilibrium condition can be achieved
at any time of the course of the adsorption if the inlet molar flow
rate into the adsorber is slow enough. In such a condition the num-
ber of moles fed into the adsorber is equal to the total number of
moles in the reservoir and in the particles, and the concentrations
in the two phases are in equilibrium to each other [Do and Do, 2001].
Thus, the overall mass balance at the quasi-equilibrium is

(9)

where yµ
* is the equilibrium concentration in the particle, which is

given by

for linear isotherm (10a)

for Langmuir isotherm (10b)

Substituting Eqs. (10) into Eq. (9), we obtain

for linear isotherm

(11a)

for Langmuir isotherm

(11b)

This quasi-equilibrium solution gives information about the slope

of the asymptote of the model. For the linear CMF model, the sl
of the asymptote is the same as the slope of the quasi-equilib
solution. For the quasi-equilibrium solution of the nonlinear CM
model, the following asymptotic equations for the early time a
for the late time can be obtained:

for τ<<τc (12a)

for τ>>τc (12b)

where τc is defined as the time for m=0, which is given by

(13)

Thus, the asymptote of the nonlinear CMF model is

Early time asymptote: for τ<<τc (14a)

Late time asymptote:  for τ>>τc (14b)

where the intercepts of the asymptotes (i.e., c1 and c2) for the non-
linear CMF model could not be determined analytically beca
of the nonlinearity of the model. However, the information of asy
ptotes for the quasi-equilibrium solution should be important 
the nonlinear CMF model to correlate the experimental data. T
cal values of parameters of the CMF experiment [Prasetyo and
1988] are: β=10, Ω=0.001-10. Thus, we obtain τc=1-100 (by taking
bC0=1) in order of magnitude calculation.

SIMULATION OF THE MODEL

For the simulation of the model, we use the representative va
of β=10 and Ω=0.1. To show the effects of adsorption affinity an
the external film resistance, we use some different values of 0

(i.e., bC0=1, 0.1, and 0.001) and ξ (i.e., ξ=1, 10, 100, 1000).
Fig. 1 shows the solutions of the linear CMF model for the th

Ωτ = yb + βyµ
*

yµ
*

 = yb

yµ
*

 = 
1+ bC0( )yb

1+ bC0yb

-------------------------

yb τ( )
Ω

-----------
equilibrium

= 
1

1+ β
----------τ

yb τ( )
Ω

-----------
equilibrium

= 

− m + m2+ 4bC0τ Ω⁄
2bC0

--------------------------------------------------; m = 
1+ β 1+ bC0( )

Ω
------------------------------- − bC0τ

yb τ( )
Ω

-----------
equilibrium

= 
1

1+ β 1+ bC0( )
--------------------------------τ

yb τ( )
Ω

-----------
equilibrium

= τ  − 
1+ β 1+ bC0( )

bC0Ω
--------------------------------

τc = 
1+ β 1+ bC0( )

bC0Ω
--------------------------------

yb τ( )
Ω

----------- = 
1

1+ β 1+ bC0( )
-------------------------------τ  + c1

yb τ( )
Ω

----------- = τ + c2

Fig. 1. Effect of the particle shape factor σσσσ on the response of the
linear CMF model (ββββ=10, ξξξξ=1000).
November, 2002
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different particle shapes, that is, slab, cylinder, and sphere. The slopes
of the asymptotes are all the same, but the intercepts are different
from one another. The response time to reach the long time solu-
tion is large for slab particles and small for spherical particles. The
response time for cylindrical particles lies between those of slab
and spherical particles.

Fig. 2 shows the existence of the early time asymptote and the
late time asymptote for the nonlinear CMF model. Since the collec-
tion of data in the typical CMF experiment are completed in the early
time (e.g., in the region τ<1), the practically useful asymptote should
be the early time asymptote rather than the late time asymptote.

Fig. 3 shows the effect of the adsorption affinity on the response
curve. The response curves of the nonlinear systems are obtained
from the numerical solution, and those of the linear system are ob-
tained from the analytical solution. As the value of bC0 decreases,
the response curve of the nonlinear model approaches to that of the
corresponding linear model. The curve for bC0=0.001 nearly coin-
cides with the response curve of the linear model, which is obtained
from the analytical solution of Eq. (7). This coincidence suggests
that the accuracy of the numerical calculation is excellent.

Fig. 2. Asymptotic behavior of the solution of the nonlinear CMF
model (σσσσ=0, ββββ=10, ξξξξ=1, ΩΩΩΩ=0.1, bC0=1): (a) Early time
asymptote, (b) Late time asymptote.

Fig. 3. Effect of the adsorption affinity bC0 on the response of the
nonlinear CMF model (σσσσ=0, ββββ=10, ξξξξ=1000, ΩΩΩΩ=0.1).

Fig. 4. Effect of the external film resistance parameter ξξξξ on the
response of the linear CMF model (σσσσ=0, ββββ=1000).

Fig. 5. Effect of the external film resistance parameter ξξξξ on the re-
sponse of the nonlinear CMF model (σσσσ=0, ββββ=1000, ΩΩΩΩ=0.1,
bC0=1).
Korean J. Chem. Eng.(Vol. 19, No. 6)
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Figs. 4 and 5 show the effect of the film resistance parameter ξ
on the response for the linear CMF and nonlinear CMF models,
respectively. In a nonlinear CMF model as well as a linear CMF
model the slope of the asymptote is independent of the film resis-
tance parameter, but the intercept is a strong function of the film
resistance parameter when ξ<100. Hence, we can extract the equi-
librium parameters (e.g., adsorption affinity) from the slope and the
dynamic parameters (i.e., De and kf) from the intercept. To separate
one of the dynamic parameters from another, experiments of dif-
ferent particle sizes should be required. The straight lines starting
from the origin in Fig. 5 are the early time asymptote of the quasi-
equilibrium solutions, which is independent of ξ. This asymptote is
included in Fig. 5 to visualize the asymptotic behavior of the actual
response of the model.

CONCLUSIONS

In the CMF method, a constant flow of adsorbate is introduced
in a pre-evacuated adsorption reservoir. The response of the reser-
voir concentration is monitored as a function of time to extract equi-
librium and dynamic parameters such as the adsorption equilibrium
constant and the effective diffusivity.

In the present study, the exact analytical solution of an linear CMF
model is presented to account for the external film resistance. As
time increases, the solution approaches to a straight line, the inter-
cept of which is a function of dynamic parameters such as effec-
tive diffusivity and film mass transfer coefficient and the slope is a
function of the equilibrium parameter only. Experiments of differ-
ent particle sizes should be required to separate one of dynamic pa-
rameter from another.

A numerical solution using orthogonal collocation is presented
to simulate the nonlinear CMF model with the Langmuir isotherm.
As a result of simulation, it is shown that the response of the non-
linear CMF model as well as the linear CMF model approaches to
a straight line as time increases.
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NOMENCLATURE

b : Langmuir isotherm parameter, defined in Eq. (2b)
Cb : concentration in the fluid phase [mol/cm3]
C0 : reference concentration, on which dimensionless concen-

tration is based [mol/cm3]
Cs : concentration in the fluid phase at the particle surface [mol/

cm3]
Cµ : concentration in the particle phase [mol/cm3]
Cµ0 : reference concentration, defined in Table 1 [mol/cm3]
Cµs : Langmuir isotherm parameter, defined in Eq. (2b) [mol/cm3]
De : effective diffusivity, defined by Eq. (1a) [cm2/s]
F(s) : function of s, defined by Eqs. (6)
kf : external film mass transfer coefficient, defined by Eq. (2d)

[cm/s]
K : dimensionless Henry constant of the linear isotherm, de-

fined by Eq. (2a)
N : number of interior collocation points in radial domain

: molar flow rate of adsorbate into reservoir [mol/sec]
r : radial variable within the particle [cm]
R : equivalent radius of the particle [m]
s : laplace domain variable [s−1]
t : time variable [s]
V, Vµ : volume of free space and particles within the reservoir, 

spectively [cm3]
x : dimensionless radial variable within the particle, define

in Table 1
yb : dimensionless concentration in the fluid phase, defined

Table 1
ys : dimensionless concentration in the fluid phase at the p

ticle surface, defined in Table 1
yµ : dimensionless concentration in the particle phase at the 

ticle surface, defined in Table 1
<yµ> : mean value of yµ
yµs : dimensionless Langmuir isotherm parameter, defined

Table 1

Greek Letters
β : dimensionless distribution parameter, defined in Table
λ : independent variable of transcendental equation for eig

values, defined in Eqs. (8)
λn : the n-th eigenvalue, defined in Eq. (7)
σ : shape factor of macroparticle (0 for slab, 1 for cylinder a

2 for sphere)
τ : dimensionless time variable, defined in Table 1
ξ : dimensionless film resistance parameter, defined in Tab
Ω : dimensionless inlet molar flow rate parameter, defined

Table 1

Mathematical Functions
In : modified Bessel function of the first kind of order n
Jn : bessel function of the first kind of order n
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