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Abstract—The constant molar flow (CMF) method has been successfully applied to measure equilibrium and
dynamic parameters in porous adsorbent particles. However, the application of this method is confined to a linear sys-
tem without the external film resistance. The aim of the present study is two-fold: to derive the exact analytical solution
of the linear CMF model with the external film resistance and to extend the theory of the CMF model to the nonlinear
system. As time becomes sufficiently large, the solution of the linear CMF model asymptotes to a straight line, of which
the slope is a function of the equilibrium parameters only and the intercept is a function of the dynamic parameters
such as the effective diffusivity and the external film mass transfer coefficient. On the contrary, the solution of the non-
linear CMF model has two asymptotes: the early time asymptote and the late time asymptote. Numerical analysis using
the orthogonal collocation in the radial domain of the particle phase is also used to interpret the behavior of the non-
linear CMF model.
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INTRODUCTION tem with the external film resistance will be derived. A numerical
solution using the orthogonal collocation in the radial domain within
Several techniques have been proposed for measuring the effetiie particle phase is also used to interpret the behavior of the non-
tive diffusivity in porous particles. The microbalance method [Gray linear CMF model.
and Do, 1991], the diffusion cell method [Dogu and Smith, 1976],
the chromatography method [Schneider and Smith, 1968], the fre- MATHEMATICAL MODEL
guency response method [Yasuda, 1982; Park et al., 2000, 2001],
the differential adsorption bed method [Do et al., 1991], the zero The following assumptions are made to formulate the CMF mod-
length column method [Eic and Ruthven, 1988] are used for thisel [Park and Do, 1996]:
purpose. Each of these methods has advantages and disadvantages
or limitations [Park et al., 1996]. (1) ideal mixing in the reservoir
As an alternative technique, the constant molar flow (CMF) meth-  (2) local adsorption equilibrium at the particle surface
od has been successfully applied to measure equilibrium and dy- (3) homogeneous patrticle diffusion within the particle
namic parameters in porous particles. The CMF method was first (4) isothermal condition
proposed by Do [1995]. Park and Do [1996] extended the theory (5) constant effective diffusivity
of the CMF method to systems with bidisperse porous particles. (6) zero initial concentrations in the reservoir and in the particle.
Do and co-workers [Prasetyo and Do, 1998, 1999; Do et al., 2000]
applied this technique to measure the effective diffusivity of several The mathematical formulation based on the above assumptions
hydrocarbons in activated carbon particles. Do and Do [2001] comis as follows [Do, 1995; Park and Do, 1996]:
pared the effective diffusivity obtained from the CMF method to
the effective diffusivity from the differential adsorption bed and the  Intraparticle Mass Balance
differential permeation methods.

In the CMF method, a constant flow of adsorbate is introduced %‘-’ =De%(%%"%ﬂ% (1a)
in a pre-evacuated adsorption reservoir. The pressure of the reser- r ac
voir is monitored as a function of time and then analyzed to extract at r=0, # =0 (1b)
equilibrium and dynamic parameters such as the adsorption equi-
librium constant and the effective diffusivity. Isothermal condition  at r=R, [ e%(—ﬂ =k(C, —C,) (1c)
is assumed in this method. However, the application of this method TR

is confined to a linear system without external film resistance. Thewhere G is the concentration in the particlg, i€ the concentra-
aim of the present study is to extend the CMF method to accountion in the reservoir outside the particlesjsGhe concentration in

for the external film resistance. The exact solution for the linear systhe gas phase at particle surfacgsihe effective diffusivity, is

the external mass transfer coefficients the geometric factor of
To whom correspondence should be addressed. particle (O for slab, 1 for cylinder and 2 for sphere) and r is the co-
E-mail: ispark@kyungnam.ac.kr ordinate variable of particle. Note that the original boundary condi-
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tion at the particle surface of Do [1995] (i.e., at r=R5KLC,) is
replaced by Eq. (1c) to account for the external film resistance.

Mass Balance around the Reservair

vdd—ctﬂ +vud—i?—m=|§|; EC,,D:@?H) 1°C,dr (1d)

where V is the volume of reservoir outside particless\the vol-

1015
att=0, %=0, y,=0 (3e)
Adsorption Isotherm:
for the linear CMF model Yibe=1=Ys (4a)
for the nonlinear CMF model yu|x=1:(i%g§ys (4b)

We note that the Langmuir isotherm of Eq. (4b) reduces to the linear

ume of particlesN is the constant molar flow-rate into reservoir, tic ;s arm of Eq. (4a) when b&1.

is the time variable, and R is the particle radius.

Initial Conditions :

at t=0, G=0, G=0 (19
Equilibrium at the Particle Surface:
for the linear CMF modeC,, -,=KC; (2a)

for the nonlinear CMF model with the Langmuir isotherm

c _C,bC,

r=R_l+sz (Zb)

ANALYTICAL SOLUTION OF THE LINEAR
CMF MODEL

Egs. (3a)-(3e) and Eq. (4a) give a set of linear equations, which

can be solved by the Laplace transform technique.

The solution in the Laplace domain can be obtained as:

Yoo 1
Q "S[IBr(9] ©)

In Eq. (2a) K is Henry constant for the linear isotherm, and in Eq.where the function F(s) is defined as

(2b) G, and b are the Langmuir isotherm parameters.

NONDIMENSIONALIZATION OF THE MODEL

With the dimensionless variables and parameters defined in Table

1, the model is rewritten in a dimensionless form as follows:
Intraparticle Mass Balance

a_yE:E.’Z_yH +9%D

ot [y xoxO (3a)
- Yy _

atx=Q 52 =0 (3b)
_ .l _gf, -

a1 32 =ty (39)

Mass Balance around the Reservair

dy, , ,d0,0_ o

d_Tb +|37TL =Q ¥.[F(o +l)J:x Yy, dx (3d)

Initial Conditions :

Table 1. Definition of dimensionless variables and parameters

:9’- :95- X:L- -[:D_et
yh Co, s Co, R: R2
':kfR- :&
Bi D. Yu Cu’

O O
for =0 F(s):% [ L %anj(:/—é% (6a)
%H?Stanl"(fs)m S
- B
_ _ 1 1,(WS) O
f =1 F(s =203 6b
o FS 3 + /%0 ul_ﬁgfsws)m o
£ g
. 1 Malscott(/3-1
foro=2 F(9 =34 %(60)

Eﬁ%[fscotr(f y-ug S

By taking the inverse transform of Eq. (5) using the method of re-
sidues, the analytical solution for the reservoir concentration can
be obtained as follows:

-1 1 B 0+30
A R TETi

-2(c +1)B§ - EX[X_)\ﬁT)
n=1 go-— 2 2
A g i
A2

@)

n|

+(o+ DB g+ 0+ 1

where the eigenvalués of the infinite series are obtained by the

where Gis a reference concentration ang i€ defined as
C.0=KC, for linear isotherm
Cuw :(1_:%; for Langmuir isotherm
= V€
v Oc, 0
Bi
C./'Co

Distribution parametef

Film resistance parametér=

2
Inlet molar flow rate parameté&? =LDE
VCs/N

foro=1

foro=2

following transcendental equations:

2
foro=0 1+B%l—)\—m =0
0

pz0 A (8a)

g
30 0
30

g 1
1+2————
A
+ gL\

_ N ml-Acofh_
l+3|3% ﬁm X D_O

(8b)

(8c)
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Note that the analytical solution given by Eq. (7) reduces to the soluef the asymptote of the model. For the linear CMF model, the slope

tion of Do [1995] wherg is infinity. of the asymptote is the same as the slope of the quasi-equilibrium
solution. For the quasi-equilibrium solution of the nonlinear CMF
NUMERICAL SOLUTION model, the following asymptotic equations for the early time and

for the late time can be obtained:
For the nonlinear CMF model, the set of governing equations

Egs. (3a)-(3e), (4b) are nonlinear partial differential equations, which  Yx(1) -1 for T<<T, (12a)

are solved by the collocation analysis in the radial domain within < leauibrim 1+B(1+ bG)

the particle. YAU) = - L*B(1+ bG) for T>>1 (12b)
Selecting N interior collocation points for the radial domain within Q |.quitirivm bGQ :

the particle, N ordinary differential equations (ODES) of the initial . ) ) o

value type can be obtained [Villadsen and Michelsen, 1978]. Thes¥/Neret. is defined as the time for m=0, which is given by
N ODEs and Eqg. (3d), together with the initial condition of Eq. (3e), _1+B(1+ bC)

make a set of (N+1) ODEs of the initial value type to be solved T T bCQ 13)
numerically. Eight interior collocation points (i.e., N=8) for the radial

domain are used. The built-in function “ODE15S.M” of MATLAB  Thus, the asymptote of the nonlinear CMF model is

is used as the integration routine to solve the initial value problem
fth led Early time asymptoteyb(T) :;T tc, for<t, (14a)
of the (N+1) coupled ODEs. Q  1+B(1*bGy)’ & B
We note that the Langmuir isotherm of Eq. (4b) reduces to the . vo(1)
linear isotherm of Eq. (4a) when €1. Thus, the numerical solu- ~ Late time asymptote:=~= =T *c, for 1>, (14b)
tion of the nonlinear model should reduce to the solution of the linear ] ]
model when bg<1. where the intercepts of the asymptotes (,&and ¢) for the non-
linear CMF model could not be determined analytically because
ASYMPTOTIC BEHAVIOR of the nonlinearity of the model. However, the information of asym-

ptotes for the quasi-equilibrium solution should be important for

When time is large enough, the solution of the linear CMF modeithe nonlinear CMF model to correlate the gxperimental data. Typi-
approaches a straight line (i.e., asymptote), the slope of which i§al values of parameters of the CMF experiment [Prasetyo and Do,
dependent of only, but the intercept is a strong functiorfchs ~ 1988] are=10,Q=0.001-10. Thus, we obtai=1-100 (by taking

we can see in Eq. (7). bG=1) in order of magnitude calculation.
As a matter of fact, a quasi-equilibrium condition prevails in the
adsorption system after long time of operation of the CMF semi- SIMULATION OF THE MODEL

batch adsorber. This quasi-equilibrium condition can be achieved

at any time of the course of the adsorption if the inlet molar flow For the simulation of the model, we use the representative values
rate into the adsorber is slow enough. In such a condition the nunff $=10 and2=0.1. To show the effects of adsorption affinity and
ber of moles fed into the adsorber is equal to the total number din€ external film resistance, we use some different values,of bC
moles in the reservoir and in the particles, and the concentrationd-€- P&=1, 0.1, and 0.001) ar(i.e.,£=1, 10, 100, 1000).

in the two phases are in equilibrium to each other [Do and Do, 2001]. Fig- 1 shows the solutions of the linear CMF mode for the three
Thus, the overall mass balance at the quasi-equilibrium is

Qt =y, *By, ©) 0.12
where Y, is the equilibrium concentration in the particle, which is g ; : c=f1J
. - o=
given by 01 (3):6=2 ()
for linear isotherny, =y, (10a) 008 | @
o - _(1+bCy)y,
for Langmuir isotherny,, (10b)
1+bc0yh e / 3
o _ ' =, 006} e @
Substituting Egs. (10) into Eqg. (9), we obtain = Asymptote .~ -
/ ,
for linear isotherm 004 | / /
Yu(T) :LT (11a)
Q equilibrium 1+|3 0.02 r ’/
for Langmuir isotherm
¥u(T) _IM*m+4bGUQ. 1+B(1+bCy) ~bC,t % 02 04 0s 08 1
Q equilibrium 2bCD ’ Q T
(11b) ) )
Fig. 1. Effect of the particle shape factoio on the response of the
This quasi-equilibrium solution gives information about the slope linear CMF model (3=10,&=1000).
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06r T
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Fig. 2. Asymptotic behavior of the solution of the nonlinear CMF
model (©=0, =10, &=1, Q=0.1, bG=1): (a) Early time
asymptote, (b) Late time asymptote. Fig

different particle shapes, that is, slab, cylinder, and sphere. The slopes

of the asymptotes are all the same, but the intercepts are differe
from one another. The response time to reach the long time solt
tion is large for slab particles and small for spherical particles. The
response time for cylindrical particles lies between those of slat
and spherical particles.

Fig. 2 shows the existence of the early time asymptote and th
late time asymptote for the nonlinear CMF model. Since the collec
tion of data in the typical CMF experiment are completed in the early
time (e.g., in the regiorx 1), the practically useful asymptote should
be the early time asymptote rather than the late time asymptote

Fig. 3 shows the effect of the adsorption affinity on the response
curve. The response curves of the nonlinear systems are obtain
from the numerical solution, and those of the linear system are ok
tained from the analytical solution. As the value of B€treases,
the response curve of the nonlinear model approaches to that of tt
corresponding linear model. The curve fogC001 nearly coin-

cides with the response curve of the linear model, which is obtaineg;

from the analytical solution of Eq. (7). This coincidence suggests
that the accuracy of the numerical calculation is excellent.

¥,/ Q
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0.12 T T T
(1a) : Analytical for Linear model (1a), (1b), (1c)
(1b) : Numerical for Linear model ’ ’
04 F (1c) : Nonlinear model (bC, = 0.001) ]
' (2) :Nonlinear model (bCq = 0.1)
(3) : Nonlinear model (bCy = 1)
2
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3. Effect of the adsorption affinity bG, on the response of the
nonlinear CMF model (0=0, f=10,&=1000,Q=0.1).

0.24 T i T
(1):e=1
0.2+ 2): §,=10
(3):=100
(4):&£=1000 o B
0.16

012 |

0.08

4. Effect of the external film resistance paramete on the
response of the linear CMF model@=0, 3=1000).

0.18 e
(1):&=1
015 (2):£=10 M
(3):£=100 //
(4):&=1000 o
0.12 — 1
0.09 i
/
0.06
J—
/%
0.03
Asymptote at quaS|-equ|I|br|um
//
T 1 i L L
0 0.2 04 0.6 0.8 1

T

g. 5. Effect of the external film resistance parameteg on the re-

sponse of the nonlinear CMF modeld=0, 3=1000,Q2=0.1,
bC,=1).
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Figs. 4 and 5 show the effect of the film resistance parafeter fined by Eq. (2a)
on the response for the linear CMF and nonlinear CMF modelsN  : number of interior collocation points in radial domain
respectively. In a nonlinear CMF model as well as a linear CMFN  : molar flow rate of adsorbate into reservoir [mol/sec]

model the slope of the asymptote is independent of the film resisr : radial variable within the particle [cm]
tance parameter, but the intercept is a strong function of the filmR  : equivalent radius of the particle [m]
resistance parameter whenl00. Hence, we can extract the equi- s : laplace domain variable {b
librium parameters (e.g., adsorption affinity) from the slope and thet : time variable [s]
dynamic parameters (i.e., Bnd ) from the intercept. To separate V, V,,: volume of free space and particles within the reservoir, re-
one of the dynamic parameters from another, experiments of dif- spectively [cr]
ferent particle sizes should be required. The straight lines starting : dimensionless radial variable within the particle, defined
from the origin in Fig. 5 are the early time asymptote of the quasi- in Table 1
equilibrium solutions, which is independen€ofThis asymptoteis y, :dimensionless concentration in the fluid phase, defined in
included in Fig. 5 to visualize the asymptotic behavior of the actual Table 1
response of the model. Yy, :dimensionless concentration in the fluid phase at the par-
ticle surface, defined in Table 1
CONCLUSIONS y, :dimensionless concentration in the particle phase at the par-

ticle surface, defined in Table 1
In the CMF method, a constant flow of adsorbate is introduced<y,> : mean value of y
in a pre-evacuated adsorption reservoir. The response of the resgt; : dimensionless Langmuir isotherm parameter, defined in

Voir concentration is monitored as a function of time to extract equi- Table 1
librium and dynamic parameters such as the adsorption equilibrium
constant and the effective diffusivity. Greek Letters

In the present study, the exact analytical solution of an linear CMH3  : dimensionless distribution parameter, defined in Table 1
model is presented to account for the external film resistance. A3 : independent variable of transcendental equation for eigen-
time increases, the solution approaches to a straight line, the inter- values, defined in Egs. (8)

cept of which is a function of dynamic parameters such as effecA, :then-th eigenvalue, defined in Eq. (7)
tive diffusivity and film mass transfer coefficient and the slopeisac  : shape factor of macroparticle (O for slab, 1 for cylinder and

function of the equilibrium parameter only. Experiments of differ- 2 for sphere)

ent particle sizes should be required to separate one of dynamic pa- : dimensionless time variable, defined in Table 1

rameter from another. 3 : dimensionless film resistance parameter, defined in Table 1
A numerical solution using orthogonal collocation is presentedQ  : dimensionless inlet molar flow rate parameter, defined in

to simulate the nonlinear CMF model with the Langmuir isotherm. Table 1

As a result of simulation, it is shown that the response of the non-

inear CMF model as well as the linear CMF model approaches tdVlathematical Functions

a straight line as time increases. I, :modified Bessel function of the first kind of order
J,  :bessel function of the first kind of order
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