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Abstract−When a horizontal porous layer saturated with a viscoelastic liquid is heated from below, the onset con-
ditions of thermal convection are found to be functions of Darcy-Rayleigh number, wave number, and viscoelastic pro-
perties. In this study, the linear stability was studied analytically in order to investigate the viscoelastic effects of
saturated liquids on the onset conditions in connection with oscillatory instabilities at the threshold of stationary
convection. It is suggested that the resulting oscillatory instabilities occur at lower values of Darcy-Rayleigh number
than the critical value for the stationary convection. From the occurrence of oscillatory instabilities of viscoelastic liquid,
it is expected that the periodic motion should be replaced by stationary modes in a horizontal porous layer.
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INTRODUCTION

Buoyancy-driven convection in porous media has recently re-
ceived much attention in connection with engineering applications.
It is well known that the onset of convective motion in a fluid-sat-
urated porous medium is governed by the Darcy-Rayleigh number
which represents the buoyancy effects. Therefore, proper under-
standing of subsequent convective behavior is important for control-
ling many processes such as geothermal reservoirs, catalytic packed
bed, filtration, enhanced oil recovery, polymer filament package and
composite impregnations.

Horton and Rogers [1945] and Lapwood [1948] were the first
to analyze the onset condition of convective instability in a hori-
zontal Darcian-porous layer for a destabilizing temperature gradi-
ent. In their works the critical value of the Darcy-Rayleigh number
on the stationary convection was obtained by using linear stability
theory under the principle of exchange of stabilities. Most of these
instabilities manifested themselves as stationary cellular convections.
Theoretical results were elucidated by the celebrated works of Com-
barnous and Bories [1975], Cheng [1978], and Katto and Masuoka
[1967]. Combarnous and Bories [1975] noted that the convective
motion in a stationary mode became oscillatory with increasing val-
ues of the Darcy-Rayleigh number beyond six or seven times larger
values of its critical one. On that occasion, Caltagirone [1975] per-
formed a stability analysis numerically and predicted the onset value
of oscillatory convection in a confined porous cell. Horne and O’Sul-
livan [1974, 1978] extensively studied the characteristics of oscilla-
tory convection in porous media in connection with the dominant
circulation originating from steady multi-cellular patterns and the
dependence of the Darcy-Rayleigh number on the frequency of os-
cillatory flow. The occurrence of oscillatory instabilities will be ex-
pected at the threshold stationary convection in a horizontal porous

layer.
It is important to note that the above-mentioned studies focused

on Newtonian fluids saturated in Darcian porous media. However,
it is now widely realized that non-Newtonian fluids are applicable
in various situations of polymer processing, and the critical condi-
tions for their onsets of thermal convection in porous media must
include the viscoelastic terms as well as the Darcy-Rayleigh num-
ber. Viscoelastic fluids like polymeric liquids are expected to show
markedly different behaviors of evolving convective instabilities.
As the elasticity of viscoelastic fluids allows the periodic instability
to be sustained in addition to the stationary modes, viscoelastic fluids
will exhibit an oscillatory convection at the threshold of stationary
mode. For the typical Benard-Rayleigh convection of a homogenous
fluid, Vest and Arpaci [1969] reported overstabilities of horizontal
layer of Maxwellian fluid heated from below. Kolkka and Ierley
[1987] extended these overstabilities into the Oldroyd-B fluid using
linear stability theory. They suggested that buoyancy forces induce
the periodic instability before the exchange of stabilities is kept sta-
tionary. Recently, Lee et al. [1993] analyzed the overstability of a
Benard-Marangoni problem in the viscoelastic fluid layer heated
from below. The objective of the present work is to address a sta-
bility analysis in an analytical manner and examine the effect of
viscoelastic properties on oscillatory behavior of convective insta-
bilities in a horizontal porous layer heated from below. This study
will be promising in designing and operating many processes of
non-Newtonian liquids in porous materials involving natural con-
vection that cannot be explained for the stationary modes.

MATHEMATICAL FORMULATIONS

We consider an infinite horizontal porous layer saturated with
viscoelastic fluids. The porous layer of vertical depth L is confined
with two rigid boundaries. The bottom boundary is heated slowly
with a constant temperature T1 and upper boundary temperature is
kept at a lower temperature T2 with fixed ∆T(=T1−T2). It is assumed
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that, at quiescent state, the temperature varies linearly across the
depth. When the magnitude of ∆T becomes larger than the critical
one, thermal convection will set in due buoyancy forces. Upon the
onset of thermal convection, the governing equations under the Bous-
sinesq approximation are written as in a rectangular coordinate sys-
tem with z pointing upward:

(1)

(2)

(3)

(4)

where , P, and T are the velocity vector, pressure and temperature
which are all local volume-averaged, respectively [Slattery, 1967].
For a saturated liquid, ε, λ, µ, ρ and β denote the relaxation time,
retardation time, viscosity, density and thermal expansion coefficient,
respectively. And also K is the permeability of porous media, α is
the effective thermal diffusivity, and g is the gravitational accelera-
tion. The constitutive equation represents the modified Darcy equa-
tion employing the viscoelastic effects. For λ>ε, the approach of ε
value to λ makes the viscoelastic liquid more and more exactly a
Newtonian one. This type of constitutive equation for the Darcian
porous layer was suggested by Alishaev and Mirzadjanzade [1975].

In this study we examine the stability condition with a linear basic
temperature of temperature difference ∆T by employing linear sta-
bility theory. The current equations may be adjusted dimensionless
by employing L, L2/α, α/L and ∆T as the length, time, velocity and
temperature scales, respectively. The linear equations for disturbances
of velocity and temperature are reformed in terms of the vertical
velocity disturbance w*, the temperature disturbance θ*, and the time
τ, as follows: 

(5)

(6)

where RaD represents the Darcy-Rayleigh number.  and  are the
dimensionless forms of ε and λ, respectively. These parameters, to
characterize the present system, are defined as follows:

, ,

where ν is the kinematic viscosity of liquid. The dimensionless re-
laxation time  means the usual Deborah number. The appropriate
boundary conditions for (5) and (6) are given by

at z=0, 1 (7)

Eqs. (5) and (6) together with boundary conditions (7) simplify to
a linear, fourth-order ordinary differential equation for the tempera-
ture disturbance, which can be readily analyzed.

STABILITY ANALYSIS

Disturbances are considered as the normal mode expansion of

time-dependent periodic cells in a horizontal plane as follows:

(8)

(9)

where i is the imaginary number. ax and ay are the dimensionless wave
numbers in the x-y horizontal plane. The temporal rate of change
of disturbances σ can be decomposed into a real part and an imag-
inary one such as σ=σr+iσi. While the system with  σr<0 is always
stable, the condition for σr>0 means that the system will become
unstable because of the temporal growth of disturbances. When σ
equals 0, i.e. σr=σi=0, the system shows marginally stable state under
the principle of exchange of stabilities. The minimum value of the
Darcy-Rayleigh numbers for the marginal condition is regarded as
the critical Darcy-Rayleigh number. Its value with the critical wave
number for the stationary behavior of thermal convection in a hor-
izontal porous layer is well known as

RaD,c=4π2 with ac=π (10)

where a ( ) is the horizontal wave number. This criterion
corresponds to the critical condition for the onset of thermal con-
vection in a horizontal porous layer saturated with Newtonian fluids.

In addition to the exchange of stabilities, however, periodic in-
stabilities of viscoelastic liquids can take place even with σr=0. The
stability equations for these periodic instabilities can be obtained
by introducing Eqs. (8) and (9) into Eqs. (5)-(7), as follows:

(11)

where D denote the differential operator d/dz. As  and ç0, the
foregoing equation approaches the classical Darcy-Rayleigh prob-
lem. The boundary conditions are reduced as

θ=D2θ=0 at z=0, 1 (12)

Both boundaries are isothermal and free of viscous stresses in Darcy’s
law.

The resolution of the governing Eq. (11) with boundary condi-
tions of Eq. (12) can be regarded as the usual eigenvalue problem
involving eigen parameters of RaD, a, , σ, and  as parameters. In
order to solve the present differential equation of (11) with bound-
ary conditions (12), the required solution is assumed as

θ=θ0sin(nπz) for n=1, 2, 3, ... (13)

where θ0 denotes the integration constant subject to the boundary
conditions. Substituting this form of solution into Eq. (11) results
in the following characteristic equation:

(14)

This algebraic equation can be rearranged into the form of the 2nd
order polynomials of σ as

(15)

This equation is denoted symbolically as A1σ2+A2σ+A3=0. From
the elementary theory of algebraic equations, it is apparent that a
marginally oscillatory mode (i.e. σ=iσi) occurs at the following con-
ditions:

A1A3>0, A2=0 (16)
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where the coefficients of Ai involves the eigen parameters. The
first condition in the above equation implies that the critical state
for the onset of stationary convection has not been attained yet,
which means that stationary convection has not been initiated.

RESULTS AND DISCUSSION

With the physical meaning of the first condition of Eq. (16), the
second one yields the expression for the Darcy-Rayleigh numbers as
a function of eigen parameters at which marginally oscillatory modes
exist:

(17)

The marginal stability curves for the oscillatory modes are shown
in Fig. 1, where our consideration has been confined to the lowest-
order mode, n=1. As the marginal stability curve for =  is almost
the same as the one for a Darcian porous layer saturated with gen-
eral Newtonian fluids, the convection will mark stationary mode in
the region above the marginal stability curve for = . Therefore,
its minimum value of critical condition equals to RaD,c=4π2 which is
for the onset of stationary convection. For a larger value of Darcy-
Rayleigh number than RaD, c=4π2, the convective motion becomes
much more stable. It is impressive that all marginal stability curves
for the oscillatory convection are located below the Newtonian fluid
case for = . This means, for example, that the oscillatory convec-
tion for a porous layer saturated with a viscoelastic liquid of =1
and =1.5, is seen to start at RaD=27.6 instead of RaD=4π2. It is
interesting that the criteria for the overstability are dependent on the
values of viscoelastic properties of saturated liquids. These criteria
are shown in Fig. 2, where the characteristic curve is almost linear.
It is expected that the overstability may occur for the case of larger
value of  than that of . As the oscillations are first periodic in na-
ture and then become random with a decrease in  for a fixed , an
increase in  for fixed  will result in a reversal of the random pat-

tern to a periodic oscillation.
The critical wave number, which can be obtained by minimiz-

ing RaD with respect to a on each curve, is given by

on (18)

The critical wave number of the oscillatory convection is always
larger than that of stationary convection in a porous layer saturated
with a Newtonian fluid. It is interesting to note that the wave num-
ber is independent of the relaxation time, as RaD  is kept constant.
By applying Eq. (18) into (17) for n=1, the critical Darcy-Rayleigh
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Fig. 1. Marginal stability curves for =1.ε
Fig. 2. Regions of overstability and stationary convection for var-

ious  and .ε λ

Fig. 3. Critical Darcy-Rayleigh numbers for oscillatory and sta-
tionary convections.
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number for the onset of oscillatory convection is now obtained as

(19)

The effect of  and  on critical Darcy-Rayleigh numbers for the
onset of oscillatory convection can be seen in Fig. 3. It is clear that
the onset of oscillations is delayed in terms of RaD, c with an increase
in  and a decrease in . This is due to the stabilizing effects of high

 and low , which are related with viscosity and elasticity of vis-
coelastic fluids, respectively. This may be a result of the relative
increase of buoyancy and inertia terms in Eq. (5). On the other hand,
the amplitude of oscillation will decrease and the convective flow
becomes stable with reduction in .

The effect of  and  on the periods of oscillations can be in-
vestigated if we present the following expression of the dimension-
less frequency for marginally oscillatory modes in terms of Eqs.
(18) and (19):

(20)

The critical value of frequency for neutrally oscillatory mode is found
to be in Fig. 4 for several values of  and . As the oscillatory
convection has a strong periodic nature at the onset, it is thought
that the disturbances are of a single-frequency, sinusoidal character.
Figure shows clearly that the frequency of oscillation decreases as
the relaxation time increases. As the line for ç0  is the mini-
mum bound for oscillatory convection, curves starting from the min-
imum bound line represent the properties of the frequency of os-
cillation. For oscillatory convection, each curve for a specific value
of  has its corresponding maximum value of . But the values for

the frequency of oscillation for several values of  approach a spe-
cific value as ç0. Therefore, it is thought that the period of os-
cillation increases up to 330 when the Darcy-Rayleigh number in-
creases to RaD=4π2. Another interesting aspect of the frequency is
that the concept of Howard instability leads to periodic modulations
of the depth of the thermal boundary layers responsible for the os-
cillation [Howard, 1964] Therefore, the thermal boundary layer is
considered to play an important role in transient problems of not only
stationary convection [Yoon and Choi, 1989], but oscillatory one
for a horizontal porous layer heated from below. Since viscoelastic
fluids exhibit markedly different stability properties as a result of pos-
sessing some elasticity, the present statement will need to be veri-
fied in relation to refined experimental work and numerical calcu-
lations.

CONCLUSION

When the horizontal porous layers saturated with viscoelastic
liquids are heated from below, the critical conditions to mark the
onset of buoyancy-driven convection have been investigated at the
convective threshold in order to exhibit an oscillatory instability.
The results obtained from the linear stability theory indicate that the
elasticity of saturated liquid is a destabilizing factor in the present
thermal convection. Analytically, it appears that oscillatory convec-
tion may occur at a lower critical Darcy-Rayleigh number than does
stationary convection. Furthermore the characteristics of the critical
wave number and the frequency of oscillation have been discussed
in connection with stationary convection. Even though there should
be a limitation of Alisaev and Mirzadjanzade’s model, this study
will be helpful to understand the proper engineering situations, and
also to configure systematic studies for experimental and numerical
concerns.
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NOMENCLATURE

a : dimensionless horizontal wave number, 
D : differential operator [d/dz]
g : gravitational acceleration [m/s2]
K : permeability [m2]

: unit vector in vertical direction
L : depth of porous layer [m]
P : pressure [Pa]
RaD : Darcy-Rayleigh number, KgβL∆T/αν
T : temperature [oC]
t : time [s]

: velocity vector [m/s]
w : dimensionless velocity component in vertical direction
x, y, z : dimensionless Cartesian coordinate

Greek Letters
α : effective thermal diffusivity [m2/s]
β : thermal expansion coefficient [oC−1]
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Fig. 4. Variations of critical values of frequency for neutrally oscil-
latory mole.
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ε : relaxation time [s]
θ : dimensionless temperature
λ : retardation time [s]
µ : dynamic viscosity [Pa·s]
ν : kinematic viscosity [m2/s]
ρ : density [kg/m3]
σ : dimensionless temporal growth rate
τ : dimensionless time

Subscripts
c : critical state
0 : basic state
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