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Abstract−A tuning method of multiloop PID controllers is developed based on the generalized IMC PID tuning rule
by Lee et al. (1998a). To extend the SISO PID tuning method to MIMO systems, a new tuning criterion is proposed.
The criterion is based on the closed loop frequency response method to meet desired performance and robustness as
close as possible. Examples for 2×2, 3×3 and 4×4 systems are used to illustrate the proposed method. The results show
that the proposed method is superior to conventional methods such as the BLT tuning method.
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INTRODUCTION

Most chemical processes are basically MIMO systems. MIMO
systems show special characteristics, namely, process interactions:
each manipulated variable can affect all the controlled variables.
The multiloop diagonal controller structure has been widely used
for the multivariable processes because it usually provides quite
adequate performance for process control applications while the
structure is most simple, failure tolerant, and easy to understand
[Grosdidier and Morari, 1987]. In order to solve the multiloop con-
trol problem, the best pairings of controlled and manipulated vari-
ables should first be determined by interaction analysis [Zhu and
Jutan, 1996]. Once the control structure is fixed, the control perfor-
mance is then mainly determined by the tuning of each multiloop
PID controller.

Most multiloop PID controller tuning methods [Luyben, 1986;
Grosdidier and Morari, 1987; Skogestad and Morari, 1989; Basu-
aldo and Marchetti, 1990] currently available are similar in that they
use the single loop tuning rules to obtain starting values for the in-
dividual controllers and then detune the individual loops to reserve
stability of the overall system. For example, in the biggest log mod-
ulus tuning (BLT) method [Luyben, 1986], Zielgler-Nichols set-
ting is used for initial settings for the individual controllers, then
the controllers are detuned in such a way to satisfy the log modu-
lus criterion. Economou and Morari [1986] developed the Internal
Model Control (IMC) multiloop design method with the sufficient
conditions for the stable filter to guarantee stability. However, it is
known that the conditions are often too conservative and the result-
ing controllers give poor load disturbance response in certain situa-
tions [Ho et al., 1995].

In this paper, a new tuning method for the multiloop PID con-
trollers is presented. The proposed method extends the SISO PID

tuning method by Lee et al. [1998a] to the multiloop PID control-
lers. In order to consider the interaction effects by off-diagonal terms
in an optimal sense, a criterion based on the closed loop frequency
responses is presented to select a set of λ which corresponds to the
closed loop time constant of the decentralized system. With this
tuning criterion, the multiloop PID controllers can be designed to
meet desired performance and robustness as close as possible.

The contents of the paper are arranged as follows. The exten-
sion of the generalized IMC-PID tuning method to MIMO system
is given first. Next the Mp (peak magnitude ratio) tuning criterion
to select a set of tuning parameters λ is presented. Simulation results
using three representative examples for 2×2, 3×3 and 4×4 systems
from the literature are given.

THEORY

1. Extension of the Generalized IMC-PID Tuning Method
[Lee et al., 1998a] to MIMO System

Consider the n-inputs and n-outputs open loop stable multivari-
able process G with n-multiloop diagonal controllers Gc.

Gc(s)=diag[Gc1, Gc2, …, Gcn] (1)

The multiloop feedback system can be generally represented by
the block diagram in Fig. 1. The controller of the ith loop follows:

Fig. 1. Block diagram for multiloop control system.
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Ui=Gci(Yi−Ri) (2)

Here, the inputs, outputs and set points are represented by U=(U1,
U2, …, Un), Y=(Y1, Y2, …, Yn) and R=(R1, R2, …, Rn), respec-
tively. One of the simple ways to extend the IMC structure for SISO
system to the multiloop structure might consider a transfer function
matrix which includes only the diagonal elements of G(s).

(3)

The multiloop controllers in classical feedback structure are then
represented by

(4)

where Q is a diagonal matrix representing the IMC controller. Be-
cause all the matrix are diagonal forms in Eq. (4), each controller
in a loop can be designed as follows:

Let us consider the controller in the ith loop. Generally, a stable
process model of the ith row and the ith column of G matrix can
be represented as follows:

(5)

where Pmii (s) is the portion of the model inverted by the controller
(it must be a minimum phase), PA

ii(s) is the portion of the model not
inverted by the controller (it is usually a non-minimum phase, that
is, it contains dead times and/or right half plane zeros).

To give the best lest-squares response, the portion of the model
not inverted by the controller is chosen to be the all pass form as

(6)

The requirement of PAii (0)=1 is necessary for the controlled vari-
able to track its set point because this adds integral action to the con-
troller. Here, our purpose is to design the controller Gci to make the
closed loop transfer function to follow a desired closed loop response
of loop i given by

(7)

The term 1/(λis+1)
ri is an IMC filter with an adjustable time con-

stant of the ith loop, then Gci that gives the desired loop response is
given by

(8)

where Qi is the IMC controller represented by (Pm
ii (s))−1/(λis+1)

ri.
Since PAii (0) is 1, the controller Gci can be expressed with an integral
term as

Gci=f(s)/s (9)

In order to approximate the above ideal controller to a PID con-
troller, expanding Gci in a Maclaurin series in s gives

(10)

The resulting controller includes an infinite number of high-order
s terms. Among them, the first three terms correspond to the inte-
gral term, the proportional term, and the derivative term of the PID

controller, respectively. Since the controller given by Eq. (10) is
equivalent to the controller given by Eq. (8), the desired closed loop
response can be perfectly achieved when all terms in Eq. (10) are
considered. However, in practice, it is impossible to consider the
infinite number of high-order derivative terms in the controller given
by Eq. (10).

Since in the actual control situation low and middle frequencies
are much more important than high frequencies, and only the first
three terms in Eq. (10) are often sufficient to achieve the desired
closed loop performance, the controller given by Eq. (10) can be
approximated to the PID controller by using only the first three terms
(1/s, 1, s) in Eq. (10) and truncating all other high-order terms (s2,
s3, …). As a result, the controller can be approximated with the first
three terms as the standard PID controller given by

(11)

where

Kci=f '(0); τIi =f'(0)/f(0); τDi=f ''(0)/2f '(0) (12)

The above formulas are used to obtain the tuning rules as analyti-
cal functions of the process model parameters and the closed loop
time constants λ. In the specific case where the process model has
strong lead term, the derivative and/or integral time constants com-
puted from Eq. (11) can be negative values independent of the choice
of the closed loop time constant. In that case, a PID controller cas-
caded with a first or second order lag of the form 1/(αs+1) or 1/(α2s

2+
α1s+1) is recommended [Lee et al., 1998a]. To obtain a PID con-
troller cascaded by a first order lag that is Kci(1+1/τIis+τDis)/(αs+1),
we rewrite Gci as

(13)

where h(s)=1+αs.
Now, we expand the quantity f(s)h(s) in a Maclaurin series about

the origin and choose the parameter α so that the third order term
in the expansion becomes zero. The expansion of Eq. (13) then be-
comes

Gci(s)={f(0)+[f '(0)+αf(0)]s+[f ''(0)+2αf '(0)]s2/2

+[f '''(0)+3αf ''(0)]s3/6+…}/s(αs+1) (14)

and the PID parameters are

Kci=f '(0)+αf(0); τIi =Kci/f(0);

τDi=[f ''(0)+2αf '(0)]/(2Kci); α=− f '''(0)/3f''(0) (15)

By Eqs. (12) and (15), all the controllers in Gc can be designed for
general process models. PID tuning values can be chosen by se-
lecting λ, here, λ=(λ1, λ2, …, λn). As the λi decreases, the closed
loop response of loop i becomes faster or even unstable. On the other
hand, as the λi increases, the closed loop response of loop i be-
comes more sluggish or stable. Therefore, an appropriate set of λ
to compromise stability and performance in MIMO system has to
be chosen.
2. Mp Tuning Criterion for the Multiloop Controllers Tuning

The criterion considered in this paper is based on the closed loop
frequency response which obtains from the calculation of the sys-
tem output in response to a sinusoidal input. The use of frequency

G̃ s( ) = diag G11 G22 … Gnn, , ,[ ]

Gc s( ) = I  − Q s( )G̃ s( )[ ] − 1
Q s( )

Gii s( ) = Pii
m s( )Pii

A s( )

Pii
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j k,
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response has the following advantages [Seborg et al., 1989]:

• It is applicable to dynamic models of any order.
• The designer can specify the desirable closed loop response char-

acteristics.
• Information on stability margins and sensitivity characteristics

is provided.

In MIMO systems, the closed loop transfer function can be re-
presented by

H(s)=G(s)Gc(s)[I+G(s)Gc(s)]−1 (16)

The closed loop transfer function can be expressed by the follow-
ing matrix form

(17)

or

H={H ij}, i=1, …, n, j=1, …, n (18)

where Hij represents the closed loop response of the ith loop to the
set-point change in the jth loop.

The closed loop frequency response can be found by setting s=
jω in Eq. (16) and can be represented in terms of ω and λ as fol-
lows:

H(jω, λ)=G(jω)Gc(jω, λ)[I+G(jω)Gc(jω, λ)]−1 (19)

The magnitude of frequency response is called the closed loop
amplitude ratio (AR) and its maximum magnitude over the fre-
quency range is defined as Mp. The AR curve of diagonal ele-
ments should be unity to as high a frequency as possible to ensure
no offset and a rapid approach to the new steady state, while that
of off-diagonal elements should be as small as possible [Edgar et
al., 1981]. Mp is closely related to the stability and performance of
the closed loop system, and the corresponding response in the time
domain can be inferred from the value of Mp.

Here, our aim is to find a set of λ to make closed loop response
fast and stable enough. The above time domain objective can be
achieved by solving the following optimization problem in the fre-
quency domain:

(20) 

s.t. Mpii ≥Mplow

where Mpij=maxωHij; Mpij is the function of λ; Mplow is the lower
bound of diagonal Mp; w is the weighting factor for the diagonal
Mp.

Minimizing the objective function as shown in Eq. (20) makes
the process response stable and the constraints make process re-
sponse fast enough. The constraint limits are predetermined to guar-
antee a required minimum speed of process responses. Usually, a
value between 1.1 and 1.4 is selected as the lower bound of diag-
onal Mp [Harris and Mellichamp, 1985]. Since the optimization

problem consists of only one optimizing variable vector, one can
easily find the optimum λ to minimize interaction and overshoot
in the loops while all Mpii meet the constraint limits.

SIMULATION RESULTS

Simulation studies are carried out to illustrate the proposed tun-
ing method. We discuss our proposed tuning rules with 2×2 case,
3×3 case and 4×4 case from the open literatures. The results are
compared with those by the BLT method.
1. Example 1 (2×2 System)

First, the Wood and Berry (WB) column model [Luyben, 1986]
was studied.

H s( ) = 

H11H12 H1n

H21H22

Hn1 Hnn

...

...

..
.

..
....

Mpij  + w Mpii
i

∑
j i≠
∑

i
∑

λi

limmin

Table 1. Optimization results of example 1 for various parame-
ter sets in the proposed criterion

Mplow w
Loop 1 Loop 2

λ ωp Mp λ ωp Mp

1.05 0.0 0.0708 2.31 1.62 3.01 0.464 1.05
1.0 0.288 0.433 1.18 3.09 1.464 1.05
1.5 0.302 0.433 1.184 3.09 0.464 1.05

1.1 0.0 0.0647 2.31 1.65 2.84 0.500 1.10
1.0 0.276 0.464 1.20 2.91 0.464 1.10
1.5 0.239 0.464 1.19 2.89 0.464 1.10

1.15 0.0 0.0633 2.31 1.66 2.71 0.498 1.15
1.0 0.259 0.464 1.20 2.73 0.464 1.15
1.5 0.240 0.464 1.20 2.72 0.464 1.15

Table 2. Tuning results by the proposed method and the BLT meth-
od for three examples

BLT method Proposed method

WB λ - 0.276, 2.91
Kc 0.375, −0.075 1.047, −0.132
τI 8.29, 23.6 17.1, 15.2
τD - 0.374, 0.712
IAE1* 5.11, 16.8 3.42, 6.04
IAE2 3.38, 32.7 2.46, 12.1

T4 λ - 0.114, 0.214, 1.63
Kc −11.26, −3.52, −0.182−40.9, −13.5, −0.372
τI 7.09, 14.5, 15.1 67.0, 4.93, 11.8
τD - 0.305, 1.31, 0.375
IAE1 10.3, 9.71, 35.7 2.24, 1.57, 6.11
IAE2 25.8, 40.7, 148.6 3.95, 6.89, 19.6
IAE3 9.02, 12.6, 48.1 1.81, 2.66, 10.9

A1 λ - 0.629, 0.377, 0.0617, 0.894
Kc 2.28, 2.94, 1.18, 2.02 7.40, 6.75, 3.53, 3.77
τI 72.2, 7.48, 7.39, 27.8 61.7, 32.4, 16.7, 53.0
τD - 15.3, 0.364, 0.467, 4.48
IAE1 60.8, 4.27, 81.8, 74.8 22.2, 1.97, 14.7, 32.8
IAE2 67.3, 8.58, 144, 118 12.5, 4.44, 65.9, 37.6
IAE3 3.47, 0.134, 4.17, 3.20 0.957, 0.180, 2.74, 3.30
IAE4 16.0, 2.28, 41.9, 36.0 1.57, 1.02, 9.24, 12.5

*IAE1: IAE for unit step change in loop 1.
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(21)

The PID controllers of loop 1 and loop 2 for the WB model were
tuned by the proposed tuning rule. Table 1 shows the results for var-
ious sets of Mplow and w. In this study, Mplow and w are set by 1.1
and 1, respectively, for all the examples. The resulting tuning pa-
rameters are listed in Table 2. Figs. 2 and 3 show the closed loop
responses tuned by the proposed method and the BLT method both
in the frequency and time domains. In addition, the performances
of the final controller are evaluated via the IAE values of all loops
for a unit step change in each set point. The results show that the
proposed method is better than the BLT method.
2. Example 2 (3×3 System)

Tyreus case 4 (T4) [Luyben, 1986] as the 3×3 system exam-
ple was studied.

(22)

The resulting tuning parameters are listed in Table 2. The same
conclusion can be drawn as that from the above 2×2 example.

3. Example 3 (4×4 System)
Alatiqi case 1 (A1) [Luyben, 1986] as the 4×4 system example

was studied.

(23)

The resulting tuning parameters are listed in Table 2. The closed
loop responses for this system are shown in Fig. 4. The tuning pa-
rameters by the proposed method give better closed loop responses
than the BLT method. It can be seen from the figure that the pro-
posed method reduces loop interactions considerably compared with
the BLT method.

G s( ) = 

12.8e− s

16.7s + 1
---------------------

− 18.9e− 3s

21s + 1
-----------------------

6.6e− 7s

10.9s + 1
---------------------

− 19.4e− 3s

14.4s + 1
-----------------------

G s( ) = 

− 1.986e− 0.71s

66.67s + 1
------------------------------ 5.24e− 60s

400s + 1
-------------------- 5.984e− 2.24s

14.29s + 1
--------------------------

0.0204e− 0.59s

7.14s + 1( )2
-----------------------------

− 0.33e− 0.68s

2.38s + 1( )2
--------------------------- 2.38e− 0.42s

1.43s + 1( )2
---------------------------

0.374e− 7.75s

22.22s + 1
--------------------------

− 11.3e− 3.79s

21.74s + 1( )2
------------------------------

− 9.811e− 1.59s

11.36s + 1
------------------------------

G s( ) = 

4.09e− 1.3s

33s + 1( ) 8.3s + 1( )
------------------------------------------- − 6.36e− 0.2s

31.6s + 1( ) 20s + 1( )
----------------------------------------------

− 4.17e− 4s

45s + 1
----------------------- 6.93e− 1.01s

44.6s + 1
-----------------------

− 1.73e− 17s

13s + 1( )2
------------------------ 5.11e− 11s

13.3s + 1( )2
---------------------------

− 11.18e− 2.6s

43s + 1( ) 6.5s + 1( )
------------------------------------------- 14.04e− 0.02s

45s + 1( ) 10s + 1( )
-----------------------------------------

− 0.25e− 0.4s

21s + 1
------------------------- − 0.49e− 5s

22s + 1( )2
-----------------------

− 0.05e− 5s

34.5s + 1( )2
--------------------------- 1.53e− 2.8s

48s + 1
---------------------

4.61e− 1.02s

18.5s + 1
----------------------- − 5.48e− 0.5s

15s + 1
-------------------------

− 0.1e− 0.05s

31.6s + 1( ) 5s + 1( )
------------------------------------------- 4.49e− 0.6s

48s + 1( ) 6.3s + 1( )
-------------------------------------------

Fig. 2. Closed loop frequency responses for example 1 (WB). (a) H11 (b) H12 (c) H21 (d) H22 (Solid line: proposed method, dashed line: BLT
method).
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CONCLUSION

A tuning method for multiloop PID controllers is proposed by
the extension of the generalized IMC PID tuning method for the
SISO system [Lee et al., 1998a]. To cope with the interaction ef-
fects due to the off-diagonal elements, the optimum value of λ for
each loop is found by solving a simple optimization problem based
on Mp criterion. The resulting multiloop PID controllers make the

closed loop responses meet desired performance and robustness as
close as possible. This method shows good performance and sta-
bility compared with the existing method.
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