
Korean J. Chem. Eng., 20(2), 334-342 (2003)

res-
ti-
on-

 on
dif-
ed
334

†To whom correspondence should be addressed.
E-mail: yimsungsam@inha.ac.kr

The Role of Pi, Po, and Pf in Constitutive Equations
and New Boundary Conditions in Cake Filtration

Sung Sam Yim†, Yun Min Song and Young-Du Kwon*

Department of Environmental Engineering, Inha University, Incheon 402-751, Korea
*Department of Environmental Engineering, Donghae University, Gangwon 240-713, Korea

(Received 27 January 2002 • accepted 27 August 2002)

Abstract−−−−The constitutive equations proposed by Tiller and Shirato were analyzed and a new constitutive equation
originating from the sediment thickness was proposed. A new boundary condition of the filter cake based on the solid
compressive pressure of the first solid layer, pf, was also proposed. Accurate average specific cake resistances at various
pressures and the thickness of cake were calculated with the new constitutive equation and boundary conditions. The
influence of pf on the cake thickness and average porosity was studied theoretically. Using three constitutive equations,
it was proved that the compressibility n obtained from filtration results instead of CPC (compression-permeability cell)
of very compressible cake could not have an exact value.

Key words: Filtration, Cake Filtration, Compression-Permeability Cell, Porosity, Specific Resistance, Average Specific Cake
Resistance, Compressibility, Solid Compressive Pressure

INTRODUCTION

Modern filtration theory originated from the Ruth’s Compres-
sion-Permeability Cell (CPC) [Ruth, 1946]. He established a meth-
od of studying the internal structure of a cake by measuring the spe-
cific resistance of a cake having uniform porosity with CPC at var-
ious pressures. Grace [1953] performed CPC experiments for vari-
ous particulate materials and measured the relation of specific resis-
tance to the solid compressive pressure ps. Tiller [1953] started study-
ing the phenomena inside the cake by calculating the distribution
of liquid pressure using a simple compression test and numerical
integration. This calculated liquid pressure distribution was proved
experimentally by Okamura and Shirato [1955].

Tiller [1955] analysed CPC results and proposed that the poros-
ity and the specific cake resistance are related to the solid compressive
pressure by a power function above a certain pressure pi and sud-
denly become constant below the pressure. Shirato [1970] succeeded
in representing the above conception with one equation; futhermore,
this equation gives smooth change at the vicinity of pi. Tiller and
Crump [1977] accepted Shirato's equation with a small modifica-
tion.

In this study, we want to analyze the equations proposed by Tiller
and Shirato to elucidate the necessity of these conceptions. Then
we shall prove that the porosity and specific resistance are not con-
stant below a certain solid compressive pressure pi, and they change
until a very low solid compressive pressure by power function. Until
now, almost all researchers except us have adopted the boundary
condition of a cake as from zero to filtration pressure. We propose
new boundary conditions as from a very low pressure exerted by the
drag force and the weight of the first solid layer to filtration pressure.

The primary subject of this study is calculating the average spe-
cific cake resistance with the above two new conceptions and CPC

experimental results. The cake thickness and the limit of comp
sibility by filtration experiments will be calculated by using cons
tutive equations and theoretically explicated with the above c
ceptions.

THEORETICAL ANALYSIS

1. Analysis of the Constitutive Equations of Tiller and Shirato
Tiller [1955] proposed constitutive equations as below based

CPC experiments as Fig. 1. Eqs. (1) and (2), which are a little 
ferent from the initial form [Tiller, 1955], have been establish
and used until now.

When ps is greater than pi in Fig. 1:

α=aps
n (1)

1−ε=Bps
β (2)

Fig. 1. Logarithmic plots of αααα, and (1−−−− εεεε) vs. ps [Tiller, 1977].
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Eqs. (1) and (2) show that the average specific resistance, α, and
solidosity, (1−ε), are solely functions of solid compressive pres-
sure, ps. The constants “a” and “n” in Eq. (1) and “B” and “β” in
Eq. (2) can be determined with the slopes in Fig. 1. Among the four
constants, the “n” alone has the name “compressibility”. A cake is
incompressible when n is zero, and extremely compressible when
“n” is larger than 1.

The characteristics of a cake are determined by above four con-
stants. The average specific cake resistance and the distribution of
porosity through a cake can also be calculated with the constants.

When ps is smaller than pi:

α=αi=api
n=constant (3)

1−ε=1−εi=Bpi
β=constant (4)

Eqs. (3) and (4) signify that cake porosity and specific resistance
do not change under a certain value of solid compressive pressure,
pi. The point of contact between the straight line with slope and par-
allel line to x axis is pi in Fig. 1. The pi in the figure is 0.2 psi, name-
ly 1.4 kPa. But we think that the existence of pi could not be ver-
ified visually even in Fig. 1, which was presented as a proof of the
pressure by the originator. And furthermore, we could not find any
theoretical basis of the constancy of porosity and specific resis-
tance at the range of pressure smaller than 1.4 kPa.

Actually, it is possible that the friction between the cake and the
wall of CPC may prevent the reduction of the cake at small pres-
sure. By the friction, the porosity and specific resistance may not
change below pi as shown in Eqs. (3) and (4). Therefore, we think
that this phenomenon would be a special characteristic of a CPC,
and could not be applicable to cake filtration.

To modify the sharp change at pi, and simplify Eqs. (1) to (4),
Tiller and Crump [1977] proposed Eqs. (5) and (6) which were the
modifications of the equations originally proposed by Shirato et al.
[1970]. Tiller call Eqs. (5) and (6) as “Shirato’s equations”, and we
shall use the expression also in this paper.

α/αo=(1+ps/pa)
n (5)

(1−ε)/(1−εo)=(1+ps/pa)
β (6)

The new equations require determination of αo, εo and pa.
Fig. 3 is obtained with the constants proposed by Tiller and Cru

[1977] for calcium carbonate. As shown in Fig. 3, there is onl
small difference between Eqs. (1), (3) and Eq. (5). The specific
sistance is constant below 1 kPa in the figure; this is identica
Eq. (3). After a smooth change between 1 to 10 kPa, a straight
with slope is followed for the larger solid compressive pressu
this phenomenon is the same as Eq. (1). In a recent paper Til
al. [2001] also analyzed the characteristics of a compressible 
with Eqs. (5) and (6). But they do not explain why the porosity a
the specific resistance are constant at low solid compressive 
sure.
2. Problem for Calculating Average Specific Resistance with-
out pi or pa

In order to calculate the average specific cake resistance 
above constitutive equations which are induced from the experim
tal results of CPC, Eq. (7) is usually applied. This equation can
derived from fundamental notion of cake filtration, but we omit t
derivation process because it is a formula frequently used.

(7)

Boundary conditions of Eq. (7) are established as follows. T
solid compressive pressure, ps, at the interface between cake an
suspension is null, and that at the interface between cake and
medium is the pressure drop in cake ∆pc. All the researchers and
engineers who have been engaged in filtration use these boun
conditions; the appropriateness of these conditions will be discus

The integration of Eq. (7) using Eq. (1), i.e., without using Tille
pi or Shirato’s pa, gives

(8)

The values of αav at different filtration pressures also can be o
tained from filtration experiments. When the relationship betwe
αav and ∆pc is drawn in logarithmic scales, the slope represents
cake compressibility, n, according to Eq. (8). This method of de

αav = 
∆pc

dps

α
-------

0

∆pc∫
---------------

αav = 
∆pc

dps

aps
n

-------
0

∆pc∫
--------------- = 

a 1− n( )∆pc

∆pc
1 − n

-------------------------  = a 1− n( )∆pc
n

Fig. 2. Compression-permeability cell [Tiller, 1977].

Fig. 3. Specific cake resistance vs. solid compressive pressure 
calcium carbonate cake by Shirato’s equation.
Korean J. Chem. Eng.(Vol. 20, No. 2)
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mining the compressibility is commonly used by engineers and re-
searchers, and is recognized as reasonable for cakes having com-
paratively small compressibility.

But Eq. (8) has a critical defect. When compressibility, n, is great-
er than 1, the average specific cake resistance is negative according
to Eq. (8). A negative value of average specific cake resistance is
impossible in cake filtration.

Carman [1938] expressed compressibility which is measured by
filtration experiments as Eq. (9).

αav=αo∆pc
s (9)

For cakes with small compressibility, Eq. (9) is identical with Eq.
(8).

Ruth’s filtration equation is usually expressed as

(10)

Filtration pressure, ∆p [Pa], and viscosity, µ [kg/m·s], have posi-
tive values; dry cake mass per unit area of filtration, W [kg/m2], is
zero or positive; and filter medium resistance, Rm [m−1], has large
positive value. Therefore, the negative average specific cake resis-
tance means that the liquid must flow toward the direction of ap-
plied pressure. This phenomenon is actually not possible, so Eq.
(8) cannot be applied to the cake which has compressibility greater
than 1. It is also doubtful applying the equation to a cake having com-
pressibility close to 1, e.g. 0.8 or 0.9.
3. Role of pi or pa Calculating Average Specific Cake Resis-
tance
3-1. Average Specific Cake Resistance by Tiller’s pi

Substituting Eq. (1) and Tiller’s Eq. (3) into Eq. (7) leads to

(11)

Different from Eq. (8), Eq. (11) cannot be represented in a simpli-
fied form. Tiller and Leu [1982] proposed that the value of pi is small
enough to be eliminated for a cake having moderate compressibil-
ity. In this case Eq. (11) is identical with Eq. (8).

In this equation the “a” and ∆pc are positive. When n is greater
than one, (1−n) is negative. Thus the numerator of Eq. (8) is neg-
ative. The denominator has negative value, because the pressure
drop across the cake, ∆pc, is much larger than, pi, and (1−n) is neg-
ative. The numerator and denominator are negative altogether, so
the average specific cake resistance has positive value. This means
that Eq. (11) is valid when “n” is greater than 1. We assumed that
this is the main role of pi.
3-2. Average Specific Cake Resistance by Shirato’s pa

Substituting Eq. (5) to Eq. (7), average specific resistance is cal-
culated as follows.

(12)

Eq. (12) also cannot be represented in a simple form. In most cases
∆pc is greater than pa; the average specific cake resistance in the
equation is positive because both the numerator and denominator

are negative when the compressibility, n, is greater than 1. So Eq
is valid for all values of “n”. As shown in Fig. 3, Tiller and Crum
[1977] accepted the merits of Shirato’s equation, i.e., the pos
average specific cake resistance and the smooth variation of
cific resistance in the vicinity of pi, and they gave up the concep
tion pi.
3-3. Physical Significance of pi and pa

The apparent meaning of pi and pa is that the porosity and spe
cific resistance do not change below the solid compressive p
sures. As mentioned before, we cannot find an acceptable phy
meaning of these pressures. At this stage it is important that the
culated average specific cake resistance of a very compressible
(n>1) is negative without the conception pi or pa.
4. Porosity Variation at Extremely Low Pressure by Sedimen-
tation

Shirato et al. [1983] sedimented a suspension completely 
measured the final height of the sediment. This procedure ha
direct connection with the operation of filtration. But the partic
lates in the lower part of sediment support the weight of parti
in the upper part. The solid compressive pressure increases
the depth of solid. Experimental results with compressible mate
demonstrated that an increase of mass of two times does not
double sediment height. The measured height is smaller than
pected. Shirato et al. [1983] proved by sedimentation experiment
the porosity of the sediments of ferric oxide, Mitsukuri-Gairom
clay, and zine oxide decrease even at very low solid compressive
sures, i.e., as low as 100 Pa. The β in Eq. (2) of Mitsukuri-Gairome
clay thus obtained is 0.101, and that of other two materials are 0
and 0.094. According to the equations of Tiller and Shirato, thβ
must be zero at such a very low solid compressive pressure.

They also calculated the average specific resistance by me
ing hindered sedimentation velocity at very low solid compress
pressure. The experimental results are a little dispersed, but in 
eral they coincide with the extrapolation line of CPC results. It me
that the Eqs. (1) and (2) are valid until a very low solid compr
sive pressure. Tiller and Leu [1983] mentioned that Eqs. (1) 
(2) can be applied down to very small solid compressive pres
for cakes of small compressibility which have small pi enough to
be ignored. Shirato did not apply the above experimental resul
cake filtration theory.

The first author [1986] of this paper proved by experimental me
that the porosity of a very compressible cake having n=1.13 
decreases as Eq. (2) until very low solid compressive pressu
1 Pa (not 1 kPa) using bentonite floc. With these facts, the wh
expression procedure of a cake formed by bentonite floc is ca
lated and verified by experiments [Yim and Kwon, 1997]. Tille
and Leu [1982] thought that pi is greater than 1 kPa for such ex
tremely compressible cakes based on CPC results.
5. Proposed Constitutive Equation

With the above complete sedimentation results, it is not poss
to expound on Tiller’s Eqs. (3), (4), and Shirato’s Eqs. (5), (6). W
think that the constancy of porosity less than 0.2 psi in Fig. (1) o
inates from the friction generated between cake and cell wall. 
cording to complete sedimentation results of a very compress
material, we propose that Eqs. (1) and (2) are valid until very 
solid compressive pressure.

For ps>0, i.e., for all of the solid compressive pressures

q = 
dV
dt
------- = 

∆p
µ αavW + Rm( )
--------------------------------

αav = 
∆pc

dps

aps
n

-------
0

∆pc∫
--------------- = 

∆pc

dps

api
n

------- + 
dps

aps
n

-------
pi

∆pc∫0

pi∫
---------------------------------= 

a 1− n( )∆pc

∆pc
1 − n− npi

1 − n
-----------------------------

αav = 
∆pc

dps

αo 1+ ps pa⁄( )n
-------------------------------

0

∆pc∫
--------------------------------------- = 

αo 1− n( )∆pc

pa 1+ 
∆pc

pa

-------- 
 

1 − n

− 1

--------------------------------------------
March, 2003
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α=aps
n (13)

1−ε=Bps
β (14)

The calculated average specific resistance is negative when com-
pressibility is greater than one, as mentioned earlier at the analysis
of Eq. (8). This defect can be corrected with the following new con-
cept.
6. New Boundary Condition

A schematic diagram of a filter cake is shown in Fig. 4. Almost
all engineers and researchers, except ourselves, use boundary con-
ditions of a filter cake as follows.

The pressures at the cake surface closest to the suspension are

pl=∆p (15)

ps=0 (16)

Here, pl is the liquid pressure and ∆p is filtration pressure. Eq. (15)
means that the liquid pressure at the starting point of a cake is fil-
tration pressure. With this notion, the solid compressive pressure ps

at the starting surface of a cake was assumed zero as Eq. (16), and
has been used very widely. Shirato et al. [1967] applied this notion
to the expression procedure. In this paper, we protest against Eq.
(16) for applying to filtration.

The boundary condition of solids closest to the filter medium is

pl=∆pm (17)

ps=∆pc=∆p−∆pm (18)

Liquid pressure transforms into drag force during the flow through
the interstices of cake, and the drag force pushes the solid particles
toward the filter medium. The solid compressive pressure, ps, is gen-
erated by the drag force; thus the liquid pressure, pl, decreases. The
liquid pressure at the end of the cake has very small value ∆pm, which
is the pressure drop across the filter medium. The solid compres-
sive pressure at the point is ∆p−∆pm. This means that all of the pres-
sure drop across the cake, ∆pc, has been transferred to the cake par-
ticles at point of contact between the cake and the filter medium.
The above concepts are the ordinary boundary conditions that have

been adopted in filtration for a long time.
In this study, we want to examine the first solid layer where 

suspension enters the cake. A precise definition of the first s
layer is not easy, but as a matter of convenience a solid layer
tinguished from the second solid layer is assumed as shown in Fi

The weight and drag force of the first solid layer pushes the 
ond solid layer. The particles in the second layer rearrange by
forces. The porosity and, in case of floc, specific surface also ch
according to the forces.

But the particles of the first solid layer do not change in poros
nor any other characteristics by their own small weight or drag fo
This concept is the important point of our theory.

In this study, the solid compressive pressure of the first solid la
pf, is defined as the sum of drag force and the weight of the 
solid layer divided by filtration area. We think that the average 
rosity and average specific cake resistance is largely affected
the pf.

At the first solid layer, the solid compressive pressure chan
from zero to pf. The change of solid compressive pressure at 
first solid layer does not influence the porosity and the specific re
tance. So we propose a new boundary condition of a filter cake c
to the suspension as

pl=∆p−pf (19)

ps=pf (20)

The value of pf is very small during the procedure of cake filtra
tion. The operation of squeezing water out of previously filter
cake with a piston is called expression. In the operation, the s
compressive pressure which directly pushes the particles touc
the piston can be termed as pf. The pf at the start of expression is
very small, becomes larger during operation, and finally reaches
expression pressure. Yim and Kwon [1997] calculated the wh
expression procedure with the above conception, and verified
calculation with experimental results.
7. Calculation of Average Specific Cake Resistance with New
Conceptions

Substituting the new constitutive equation, Eq. (13), and n
boundary condition, Eq. (20), to Eq. (7) gives average specific c
resistance as

(21)

Compared to ∆pc, the pf in (∆pc−pf) is sufficiently small to be ne-
glected, and the result can be expressed as

(22)

The numerator is negative when n is greater than 1. And the
nominator is also negative because (1−n) is negative and ∆pc is much
greater than pf. It means that the average specific cake resistanc
a very compressible cake thus calculated is always positive. So
(1) can be applied to very compressible cake as we proposed
equations proposed for calculating average specific cake resis
are presented in Table 1.

The average specific cake resistances by Tiller and Shirato

αav = 
∆pc − pf

dps

α
-------

pf

∆pc∫
----------------- = 

∆pc − pf

dps

aps
n

-------
pf

∆pc∫
-----------------= 

a 1− n( ) ∆pc − pf( )
∆pc( )1 − n− pf

1 − n
---------------------------------------

αav = 
a 1− n( )∆pc

∆pc
1 − n

 − pf
1 − n

 

---------------------------

Fig. 4. Boundary conditions of a filter cake.
Korean J. Chem. Eng.(Vol. 20, No. 2)
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based on the hypothesis that the porosity and the specific resistance
do not change under a certain solid compressive pressure. But we
propose that the porosity and specific resistance changes until very
low solid compressive pressure, and also propose that the bound-
ary condition of a cake begins with the solid compressive pressure
of the first solid layer.

EXPERIMENTAL

A pressure filter with 4.0 cm diameter was used for ordinary fil-
tration. Compression-permeability cell of the same diameter was
adopted for establishing constitutive equations. Sedimentation tests
were performed in a 8.5 cm cylindrical cell.

After drying the bentonite particle at 105oC, sieving was per-
formed with 100 mesh sieve, then suspension was made with the
fine particles. Filtration, CPC, and sedimentation experiments were
performed with the flocs flocculated by cationic polymer floccu-
lant having molecular weight of 107.

RESULTS AND DISCUSSION

1. Experimental Results of CPC
Bentonite suspension was flocculated with the anionic flocculant.

The floc was filtered at 1,000 Pa. Experimental results of CPC with
preformed cake are shown in Fig. 5.

We carried out two sets of CPC experiments for the bentonite
floc, and have the constitutive equations as

α=2.87×107 ps
1.125 (23)

1−ε=4.09×10−3 ps
0.317 (24)

That is, a of Eq. (1) is 2.87×107, and n is 1.125. This cake is ex
tremely compressible by the definition of Tiller and Horng [198
With our experimental apparatus, it was not possible to mea
below 1.45×104 Pa.
2. Determination of pi of Tiller, and pa of Shirato

Tiller determined the value of pi in Eq. (3) with the experimental
result of CPC, as illustrated in Fig. 1. But the existence of pi is not
found in our CPC results in Fig. 5.

The value of pi in this study was determined by Eq. (11) usin
the experimental average specific cake resistance obtained b
tration at 1.0×105 Pa as follows.

pi=92 (Pa)

Tiller and Leu [1982] indicated that pi is small enough to be ignored
for a moderately compressible cake, and is about 103-104 Pa for a
very compressible cake. The cake formed by bentonite floc is
tremely compressible, but the pi is much smaller than expected. I
is not possible to measure the value of pi, i.e., 92 Pa, with CPC. The
pi of Tiller’s experiment in Fig. 1 is 1,390 Pa.

To know the αo and pa of Eq. (5) proposed by Shirato, we as
sume that the pa is pi of Tiller. Then αo and εo can be fixed with the
CPC results measured at high solid compressive pressures.

α=4.55×109(1+ps/92)1.125 (25)

1−ε=0.9829×(1+ps/92)0.317 (26)

Our new concepts suggested in this study do not need the a
constants.

The three constitutive equations and experimental CPC res
are shown in Fig. 6.

The blank circles that are a little smaller than experiment 
connected by a line represent Tiller’s constitutive equation. The 
cific resistance is constant under 92 Pa. Shirato’s constitutive e
tion is expressed with rhombuses. Almost all of the calculated 
ues coincide well with Tiller’s equation except at the vicinity of 9
Pa, i.e., pi. The small black points represent the constitutive eq
tion proposed in this study. The three constitutive equations 
experimental CPC results coincide well at higher solid compr
sive pressure. It means that the Eqs. (23), (25), and pi, pa are pro-
perly suggested.

To verify what is the correct constitutive equation among the eq
tions of Tiller, Shirato, and ourselves, it must be known whet

Table 1. Average specific cake resistances by Tiller, Shirato and
Yim

Average specific
cake resistances

Boundary
conditions

Equation
no.

Tiller ps=0
ps=∆pc

(11)

Shirato ps=0
ps=∆pc

(12)

Yim ps=pf

ps=∆pc

(22)

αav = 
a 1− n( )∆pc

∆pc
1 − n

 − npi
1 − n

-----------------------------

αav = 
ao 1− n( )∆pc

pa 1+ 
∆pc

pa

-------- 
 

1 − n

− 1

-------------------------------------------

αav = 
a 1− n( )∆pc

∆pc
1 − n

 − pf
1 − n

--------------------------

Fig. 5. Experimental results of compression-permeability cell with
bentonite floc flocculated with cationic polymer flocculant.

Fig. 6. Experimental results and theoretical constitutive equations
proposed by Tiller, Shirato, and Yim.
March, 2003
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2).
the specific resistance or porosity would or would not change at
pressure lower than 92 Pa.
3. Average Specific Cake Resistances by Experiments and Con-
stitutive Eqs.

The average specific cake resistances calculated by equations on
Table 1 and measured with constant pressure filtration at various
filtration pressures are shown in Fig. 7.

The pf suggested in this study is the solid compressive pressure
originating from the drag force by flow and weight of the first solid
layer. The value of pf can be calculated with Eq. (22) and average
specific cake resistance measured by filtration experiment.

pf=36 (Pa)

Inversely, the average specific cake resistances at various pres-
sures can be calculated by Eq. (22) and this pf. Average specific
cake resistances calculated by the equations of Tiller, Shirato, us
and that by constant pressure filtration are shown in Fig. 7. We can
see in Fig. 7 that all of the calculated values by three different equa-
tions coincide well, and they also coincide with the eight experi-
mental average specific resistances measured at the pressures from
0.91 kPa to 202kPa. Although a filtration experiment was performed
at the lowest pressure possible, the pressure was still too high to
prove the concepts of Tiller and Shirato.
4. Measurement of Porosity at Low Pressures by Sedimenta-
tion

If the concept of Tiller or that of Shirato is true, the porosity re-
mains constant under the solid compressive pressure pi or pa, i.e.,
92 Pa in this case. It means that the sediment of the floc has uni-
form porosity when the bottom solid compressive is smaller than
92 Pa. Then the height must be directly proportional to the floc mass.
But Shirato et al. [1983] proved that this is not true and proposed
Eq. (27).

H∞=a'ωo
b (27)

where H∞ [m] is the final height of the sediment, and ωo [m
3/m2] is

solid volume per unit area. The a' and b are constants defined by
this equation. The value of b is 1 only when the porosity does not
change with the height of sediment.

The equilibrium heights of bentonite floc in a cylindrical cell of
8.5 cm diameter are represented in Fig. 8. The maximum solid com-
pressive pressures of the solids in the bottom calculated from the
mass of floc are from 0.88 Pa to 26.3 Pa. These solid compressive

pressures are much smaller than 92 Pa, i.e., the pi of the floc, but
the value of b is 0.686 instead of 1. The values of B and β of Eq.
(2) are obtained from the constants in Eq. (27) as follows [Shi
et al., 1983].

(28)

β=1−b (29)

Hence, the relationship between the porosity and solid comp
sive pressure of the floc sediment can be written with B and β as
Eq. (30).

1−ε=6.76×10−3 ps
0.314 (30)

The β value 0.314 of Eq. (30) by sedimentation coincides w
with 0.317 of Eq. (24) determined by CPC within the experimen
error limits. But the values of B are 0.00676 and 0.00409, resp
tively. The difference is not small. We think that further study abo
the difference is necessary. Anyhow, it is evident that the poro
changes continuously until 0.88 Pa according to Eq. (30). The
rosity variation signifies that the specific resistance also varies 
low solid compressive pressure as Eq. (23).

Shirato et al. [1983] proved the variation of porosity for ferr
oxide, Mitsukuri-Gairome clay, and zinc oxide at solid compre
sive pressures from 100 to 1,000 Pa, but they did not apply thi
fect to the calculation of average specific resistance.
5. Calculation of Sediment Height by New Concept

When Eq. (30) is valid until very small solid compressive pre
sure and the first solid layer pushes the following solids, the he
of the sediment could be calculated with following procedures.

Eq. (31) is given by the filtration area A, the porosity ε in a very
thin layer of solids dL, the mass of solid in the thin layer dmc, and
the solid density ρp.

A(dL)(1−ε)ρp=dmc (31)

The downward force exerted by the particles of mass dmc in water
can be expressed with gravitational and buoyant force as Eq. (3

(32)

In this case, the solid compressive pressure, ps, is defined as Eq.
(33).

B  = 
1

a'b ρs − ρ( )g{ }1 − b
---------------------------------------

dmc( )g − dmc( ) ρ
ρp

-----g = dF

Fig. 7. Average specific cake resistances by experiments and by
various constitutive equations.

Fig. 8. Relation between final equilibrium height and total solid
volume per unit area.
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(33)

Hence,

(34)

Substituting Eq. (34) into Eq. (31) yields

(35)

The psmax is the solid compressive pressure exerted by the total weight
of solid in water, and pf is that by the first solid layer pressing down
the next solid layer. Substituting Eq. (30) into Eq. (35) at the place
of (1−ε), and taking differentials of Eq. (35) leads to

(36)

The psmax can be calculated by the mass and solid density of sed-
iment. The equilibrium height of the sediment was 1.1 cm with 0.8g
floc in 8.5 diameter cylindrical cell. It was the smallest mass that
had been tested, and the psmax was 0.88 Pa. The pf is 0.01 Pa calcu-
lated by Eq. (36) with equilibrium height L, psmax, B, and β. With
this pf, the equilibrium heights for the various floc mass are calcu-
lated and illustrated in Fig. 9 with the experimental sedimentation
results.

The calculated results based on our new conceptions coincide
well with the experimental results. The fact connotes that the poros-
ity changes at the low solid compressive pressure range from 0.01
Pa to 26.3 Pa, i.e., Eqs. (2) and (30) are valid at this range of solid
compressive pressure. It was not possible to find the experimental
evidence for proving the existence of pi. The authors successfully
applied our new conceptions to the expression of oil from rapeseed
at a high pressure of 9×106 Pa [Yim and Kwon, 1997].
6. Discussion about pf
6-1. Analysis of pf

The solid compressive pressure of the first solid layer, pf, in floc
sedimentation is calculated as 0.01 Pa, and that in cake filtration is
calculated as 36 Pa. The difference is caused by the drag force by
the flow through the particles in the first solid layer in filtration. Nat-
urally, a drag force does not exist in the equilibrium sediment. Prov-
ing the existence of pf by experimental means is difficult, because

the two solid compressive pressures are too small to be meas
We think that pf originates in the drag force, particle mass and bu
ancy.
6-2. Cake Thickness and pf

Depending on the new concepts, cake thickness is determ
by pf, filtration pressure, and cake mass per unit area. The pf most-
ly arises from the rate of flow. It has relatively high value at the 
tial period of filtration due to the high rate of flow, and has sm
values during the rest of the filtration period. The thin cake at 
initial period of filtration has denser structure resulting from the hig
er pf. The dense cake has high average specific cake resistance
phenomenon is experimentally measured by the first author [Y
and Kim, 2000]. The period governed by the phenomenon is v
short compared to the whole filtration time. We presumed that f is
constant during the filtration process. All of the calculated aver
specific cake resistances in Fig. 7 are from the same value of,
i.e., 36 Pa. In spite of the wide difference in filtration pressures,
calculated results coincide well with experimental results.

The thickness of cake changes in relation to pf. The calculated
thickness of cake by the equation of Tiller and Cooper [1962] h
been modified according to our pf, and the calculated results ar
shown on Table 2. The cake mass per unit filter area, W, is 3.2
m2, and the filtration pressure is 105 Pa.

The experimental cake thickness was 3.8 cm at the pressure
the cake mass, and it coincides with the calculated thickness 
cm based on pf of 36 Pa. The pf of 36 Pa was calculated by the ex
perimental average specific cake resistance and Eq. (22). It s
fies that the cake thickness can be predicted with pf.

For Filtration, it is not possible to change the value of pf at our
own will. In the equilibrium state of the CPC test, the piston pus
directly on the upper part of the preformed cake. Thus the valu
pf at the equilibrium state is 105 Pa, and that of psmax is also 105 Pa.
The calculated cake thickness in this case is 7.14 mm (in fac
used 99999.9 Pa as pf for convenience of calculation). The mea
ured cake thickness in CPC was 7.1 mm.

The two cases, filtration and CPC, which can be verified exp
mentally, give the coincidence between calculations and experim
The other thicknesses calculated are assumed to be correct. Th
theories for hindered sedimentation [Yim et al., 1995] and exp
sion [Yim and Kwon, 1997] were proposed on the basis of the
lation between cake thickness and solid compressure of the
solid layer.

dps = 
dF
A
------ = 

1− 
ρ
ρp

-----  
 gdmc

A
------------------------------

dmc

A
---------  = 

1
1− ρ ρp⁄( )g

-------------------------dps

dL = 
1

ρp − ρ( )g
-------------------- dps

1− ε( )
--------------

pf

psmax∫

L  = 
1

ρp − ρ( )g
--------------------1

B
---- psmax

1 − β
 − pf

1 − β( )
1− β

----------------------------

Fig. 9. Calculated sedimentation thickness by new conception and
experimental results.

Table 2. Cake thickness, average porosity and solid wt percent in
function of pf (W=3.2 kg/m2, psmax=105 Pa)

pf [Pa] Cake thickness [m] εavg Solid wt%

00000.01 3.85E-01 0.997 0.82%
00000.10 1.95E-01 0.994 1.61%
00001.00 1.01E-01 0.989 3.08%
00010.00 5.38E-02 0.979 5.70%
00036.00 3.85E-02 0.971 7.85%
00100.00 2.97E-02 0.962 10.01%
001000.00 1.73E-02 0.935 16.46%
010000.00 1.07E-02 0.896 24.94%
99999.90 7.14E-03 0.844 34.57%
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6-3. Average Cake Porosity and pf

Using the concept of pi, Tiller and Leu [1982] presented the cal-
culated results that average porosity of a cake hardly changes with
the increment of filtration pressure. Although this description is right,
it is possible to obtain a cake having small average porosity, i.e., a
cake of higher solid content, by increasing pf according to Table 2.
The methods of increasing the pf are, for example, pushing the cake
surface directly with a piston as CPC, or centrifugal filtration. Table
2 indicates that the average porosity would decrease to a large ex-
tent when pf increases only a hundred Pa. This phenomenon can-
not be calculated with the conceptions of Tiller nor Shirato.
7. Maximum Compressibility Measured by Experimental Fil-
tration

Instead of CPC test, compressibility of a cake is generally deter-
mined with Eq. (9) by filtrations at several pressures. But the com-
pressibility determined by filtration experiments has theoretical limi-
tations. According to the constitutive equations suggested by Tiller,
Shirato, and this study, the compressibility of a very compressible
cake by filtrations is always smaller than 1. In fact, the compress-
ibility measured by CPC is frequently larger than 1.

In Eq. (11) derived from the Tiller’s constitutive equation, when
compressibility is 3 and pi is 1 kPa, the value ∆pc

1−n is 10−10 and npi
1−n

is 3×10−6. Thus in the denominator (∆pc
1−n−npi

1−n), npi
1− n is greater

than ∆pc
1−n about 30,000 times. Neglecting ∆pc

1− n in Eq. (11) yields

(37)

The pi
1− n in Eq. (37) is not related to the filtration pressure but an

inherent property of a cake. Then the average specific cake resis-
tance is directly proportional to the filtration pressure, which means
that the compressibility measured by the filtration of various pres-
sures is one. So the compressibility 3 by CPC changes into 1 when
determined by filtration experiments.

At the same hypothesis, the part of the denominator in Eq. (12),
which is derived from the Shirato’s constitutive equation, can be
omitted.

(38)

The average specific cake resistance is directly proportional to fil-
tration pressure, too.

Rearranging Eq. (22), which is derived from the notion proposed
in this study, with the same method leads to

(39)

Average specific cake resistance relates to filtration pressure by a
power function of power 1.

The three Eqs. (37), (38), and (39) having three different constitu-
tive equations induce the same theoretical result that the compress-
ibility obtained by filtration experiments cannot exceed 1, even in the
extremely high compressible cake measured by CPC. There exist
some experiments that the n value by CPC is larger than 1 [Grace,
1953; Yim and Kwon, 1997]. However, we have not found com-
pressibility by filtration experiments greater than 1.

Tiller and Leu [1980] proposed a technique for obtaining the val-
ue of n by filtration experiments. We think that this technique can

be applied to cakes which have the compressibility below ab
0.6, but it may be inaccurate for materials having larger compr
ibility.

CONCLUSION

By analyzing the constitutive equations of a cake, the real me
ing of the equations was studied. The variation of porosity at v
low compressive solid pressure is confirmed by the equilibrium he
of the sediment. Based on the phenomenon, a new constitutive 
tion was proposed. And a new boundary condition of cake was 
suggested by analyzing the structure of filter cake. The new co
tutive equation and new boundary condition were proved with 
tration experiments from 0.009atm to 2 atm. The height of sedim
was calculated with the above new concepts, and proved ex
mentally. The meaning of the solid compressive pressure of 
solid layer, pf, proposed in this study was suggested. The influe
of pf to the cake thickness is analysed theoretically. Finally, the 
is proved that determination of compressibility by filtration expe
ments is not possible in case of a very compressible cake using
constitutive equations.
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