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Abstract−−−−Coal boilers are widely used to generate process steam. Because of the highly nonlinear dynamics, coal
boilers have not attracted the attention of many researchers. In the present study, two modeling approaches were
investigated: parametric efficiency modeling and neural network modeling. Results of simulations compared with
operation data demonstrate the effectiveness of the proposed modeling approaches.
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INTRODUCTION

In chemical plants, boilers are the major utility systems and use
a large portion of the total energy usage. Optimal operation of boil-
ers to generate steam is imperative to improve the profitability of
chemical plants. Selection of operating conditions based on model-
ing and simulations of boilers is the most effective way to achieve
the optimal operation. Both oil and coal are used as basic fuels in
the boiler operations. Although steady-state modeling of oil boilers
has been widely studied, coal boilers have not attracted attention
from researchers. One of the reasons might be the highly nonlinear
behavior of coal boilers. The artificial neural network (ANN) can
be a powerful candidate as the tool to analyze nonlinear processes
such as the coal boiler. Since nonlinear relationships can be effec-
tively handled, the ANN may present a cost-effective approach to
modeling coal boiler processes. The ANNs have been applied in the
analysis of chemical engineering processes [Hoskins and Himmel-
blau, 1988; Himmelblau, 2000] as well as in the control of chem-
ical process systems [Bhat and McAvoy, 1989]. One of the authors
investigated a neural PID controller for the pH neutralization pro-
cess [Kwon and Yeo, 1999]. The ANN was also found to be ef-
fective in the modeling and optimization of chemical operations
[Nascimento et al., 2000; Abilov and Zeybek, 2000]. The GADONN
(genetic auto-design of neural net), which is a neural net coupled
with the genetic algorithm, was suggested and applied to chemical
processes [Boozarjomehry and Svrcek, 2001].

The purpose of the present study was to develop a systematic
modeling procedure for the accurate computation and prediction of
major performance variables. Two modeling methods were used: a
parametric efficiency modeling and a neural net modeling.
1. General Consideration

The energy generated from the combustion of fuels fed into the
boiler is mainly consumed in the production of steam with the re-
maining energy exhausted as the stack gas enthalpy and heat loss
from the boiler body. Some results on boiler dynamics are reported
[Yeo et al., 1996; Åström and Bell, 2000; Werner, 2001]. The gen-
eral approach is to identify steam flow rates when the coal flow rates

and the boiler feed water are adjusted. Fig. 1 shows streams of 
output of the coal boiler system. The global mass balance and
ergy balance are given by [Åström and Bell, 2000]

(1)

(2)

where Q represents the amount of heat supplied to the boiler. T
equations represent an ideal case and use the boiler efficien
encounter actual situations. The boiler efficiency and heat ad
are given by

(3)

(4)

where qc represents the coal flow rate, Hc is the heat of combustion of
coal and HSAH is the heat supplied by the steam air heater. At stea
state, Eqs. (1) and (2) become

(5)

d
dt
---- ρsV st + ρwVwt[ ] = qf − qs − qb

d
dt
---- ρsusV st + ρwuwVwt + mtCptm[ ] = Q + qfhf − qshs − qbhb

η  = 
qshs − qfhf

Q
----------------------

Q = qcHc + HSAH

1− η( )Q = qghg − qaha + qbhb + Qloss

Fig. 1. The flow diagram of the coal boiler.
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Qloss is given by

(6)

where k is the thermal conductivity of the boiler, A is the surface
area and L is the thickness of the boiler. The exact amount of heat
loss cannot be known. We assume that the boiler body consists of
carbon steel and is considered to be a cylinder. Based on the data
given in Table 1, the steam flow rate can be obtained by

(7)

where the subscript g denotes the exhaust gas which consists of N2,
CO2, H2O, SiO2, CaSO4, CaO, C and ash (Al2O3, Fe2O3, Si2O). The
enthalpy of the exhaust gas is given by

(8)

The coefficients of heat capacity in this equation depend upon
the temperature and the amount of air and fuel. The heat capacities
for each component are given in Table 2, and typical operation data
are summarized in Table 3. In the present study, excess oxygen sup-
ply and complete combustion were assumed. Thus, the composi-
tion of the exhaust gas is dependent upon the coal flow rate and ex-
cess O2 flow rate.

The enthalpy of the exhaust gas was changed by excess O2 flow
rate and coal flow rate. If the efficiency of the boiler in Eq. (3)
represented as a function of the amount of fuel consumption, s
generation can be predicted by the boiler efficiency. In the pre
study, we propose a parametric polynomial representation of
boiler efficiency in terms of the coal flow rate as

(9)

where .

Let p=[a b c d] and (10)

Then ηηηη=p×q and we have

(11)

By taking into account the relevant data, we have

2. Neural Network Modeling
In the neural network, the error is defined as the difference 

tween the target output and the network output. The sum of th
errors defined by the following equation is to be minimized:

(12)

The LMS (Least Mean Squares) algorithm adjusts the weig
and biases of the linear network so as to minimize the mean sq
error. The LMS algorithm or Widrow-Hoff learning algorithm i
based on the approximate steepest descent procedure. Standar
propagation is a gradient descent algorithm, as is the Widrow-H
learning rule in which the network weights are moved along 
negative of the gradient of the performance function. In this stu
the Levenberg-Marquardt algorithm was used in the back prop

Qloss = − kA
Ta − Tm

L
----------------

qs = 
0.92qcHc + HSAH + qfhf − qghg + qaha − qbhb

hs

----------------------------------------------------------------------------------------------

hg = 

0.734CP
N2

 + 0.147CP
CO2

 + 0.0979CP
H2O

+ 0.003CP
CaSO4

 + 0.0042CP
Al2O3

 + 0.0084CP
SiO2

+ 0.0014CP
Fe2O3

 + 0.002CP
CaO

 + 0.002CP
C 

 
 
 
 

Tg − Tref( )

CO2: 
4.4 53.33xc + 0.01xa( )

xc + xa

--------------------------------------------------%

H2O: 
1.8 20xc + 6.66xc( )

xc + xa

------------------------------------------%

N2: 
2.8 0.536xc + 26.96xa( )

xc + xa

-----------------------------------------------------%

O2: 
3.2 7.26xa − 61.892xc( )

xc + xa

-----------------------------------------------------%

Ar: 
4.0 0.31 xa×( )

xc + xa

-------------------------------%

Ash: 
13.9xc

xc + xa

---------------%

η  = a + b qc + c× qc
2

 + d× qc
3×

ηηηη  = η1 η2 K ηn, , ,[ ] n∈

q  = 

1

qc

qc
2

qc
3

p = ηηηη qTq( ) −−−− 1
qT×

η  = 17.468 − 2.6303qc + 0.13691qc
2

 − 0.0023503qc
3

MSE = 
1
n
--- e i( )2

 = 
1
n
--- t i( ) − a i( )[ ]2

i = 1

n

∑
i = 1

n

∑

Table 1. Technical data for the coal boiler being modeled

Data Data

Surface area 1,885 m2 Thickness 1 m
Height 30 m Diameter 10 m
Thermal conductivity 45 w/m·K Inner temperature 220oC

of carbon steel Outer temperature 40oC

Table 2. Heat capacity of the exhaust gas and air: Cp [kJ/kg·K]=
A+BT+DT −−−−2

Chemical species Phase Tmax A B 107 D

N2 Gas 2000 973.90 0.176 +0.118
CO2 Gas 2000 1031.10 0.197 −2.18
N2O Gas 2000 1602.70 0.670 +0.56
SiO2 Solid 848 760.90 0.609 −1.688
CaSO4 Solid 1373 571.94 0.680 −0.48
CaO Solid 1173 750.00 0.363 −2.307
C Solid 1373 935.55 0.916 −4.091
Air Gas 2000 955.25 0.164−0.0455

Table 3. Typical operation data in the coal boiler process

Data qc [ton/hr] HSAH [kJ/kg] qf hf qg hg qa ha qb hb hs Boiler load

1 24.55 0000.0 202.00 511.97 278.20 196.15 250.49 24.97 2.00 1461.35 3386.86 100%
2 19.51 4313.3 161.60 511.97 223.16 184.35 201.06 24.97 1.60 1451.73 3386.86 080%
3 12.38 5485.8 101.00 511.97 142.90 166.73 128.92 24.97 1.00 1435.28 3386.86 050%
4 8.1 6372.7 66.66 511.97 137.80 173.76 128.92 24.97 0.66 1445.69 3386.86 033%
Korean J. Chem. Eng.(Vol. 20, No. 3)
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tion. The Hessian matrix is given by H=JTJ and the gradient is com-
puted as g=JTe where J is the Jacobian matrix that contains first de-
rivatives of the network errors with respect to the weights and bi-
ases and e is a vector of network errors. The Levenberg-Marquardt
algorithm the iterative procedure is given by

(13)

In the neural network modeling, the input values consist of the
rate of the boiler feed water, the coal flow rate and the temperatures
of boiler inlet water and outlet steam. The steam flow rate becomes
the output. Since the number of the output is one, the number of
the neuron of the output layer is one. The numbers of hidden layers
were fixed to two. Nearly 300 operational data were used in the
training of the nets. The training is completed when the mean square
error between outputs of nets and object patterns is smaller than
0.0001 or training over 10000 epochs.
3. Results and Discussion

Fig. 2 shows results of simulations based on the linear rela
(11) compared to operational data. We can say that these resu
very restrictive because of few operation data of the boiler. Fi
shows the result of simulations based on the linear model of 
(7) considered excess O2. Fig. 4 shows the results of the prediction o
the steam production rate based on the parametric efficiency m
proposed. As can be seen, the efficiency η given by (9) gives ac-
ceptable prediction of changing tendency of steam rate. The m
nitude of the errors in neural nets was examined for two type
activation function of the output layer: linear and tangent sigmo
The tangent sigmoid function was used as the activation funct
of hidden layers. The neural network model with the linear fu
tion shows more rapid convergence. However, the neural netw
with tangent sigmoid functions showed better performance t
that with linear function as the number of neurons increases. 
present neural network model, whose mean square error and m
mum error were 4.1514 and 8.6607, respectively, used the li

xk + 1= xk − JTJ  + µI[ ] −−−− 1JTe

Fig. 2. Steam flow rate according to the boiler load (linear mod-
el, Hc=28,000 kJ/kg).

Fig. 3. Steam flow rate according to the boiler data point (linear
model [operation data], Hc=28,000 kJ/kg).

Fig. 4. The comparison of steam production rates (parametric ef-
ficiency model).

Fig. 5. The prediction of steam production rate (MSEPEM=17.5757,
MSENN=4.1514).
May, 2003
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transfer function which was more stable. Fig. 5 shows the results
of simulations based on the parametric efficiency model and the
neural net model proposed in the present study. Compared with op-
eration data, the neural net model as well as the parametric effi-
ciency model exhibits acceptable prediction of operational trends.

CONCLUSIONS

In the present study, two modeling approaches were proposed
and analyzed: parametric efficiency modeling and neural net mod-
eling. From the results of simulations compared with operation data,
we found that both modeling methods could generate dependable
predictions of the key variables. Considering the convenience, the
simple parametric efficiency model might be the choice of plant
engineers.
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NOMENCLATURE

V : volume [m3]
u : internal energy [kJ/kg]
T : temperature [oC]
q : mass flow rate [ton/hr]
h : specific enthalpy [kJ/kg]
p : vector of parameter
q : vector of coal flow rate
e(·) : absolute error
t(·) : true output
a(·) : output of neural networks

Greek Letters
ρ : density [kg/m3]
η : efficiency of boiler

Subscripts
s : steam
w : water
st : steam of total system

wt : water of total system
f : the boiler feed water
t : total boiler
b : the flow to flash tank
m : metal
c : coal for fuel
a : air
PEM : parametric efficiency model
NN : neural network model
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