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Abstract −−−−Both a Monte Carlo model and an algorithm were presented to simulate the particle coagulation and
breakup phenomena taking place in a colloidal solution under turbulent fluid shear. The model is represented by the
probability density functions that describe the stochastic coagulation and breakup phenomena taking place among
numerous particles. From a dimensional analysis of the model two dimensionless groups, κc and κb, were derived
that represent the relative intensity of the coagulation and breakup phenomena. In order to overcome the memory
problem in saving the sizes of a large number of particles, the model was converted to a form suitable for carrying out a
sectional mass balance. Detailed simulation steps were presented and applied to acrylonitrile-butadiene-styrene
(ABS) latex coagulation. Numerical simulations revealed that the steady state particle size distribution does not depend
on the initial distributions but on the κc/κb ratio. Setting the operation variables to increase the ratio was found to shift
the particle size distribution toward larger particles.
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INTRODUCTION

The surfaces of particles in most colloidal solutions are charged
with ions, and thus keep stable suspension due to electrostatic re-
pulsion between the particles. The addition of coagulants decreases
the repulsive forces and brings about the coagulation of particles,
thus producing larger particles [Han et al., 1999]. The coagulation
phenomena are accompanied by the so-called floc breakup phe-
nomenon where a big, coagulated particle breaks into smaller par-
ticles in the presence of hydrodynamic stresses arising from turbu-
lent fluid shear [Ha and Yang, 1999]. The relative intensity of co-
agulation and breakup determines the mean and scatter of the re-
sulting steady state particle size distribution.

The usual approach for modeling the particle coagulation and
breakup phenomena is the population balance model [Valioulis, 1986;
Pandya and Spielman, 1982; Chung et al., 1998; Kang et al., 2001;
Kim and Kim, 2002]

(1)

where n(v) denotes a distribution function for the number concen-
tration of particles of volume v (i.e., n(v)dv is the number concen-
tration of particles of volumes between v and v+dv), and β(v, u) is
the collision frequency function for particles of size v and u, and
S(v) is the breakup rate of floc of size v, and Γ(v, u) is the breakage
distribution function defining the number of the fragments of size v
coming from flocs of size u. Various numerical algorithms for solv-
ing the model have been introduced in the literature [Chung et al.,
1998; Spicer and Pratsinis, 1996].

Since a colloidal solution that consists of an enormous number

of particles shows stochastic behavior in nature, probabilistic 
scription of the phenomena provides an insight into the basic
ture of the system. In this respect, Gillespie [1972] derived a tim
evolution equation for a function P(n, m; t) which is defined as 
probability that the number of particles consisting of m primary p
ticles at time t will be n. Then under certain assumptions, he co
derive the stochastic coalescence equation which correspon
the coagulation part of the population balance model stated in
(1), thus clarified the theoretical foundations and significance
the model.

Stochastic characteristics of particle coagulation and breakup 
nomena can be directly described by a Monte Carlo method w
simulates a possible realization of the stochastic process. No
sumptions are needed except for the existence of coagulation
breakup kernels that prescribes the respective rate [Gillespie, 1
The Monte Carlo model is represented by the probability den
functions for coagulation and breakup which are derived on the
sis of the kernels. The model is implemented by generating ran
numbers according to the derived probability density functions.

The purpose of this paper is to present a Monte Carlo model
algorithm to simulate particle coagulation and breakup phenom
taking place in a colloidal solution under turbulent fluid shear. Fi
the probability density functions are derived for coagulation a
breakup, respectively on the basis of assumed kernels. A dim
sional analysis for the model leads to two dimensionless groupκc

and κb, which represent the relative intensity of the coagulation a
breakup phenomena. In order to overcome the memory proble
saving the sizes of a large number of particles, the model is 
verted to a form suitable for carrying out sectional mass bala
Detailed simulation steps are presented followed by the simula
results for ABS latex coagulation.

MONTE CARLO MODEL FOR PARTICLE
COAGULATION AND BREAKUP
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1. Coagulation Model
The fundamental postulate in deriving a Monte Carlo model for

particle coagulation is the existence of the coagulation kernel C(v,
u) which is defined as follows:

C(v, u)dτ=probability that a given pair of particles of size v and u
C(v, u)dτ=will coagulate in the next infinitesimal time interval dτ. (2)

For particles under turbulent shear the coagulation kernel can be
represented as follows [Saffman and Turner, 1956; Gillespie, 1975]:

(3)

where G denotes the spatially averaged velocity gradient, α the col-
lision efficiency, V the slurry volume.

Now suppose that at time t there are N particles in the colloidal
solution. We label these particles by the index i (i=1, 2, ..., N), and
we let vi denote the size of particle i. Then we can define the set of
numbers

(4)

The limits in Eq. (4) imply that the ordered index pair (i, j) satisfies
i<j and uniquely labels each of the N(N−1)/2 distinct pairs of par-
ticles. Now the particle-wise coagulation kernel has the following
meaning:

Cijdτ=probability that particles i and j will coagulate

Cijdτ=in the next infinitesimal time interval dτ. (5)

The Monte Carlo model of coagulation is represented by the co-
agulation probability density function Pc(τc, i, j) that is defined as
follows:

Pc(τc, i, j)dτ=probability at time t that the next coagulation will occur in
Pc(τc, i, j)dτ=the time interval (t+τ, t+τ+dτ) between particles i and j

Pc(τc, i, j)dτ=(i<j). (6)

Pc(τc, i, j) can be derived solely on the basis of the coagulation ker-
nel defined in Eq. (5) [Gillespie, 1975].

(7)

The essence of Monte Carlo techniques to simulate particle co-
agulation is to generate a random triplet (τc, i, j) according to the
joint probability density function stated in Eq. (7). For this purpose
we first condition Pc, i.e., write Pc(τc, i, j) in the following form:

(8)

where

(9)

(10)

(11)

where (12)

where (13)

The idea of the above conditioning method is to first generate a
dom value τc according to P1(τc), then generate a random integer
according to P2(i|τc), and finally generate a random integer j accor
ing to P3(j|τc, i).

The procedure of (τc, i, j) generation can be summarized as fo
lows:

(1) Generate three random numbers r1, r2, and r3 uniformly dis-
tributed between 0 and 1.

(2) Generate τc according to P1(τc) by

(14)

(3) Generate i according to P2(i|τc) by taking such i that

(15)

(4) Generate j according to P3(j|τc, i) by taking such j that 

(16)

2. Breakup Model
The breakup kernel B(v) is defined as

B(v)dτ=probability that a particle of size v will breakup

B(v)dτ=in the next infinitesimal time interval dτ. (17)

We assume the breakup kernel under turbulent shear to take th
lowing form [Spicer and Pratsinis, 1996]:

(18)

where A is a proportionality constant, and y is a parameter that m
ures the fragility of flocs facing turbulent shear, and a is a para
ter that reflects the relative weakness of large-sized flocs in c
parison with smaller flocs. vstb denotes the maximum size of par
ticles which are stable, i.e., do not breakup under turbulent sh
Defining the set of numbers

(19)

where p is the last index assigned to the particles of size v≤vstb, the
particle-wise breakup kernel has the following meaning:

Bidτ=probability that particle i will breakup in the next

Bidτ=infinitesimal time interval dτ. (20)

The Monte Carlo model of particle breakup is represented by
breakup probability density function Pb(τb, i) defined by

Pb(τb, i)dτ=probability at time t that the next breakup will

Pb(τb, i)dτ=occur in the time interval (t+τ, t+τ+dτ) for particle i. (21)

It is straightforward to derive Pb(τb, i) on the basis of the breakup
kernel defined in Eq. (20) [Kim, 2001].

(22)

The random pair (τb, i) can be generated by using the same co
ditioning method as for (τc, i, j). We first write Pb(τb, i) as

C v u,( )  = 
β v u,( )

V
---------------  = 

0.31G v1 3⁄
 + u1 3⁄( )α

V
-------------------------------------------

Ci j C vi vj,( ) i  = 1 2 … N  − 1; j = i  + 1 … N, , , , , ,≡

Pc τc i j, ,( ) = Cijexp − Cklτ
l = k + 1

N

∑
k = 1

N − 1

∑ 0 τ ∞; 1 i j N≤<≤<≤,

Pc τc i j, ,( ) = P1 τc( ) P2⋅ i τc( ) P3 j τc i,( )⋅

P1 τc( )  = Ctexp − Ctτc( )

P2 i τc( )  = 
Ci

Ct

-----, i = 1 … N, ,

P3 j τc i,( )  = 
Cij

Ci

------, j = i  + 1 … N, ,

Ci  = Cij
j = i + 1

N

∑ , i  = 1 … N  − 1, ,

Ct  = Ci  = Cij
j = i + 1

N

∑
i = 1

N − 1

∑
i = 1

N− 1

∑

τc = Ct

− 1ln
1
r1

--- 
 

Ck r2Ct Ck
k = 1

i

∑≤<
k = 1

i − 1

∑

Ci l r3Ci Ci l
l = i + 1

j

∑≤<
l = k + 1

j − 1

∑

B v( )  = 
AGyva if v v stb>
0 otherwise




Bi  = B vi( ), i = p+ 1 p+ 2 … N, , ,

Pb τ i,( )  = Biexp − Bkτ
k = p + 1

N

∑ 0 τ ∞; 1 p i N≤<≤<≤,
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where (24)

(25)

where (26)

Then, the procedure of (τb, i) generation is summarized as follows:

(1) Generate two uniformly distributed random numbers r4 and r5.
(2) Generate τb according to P4(τb) by

(27)

(3) Generate i according to P5(i|τb) by taking such i that

(28)

Another element in the modeling of particle breakup is the break-
age distribution function that prescribes the distribution of daughter
particles. In this study we assume that two daughter particles are
formed from breakage and the size of a daughter particle vd coming
from a parent particle of size u has the normal distribution of the
following form:

(29)

where  and σd denote the mean and standard deviation of daugh-
ter particle sizes and are assumed to be

(30)

(31)

This implies that two daughter particles are of the same size on the
average but may have very different sizes with the probability spec-
ified by the normal distribution.
3. Combined Coagulation/Breakup Model

The situation where both coagulation and breakup take place in
a slurry can be handled by using a competition scheme in which
the event which occurs first is selected. Specifically, the competi-
tion scheme is implemented by the following steps:

(1) Generate τc according to P1(τc).
(2) Generate τb according to P4(τb).
(3) Actualize only that process corresponding to the smaller of τc

and τb.

Comparing the formulas (14) and (27) for generating τc and τb

and considering that r1 and r4 are random numbers, one can easily
infer the relative frequency between the two events from the rela-
tive magnitude of Ct and Bt. The probability that τc will become
smaller than τb, in other words, the probability that the next event
will be coagulation is given by Ct/(Ct+Bt). This implies that the Ct/
Bt ratio represents the relative intensity of the coagulation and break-
up phenomena at a given particle size distribution. When the ratio
approaches to 1, a steady state particle size distribution is attained
in the sense of a dynamic equilibrium.

Converting the Monte Carlo models given in Eqs. (7) and (
in dimensionless forms provides additional insight into the effe
of operation variables on the steady state particle size distribu
First, we define the dimensionless variables as follows:

(32)

(33)

(34)

(35)

where (36)

where (37)

where t0=any fixed time, e.g., batch duration (38

In Eqs. (36) and (37), v0 denotes the volume of the primary partic
and N0 the total number of primary particles in the system. Acco
ingly, C0 and B0, respectively, correspond to Ct and Bt of a hypo-
thetical system that consists of monodispersed primary particles 
equivalent total mass. Then the dimensionless probability den
functions can be easily derived as follows:

(39)

(40)

where the two dimensionless groups κc and κb are defined as

κc=C0t0 (41)

κb=B0t0 (42)

Since N0>>1, the ratio between two groups can be rearranged
follows:

(43)

where φ=N0v0/V equals to the volume fraction of the solid particle
in the colloidal solution and is usually called the slurry content.

The Ct/Bt ratio can be written as

(44)

Now recalling that Ct/Bt is 1 at steady state, it is apparent that 
becomes smaller as the κc/κb ratio is increased. Accordingly, set
ting the operation variables to increase the κc/κb ratio will shift the
steady state particle size distribution toward larger particles. T
κc/κb ratio can be regarded as an intrinsic measure of relative
tensity of coagulation and breakup in the system. In fact, the r
is equivalent, except for the constant coefficient, to the ηc/ηb ratio in-
troduced by Chung et al. [1998] or to the reciprocal of the coag
tion-fragmentation group introduced by Spicer et al. [1996].
4. Sectional Mass Balance

In order to implement the Monte Carlo model developed abo
it is necessary to store at least the sizes of particles (vi, i=1, …, N)

Pb τb i,( )  = P4 τb( ) P5⋅ i τb( )

P4 τb( ) = Btexp − Btτb( ), 0 τb ∞<≤

P5 i τb( )  = 
Bi

Bt

-----, i = p+ 1 p+ 2 … N, , ,

Bt  = Bi
i = p + 1

N

∑

τb = Bt

− 1ln
1
r4

--- 
 

Bk r5Bt Bk
k = p + 1

i

∑≤<
k = p + 1

i − 1

∑

N vd u,( ) = 
1

2πσd

---------------exp − 
vd − vd

2σd

-------------- 
 

2

vd

vd = u 2⁄

σd = u 6⁄

C̃i j  = Cij  C0⁄

B̃i  = Bi  B0⁄

τ̃c = τc t0⁄

τ̃b = τb t0⁄

C0 = C v0 v0,( ) = 1.24N0 N0 − 1( )Gv0α V⁄
j = i + 1

N0

∑
i = 1

N0

∑

B0 = B v0( ) = N0AGyv0
a

i = 1

N0

∑

P̃c τ̃c i j, ,( ) = κcC̃ijexp − κcC̃klτ̃c
l = k + 1

N

∑
k = 1

N − 1

∑

P̃b τ̃b i,( )  = κbB̃iexp − κbB̃kτ̃b
k = p + 1

N

∑

κc

κb

-----  = 
C0

B0

-----  = 
1.24 N0 − 1( )v0Gα

VAG yv0
a

------------------------------------------ 1.24φα
AGy − 1v0

a
-------------------≈

Ct

Bt

-----  = 
C0C̃t

B0B̃t

----------  = 
κcC̃t

κbB̃t

----------

C̃t B̃t⁄
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ps:

s in
in the system. For typical colloidal systems, however, the number
of particles N is too big to accommodate in computer memory. A
conventional way of avoiding the memory problem is to extract a
small sample of particles and make this sample represent the whole
by using periodic boundary conditions [Liffman, 1992; Lee and Mat-
soukas, 2000]. But this remedy is also not enough to handle a wide
range of particle size spectrum where a single big particle consists
of an enormous number of primary particles.

We propose a new approach for overcoming the memory prob-
lem. It is based on discretizing the particle size spectrum into a fi-
nite number of sections and then keeping track of sectional masses
after each coagulation or breakup event. First, the particles in the
initial slurry are not individually identified but are classified into sec-
tions according to their sizes. Then, the whole particles in each sec-
tion are replaced by the equivalent number of particles of the rep-
resentative size of the section. Thus, the equivalent number may
not be an integer but a real number to enforce mass balance. Finally,
a new combined particle formed by coagulation or two daughter
particles formed by breakup are also replaced by the equivalent num-
ber of representative particles of the section to which the resulting
particle sizes belong.

In order to implement the sectional balance approach, the coag-
ulation probability density function is modified to  that is
defined as

=probability at time t that the next coagulation will occur
in the time interval (t+τ, t+τ+dτ) between particles in
section i and j (i≤j). (45)

and can be represented by

(46)

where

(47)

where  and  denote the number and size of representative par-
ticles in section i, respectively, and Ns the number of sections. Sim-
ilarly, the sectional breakup probability density function  is
defined as

=probability at time t that the next breakup will occur in the
time interval (t+τ, t+τ+dτ) for particles in section i. (48)

and is represented by

(49)

where (50)

where p* is the index of the section to which vstb belongs.

MONTE CARLO SIMULATION ALGORITHM

The Monte Carlo simulation using  and  de-

veloped in the previous section is carried out in the following ste
Step 1. Initialization
(1) Set t=0.
(2) Set up the section boundaries b0<b1<…<bNs

(3) Specify the representative particle size of each section as

(51)

(4) Calculate the equivalent number of representative particle
each section.

(5) Calculate  and :

(52)

(53)

(6) Set up the sampling times t1<t2<…<tf.
Step 2. Event selection
(1) Generate two random numbers r1 and r2 uniformly distributed

between 0 and 1.
(2) Generate τc according to  by

(54)

(3) Generate τb according to  by

(55)

(4) Advance t by τ where τ is

τ=min(τc, τb) (56)

Step 3. Section selection
For coagulation event (τ=τc):
(1) Generate two uniformly distributed random numbers r3 and r4.
(2) Generate i according to  by taking such i that

(57)

(3) Generate j according to  by taking such j that

(58)

For breakup event (τ=τb):
(1) Generate a uniformly distributed random number r5.
(2) Generate i according to  by taking such i that

(59)

Step 4. Sectional mass balance
For coagulation event:
(1) Remove c1 particles from section i and c2 particles from sec-

tion j where

c1=min(1, ni) (60)

c2=min(1, nj) (61)

Pc
* τc i j, ,( )

Pc
* τc i j, ,( )dτ

Pc
* τc i j, ,( )  = Cij

* exp − Ckl
* τ

l = k

Ns

∑
k = 1

Ns

∑ , 0 τ ∞<≤ ; 1 i j Ns≤ ≤ ≤

Ci j
*

 = 

ninjC vi
* vj

*,( ) if i j≠
ni ni  − 1( )

2
--------------------C vi

* v i
*,( ) if i = j







ni vi
*

Pb
* τb i,( )

Pb
* τb i,( )dτ

Pb
* τb i,( )  = Bi

*exp − Bk
* τ

k = p* + 1

Ns

∑ , 0 τ ∞<≤ ; 1 p* i Ns≤ ≤ ≤

Bi
*

 = niB vi
*( )

Pc
* τc i j, ,( ) Pb

* τb i,( )

vi
*

 = 
bi − 1+ bi

2
----------------, i = 1 … Ns, ,

Ct
* Bt

*

Ct
*

 = Ci
*

i = 1

Ns

∑  = Ci j
*

j = i

Ns

∑
i = 1

Ns

∑

Bt
*

 = Bi
*

i = p* + 1

Ns

∑

P1
* τc( )

τc = 
1

Ct
*

-----ln
1
r1

--- 
 

P4
* τb( )

τb = 
1

Bt
*

-----ln
1
r2

--- 
 

P2
* i τc( )

Ck
* r3Ct

* Ck
*

k = 1

i

∑≤<
k = 1

i − 1

∑

P3
* j τc i,( )

Ci l
* r4Ci

* Ci l
*

l = i

j

∑≤<
l = i

j − 1

∑

P5
* i τb( )

Bk
* r5Bt

* Bk
*

k = p* + 1

i

∑≤<
k = p* + 1

i − 1

∑
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rry
(2) Add  particles to section k where k satisfies

(62)

For breakup event:
(1) Remove c1=min(1, ni) particles from section i.
(2) Generate the size vd1 of a daughter particle according to the

normal density function given in Eq. (29) using u=c1 .
(3) Calculate the size vd2 of the other daughter particle as

(63)

(4) Add  particles to section k1 and  particles to sec-
tion k2 where k1 and k2 respectively satisfy

(64)

(65)

Step 5. Sampling
(1) If t≥τi, output the particle size distribution.
(2) If t≥τf, stop the simulation. Otherwise, go to Step 2.

NUMERICAL SIMULATION

In this section we present the results of Monte Carlo simulation
for ABS latex coagulation. The purpose of the simulation is to in-
vestigate the effects of operation variables such as slurry content
and agitation speed on the steady state particle size distribution. Under
the base conditions approximating the field operation (at Yochon
plant of LG Chemical Ltd. in Korea), the latex solution with 23%
slurry content is fed to the agitated coagulator with the spatially aver-
aged velocity gradient G=40 sec−1 [Chung et al., 1998]. Using the
geometric sectioning scheme of Gelbard et al. [1980], the whole
particle size spectrum, with diameters ranging from 0.1µm to 3mm,
was divided into 46 intervals, with the volume boundaries located
in a geometric sequence of ratio 2. The following values of the mod-
el parameters used by Chung et al. [1998] were adopted in this study:
α=1, A=200, y=1.5, a=1/3, p*=20.

The initially stable latex feed has its own size distribution rang-
ing from 0.1µm to 3.2µm, with the number of particles in the slurry
volume of 1 liter exceeding 1014. Although our Monte Carlo model
can describe the evolution of particle size distribution starting from
this initial state to the ultimate steady state, the high number of par-
ticles requires excessively long computation time (about nine hours
on a 400 MHz Pentium II PC for N=106). We could by-pass this
problem and still fulfill the purpose of obtaining the steady state
particle size distribution by noticing that the steady state distribu-
tion does not depend on the initial distributions but on the κc/κb ratio.
Specifically, we assumed that all the solid consisted of monodis-
persed particles in a high-numbered section and carried out Monte
Carlo simulation starting from this hypothetical distribution. The
steady state was regarded to be reached when the Ct/Bt ratio lies in
the 1±0.001 range. Fig. 1 shows three steady state particle size dis-
tributions that were reached from the monodispersed distributions
in section 6, 26, and 46, respectively. The three distributions are al-
most indistinguishable, suggesting that the steady state distributions
are independent of initial distributions.

Fig. 2 shows three steady state particle size distributions obtained
using different levels of slurry content. As the level increases, the

distribution shifts toward larger particles. In fact, this effect of slu
content was expected from its contribution to the κc/κb ratio given

c1vi
*

 + c2v j
*( ) vk

*⁄

bk − 1 c1vi
*

 + c2vj
* bk≤<

v i
*

vd2 = c1vi
*

 − vd1

vd1 vk1
*⁄ vd2 vk2

*⁄

bk1 − 1 vd1 bk1≤<

bk2 − 1 vd2 bk2≤<
Fig. 1. Three steady state particle size distributions reached from

hypothetical monodispersed distributions.

Fig. 2. Effect of the slurry content on the steady state particle size
distribution.

Fig. 3. Effect of the velocity gradient on the steady state particle
size distribution.
May, 2003
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 [-]

ent

d-

tions

let

-

in Eq. (43). In general, as the κc/κb ratio increases, coagulation has
a relatively larger edge over breakup, thus resulting in coarser parti-
cle size distributions.

Fig. 3 shows three steady state distributions corresponding to three
different levels of fluid shear. As the velocity gradient is increased,
the distribution shifts toward smaller particles. This effect is also ex-
pected from our model since the coagulation rate increases linearly
with the velocity gradient while the breakup rate increases in pro-
portion to the power of y=1.5. In other words, increasing fluid shear
by more intense agitation provides more favorable conditions to par-
ticle breakup than to coagulation. It can be also regarded as the con-
sequence of the decreasing κc/κb ratio with increasing G.

CONCLUSIONS

A Monte Carlo model was derived for colloidal particle coagu-
lation and breakup under turbulent fluid shear. The model is repre-
sented by the probability density functions that describe the sto-
chastic coagulation and breakup phenomena occurring among nu-
merous particles. By converting the model in a dimensionless form,
two dimensionless groups, κc and κb, were derived that represent
the relative intensity of the coagulation and breakup phenomena.
The model was modified to the form suitable for carrying out sec-
tional mass balance in order to alleviate the memory problem arising
from an enormous number of particles encountered in typical col-
loidal systems. The developed model and algorithm was applied to
ABS latex coagulation. It was found that the steady state particle
size distribution does not depend on initial distributions but on the
κc/κb ratio. Thus setting the operation variables to increase the ratio
shifts the particle size distribution toward larger particles.
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NOMENCLATURE

A : breakup rate constant [m−3asy− 1]
a : breakup model parameter [-]
B : breakup kernel [s−1]
Bt : sum of breakup kernels [s−1]
B0 : total sum of breakup kernels for monodispersed primary

particles [s−1]
bi : right boundary of section i [m3]
c1, c2, c3: number of particles associated with coagulation [-]
C : coagulation kernel [s−1]
Ct : sum of coagulation kernels [s−1]
C0 : total sum of coagulation kernels for monodispersed primary

particles [s−1]
G : average velocity gradient [s−1]
m : number of primary particles in a particle [-]
N : total number of particles [-]
Ns : number of sections [-]
N0 : total number of primary particles [-]
n : distribution function for the number concentration of par-

ticles [m−6]

ni : number of particles in section i [-]
Pc : coagulation probability density function [s−1]
Pb : breakup probability density function [s−1]
p : last index assigned to particles of size v≤vstb [-]
p* : index of the section to which vstb belongs [-]
r : random number uniformly distributed between 0 and 1
S : breakup rate function [s−1]
t : time [s]
tf : final sampling time [s]
ti : sampling time [s]
t0 : basis for dimensionless time [s]
u : particle size [m3]
V : volume of colloidal solution [m3]
v : particle size [m3]

: mean daughter particle size [m3]
: representative particle size of section i [m3]

vstb : maximum size of particles which are stable under turbul
shear [m3]

v0 : size of primary particle [m3]
y : breakup model parameter [-]

Greek Letters
α : collision efficiency [-]
β : collision frequency function [m−6 s−1]
Γ : breakage distribution function [m−3] 
κc : dimensionless group for coagulation [-]
κb : dimensionless group for breakup [-]
φ : slurry content [-]
σd : standard deviation of daughter particle sizes [m3]
τ : time [s]
τc : coagulation time [s]
τb : breakup time [s]

Subscripts
b : breakup
c : coagulation
d : daughter particle
i, j, k, l : particle index or section index
t : total

Superscripts
* : properties pertaining to section
~ : dimensionless quantities
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