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Abstract—Both a Monte Carlo model and an algorithm were presented to simulate the particle coagulation and
breakup phenomena taking place in a colloidal solution under turbulent fluid shear. The model is represented by the
probability density functions that describe the stochastic coagulation and breakup phenomena taking place among
numerous particles. From a dimensional analysis of the model two dimensionless gyrangs,,, were derived
that represent the relative intensity of the coagulation and breakup phenomena. In order to overcome the memory
problem in saving the sizes of a large number of particles, the model was converted to a form suitable for carrying out a
sectional mass balance. Detailed simulation steps were presented and applied to acrylonitrile-butadiene-styrene
(ABS) latex coagulation. Numerical simulations revealed that the steady state patrticle size distribution does not depend
on the initial distributions but on the/k, ratio. Setting the operation variables to increase the ratio was found to shift
the particle size distribution toward larger particles.
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INTRODUCTION of particles shows stochastic behavior in nature, probabilistic de-
scription of the phenomena provides an insight into the basic na-
The surfaces of particles in most colloidal solutions are chargedure of the system. In this respect, Gillespie [1972] derived a time-
with ions, and thus keep stable suspension due to electrostatic revolution equation for a function P(n, m; t) which is defined as the
pulsion between the particles. The addition of coagulants decreasgesobability that the number of particles consisting of m primary par-
the repulsive forces and brings about the coagulation of particlegicles at time t will be n. Then under certain assumptions, he could
thus producing larger particles [Han et al., 1999]. The coagulatiorderive the stochastic coalescence equation which corresponds to
phenomena are accompanied by the so-called floc breakup ph#ie coagulation part of the population balance model stated in Eq.
nomenon where a big, coagulated particle breaks into smaller pad), thus clarified the theoretical foundations and significance of
ticles in the presence of hydrodynamic stresses arising from turbithe model.
lent fluid shear [Ha and Yang, 1999]. The relative intensity of co- Stochastic characteristics of particle coagulation and breakup phe-
agulation and breakup determines the mean and scatter of the neemena can be directly described by a Monte Carlo method which
sulting steady state particle size distribution. simulates a possible realization of the stochastic process. No as-
The usual approach for modeling the particle coagulation andsumptions are needed except for the existence of coagulation and
breakup phenomena is the population balance model [Valioulis, 198&reakup kernels that prescribes the respective rate [Gillespie, 1975].
Pandya and Spielman, 1982; Chung et al., 1998; Kang et al., 200T;he Monte Carlo model is represented by the probability density

Kim and Kim, 2002] functions for coagulation and breakup which are derived on the ba-
sis of the kernels. The model is implemented by generating random

dré(tv) =%j: B(u,v—u)n(u)n(v —u)du—n(v) I: B(v,u)n(u)du numbers according to the derived probability density functions.
The purpose of this paper is to present a Monte Carlo model and
~S(VN(W) * [T (v, wS(Un(udu @ algorithm to simulate particle coagulation and breakup phenomena

where n(v) denotes a distribution function for the number concen taking place in a colloidal solution under turbulent fluid shear. First,
tration of particles of volume v (.., n(v)dv is the number concen-the Probability density functions are derived for coagulation and
tration of particles of volumes between v and v-+dv), uadl) is b'reakup, respecnvely on the basis of assgmed kernels. A dimen-
the collision frequency function for particles of size v and u, andSional analysis for the model leads to two dimensionless graups,
S(v) is the breakup rate of floc of size v, &id u) is the breakage andk,, which represent the relative intensity of the coagulation anql
distribution function defining the number of the fragments of size v Préakup phenomena. In order to overcome the memory problem in
coming from flocs of size u. Various numerical algorithms for soly- Sving the sizes of a large number of particies, the model is con-

ing the model have been introduced in the literature [Chung et alYered to a form suitable for carrying out sectional mass balance.
1998; Spicer and Pratsinis, 1996]. Detailed simulation steps are presented followed by the simulation

Since a colloidal solution that consists of an enormous numbefeSUlts for ABS latex coagulation.
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1. Coagulation Model The idea of the above conditioning method is to first generate a ran-
The fundamental postulate in deriving a Monte Carlo model fordom valuer, according to Fr,), then generate a random integer i
particle coagulation is the existence of the coagulation kernel C(vaccording to ii|z,), and finally generate a random integer j accord-

u) which is defined as follows: ing to R(j| ., i).
C(v, u)dr=probability that a given pair of particles of size v and u Iov-vrshe procedure of, i, j) generation can be summarized as fol-

will coagulate in the next infinitesimal time interval d (2)

For particles under turbulent shear the coagulation kernel can be (1) Generate three random numbers,rand § uniformly dis-
represented as follows [Saffman and Turner, 1956; Gillespie, 1975}ibuted between 0 and 1.

_Bv,u) 031V +urY)a (2) Generate, according to Fr,) by
C(v,u) = v v 3)
_ o r.=C B0 (14)
where G denotes the spatially averaged velocity gradidims col- 1
lision efficiency, V the slurry volume. (3) Generate i according tg(iR,) by taking such i that
Now suppose that at time t there are N particles in the colloidal
solution. We label these particles by the index i (i=1, 2, ..., N), and Zl C.<r,C< 'ch (15)
we let y denote the size of particle i. Then we can define the set of = k=
numbers (4) Generate j according tg(jR, i) by taking such j that
C,=C(v,Vv),i=1,2,....,N~1;j=i+1,...,N 4 i1 i
. . . . . . .. . o C|I<rSC|S Z CI| (16)
The limits in Eq. (4) imply that the ordered index pair (i, j) satisfies 1% 147

i<j and uniquely labels each of the Nflll)/2 distinct pairs of par- o Breakup Model
ticles. Now the particle-wise coagulation kemnel has the following  1he breakup kemel B(v) is defined as
meaning:
B(v)dr=probability that a particle of size v will breakup

C,dr=probability that particles i and j will coagulate in the next infinitesimal time intervaird a7

in the next infinitesimal time intervard (5)

The Monte Carlo model of coagulation is represented by the COyVe assume the breakup kernel under turbulent shear to take the fol-

agulation probability density function(l, i, j) that is defined as lowing form [Spicer and Pratsinis, 1996]:

follows: B(v) = % AGV ifvsv,, as)
P(t., i, j)dr=probability at time t that the next coagulation will occur in 0o otherwise
the time interval (t¥, t+7+d7) between particles i and j . . ) .
(i<). ®) where A is a proportionality constant, and y is a parameter that meas-

o ] ] . ures the fragility of flocs facing turbulent shear, and a is a parame-
P(T., i, J) can be derived solely on the basis of the coagulation kerey that reflects the relative weakness of large-sized flocs in com-

nel defined in Eq. (5) [Gillespie, 1975]. parison with smaller flocsydenotes the maximum size of par-
Ne1 N ticles which are stable, i.e., do not breakup under turbulent shear.
Ptij)=Ciexg =5 > Ck.T},OS T<00; 1<i<j<N @] Defining the set of numbers
k=11=k*1
B,=B(v)), i=p+1,p*2,....N (19)

The essence of Monte Carlo techniques to simulate particle co- ' _ _ ' .
agulation is to generate a random tripteti( j) according to the ~ Where p is the last index assigned to the particles ofsigg the
joint probability density function stated in Eq. (7). For this purposeParticle-wise breakup kernel has the following meaning:

we first condition B i.e., write )1, i, j) in the following form: B,dr=probability that particle i will breakup in the next
P(T..1,j) =Pu(1.) [Py(i|7) (P5(j| T, i) ) infinitesimal time interval d (20)
where The Monte Carlo model of particle breakup is represented by the
breakup probability density functio(R, i) defined b
Py(1,) =Cexp(~C,1.) ©) PP fy density B, ) y
P,(1,, i)dr=probability at time t that the next breakup will
Py(i|7.) :%, i=1,...,N (10) occur in the time interval (i t+7+dr) for particle i.  (21)
c It is straightforward to derive,,, i) on the basis of the breakup
Py(j| 7., 1) =E'L, j=i+1,...,N (12) kernel defined in Eg. (20) [Kim, 2001].
. N .
whereC,= 3 C,,i=1,...N -1 (12) Py(T.0) =B.exr{‘k=p+18kr}0S 7<0o; 1sp<isN 2
jTit1
c :“C & % c (13) The random pairt{, i) can be generated by using the same con-
e A5 ditioning method as forry, i, j). We first write i1, i) as
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Py(7,.1) =Py(7,) [Ps(i| T2 (23) Converting the Monte Carlo models given in Egs. (7) and (22)
whereP,(7,) =B.exp(~B,T,), 0s7,<o 4 M dlmenglonlesg forms provides additional |ns!ght into the gffegts
of operation variables on the steady state particle size distribution.
P,(i|7,) =%’ i=p+1,p*2,...,N (25) First, we define the dimensionless variables as follows:
C,=C,/C, 32
N ~
whereB, = 5 B, (26) B, =B,/B, (33)
i=p*l
Then, the procedure df,(i) generation is summarized as follows: L= @4
T,=1,/1, (35)
(1) Generate two uniformly distributed random numhemsa £. .
(2) Generate, according to Rr,) by whereC, =% 5 C(Vy,V,) =1.24Ny(N, ~1)Gv,a/V (36)
is1j=it1
T =B(1InﬂlD 27 o
b 0 @7) Bo =3 B(vo) =NAGS @37)
(3) Generate i according tq(ifr,) by taking such i that -
t,=any fixed time, e.g., batch duration (38)
i1 i
k;ﬂquthSk:;lBk (28) In Egs. (36) and (37),denotes the volume of the primary particle

] . ] ] and N the total number of primary particles in the system. Accord-
Another element in the modeling of particle breakup is the breakinqgly, ¢, and B, respectively, correspond to &hd Bof a hypo-

particles. In this study we assume that two daughter particles argquivalent total mass. Then the dimensionless probability density
formed from breakage and the size of a daughter pagtioteming functions can be easily derived as follows:

from a parent particle of size u has the normal distribution of the

H . ~ ~ N-1 N ~
following form: P.(T.i) :KCC,JEXF{_Z > Kchch} 39)
) l ) D/d _vdD2:| k=11=k+1
N(vg,u) = ex 29
(Vo) =2 exR (555 (29) N N N
o P,(%,.i) =«k.Biexg = § k.B.T 40
whereV, ands, denote the mean and standard deviation of daugh- i F{ k;” o b} “

ter particle sizes and are assumed to be
V=2 (30)
0,=uw6 (32)

where the two dimensionless groupandk, are defined as

K=C4, 1)
K, =B 42)
This implies that two daughter particles are of the same size on the .
average but may have very different sizes with the probability specoiNc® N>>1, the ratio between two groups can be rearranged as
ified by the normal distribution. follows:
3. Combined Coagulation/Breakup Model K, _Co_1.24 N—1)v,Ga_ 1.24qq
The situation where both coagulation and breakup take place in x, "B,” v AGVE - AG' “3)
a slurry can be handled by using a competition scheme in which
the event which occurs first is selected. Specifically, the competi-Whereg=Ny/V equals to the volume fraction of the solid particles

tion scheme is implemented by the following steps: in the colloidal solution and is usually called the slurry content.
The G/B, ratio can be written as
(1) Generate, according to }r,). C _GCC _kC
(2) Generate, according to Fr,). B, BB, - KB, (44)
(3) Actualize only that process corresponding to the smaltgr of
andt,. Now recalling that (B, is 1 at steady state, it is apparent thes,

becomes smaller as tlgk, ratio is increased. Accordingly, set-

Comparing the formulas (14) and (27) for generatirandr, ting the operation variables to increasexilte, ratio will shift the
and considering that and § are random numbers, one can easily steady state particle size distribution toward larger particles. This
infer the relative frequency between the two events from the relak,/k, ratio can be regarded as an intrinsic measure of relative in-
tive magnitude of Cand B. The probability that, will become tensity of coagulation and breakup in the system. In fact, the ratio
smaller thart,, in other words, the probability that the next event is equivalent, except for the constant coefficient, taytag ratio in-
will be coagulation is given by {C+B,). This implies that the C troduced by Chung et al. [1998] or to the reciprocal of the coagula-
B, ratio represents the relative intensity of the coagulation and breakion-fragmentation group introduced by Spicer et al. [1996].
up phenomena at a given particle size distribution. When the ratid. Sectional Mass Balance
approaches to 1, a steady state particle size distribution is attained In order to implement the Monte Carlo model developed above,
in the sense of a dynamic equilibrium. it is necessary to store at least the sizes of partiglésLy..., N)
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in the system. For typical colloidal systems, however, the numbereloped in the previous section is carried out in the following steps:
of particles N is too big to accommodate in computer memory. A  Step 1. Initialization
conventional way of avoiding the memory problem is to extract a (1) Set t=0.
small sample of particles and make this sample represent the whole (2) Set up the section boundarigsti<...<b,_
by using periodic boundary conditions [Liffman, 1992; Lee and Mat-  (3) Specify the representative particle size of each section as
soukas, 2000]. But this remedy is also not enough to handle a wide b +b
range of particle size spectrum where a single big particle consists v; =1T i=1,...,N, (52)
of an enormous number of primary particles.
We propose a new approach for overcoming the memory prob- (4) Calculate the equivalent number of representative particles in
lem. It is based on discretizing the particle size spectrum into a fieach section.
nite number of sections and then keeping track of sectional masses (5) CalculateC, an8,
after each coagulation or breakup event. First, the particles in the

initial slurry are not individually identified but are classified into sec- ¢ =§C,' = %ECG 52)
tions according to their sizes. Then, the whole particles in each sec- N

tion are replaced by the equivalent number of particles of the rep- N,

resentative size of the section. Thus, the equivalent number may B; = B! (53)

i=p *t1

not be an integer but a real number to enforce mass balance. Finally,
a new combined particle formed by coagulation or two daughter (6) Set up the sampling timestt<...<t.

particles formed by breakup are also replaced by the equivalent num- Step 2. Event selection

ber of representative particles of the section to which the resulting (1) Generate two random numberand 5 uniformly distributed

particle sizes belong. between 0 and 1.
In order to implement the sectional balance approach, the coag- (2) Generate, according t®,(7.) by

ulation probability density function is modifiedBXt,,i,j) thatis

defined as =1 o
T, C:In .0 54
P.(t.,i,j)dT =probability at time t that the next coagulation will occur . .
in the time interval (t£, t+7+dr) between particles in (3) Generate, according td?,(7,) by
section i and j ). (45)
1,=In Gl% (35)
and can be represented by B,
. . No Ns (4) Advance t byr wherer is
P.(1,i,j) =Cjexg =Y 5 CyT|, 0sT<00; 1<i<j<N; (46)
& =min(z, 1,) (56)
where Step 3. Section selection
For coagulation event£1,):
%n,nJC(v,',v[) if i % (1) Generate two uniformly*distributed random numbensd .
Ci=Onn-1)_ . . 47) (2) Generate i according®(i|7.) by taking such i that
O-————=C(v;,,v;) ifi=]j
i1 i
S C<r,Ci<y C (57)
+ . . k=1 k=1
wheren, ands;, denote the number and size of representative par- )
ticles in section i, respectively, andthe number of sections. Sim-  (3) Generate j according ®(j|.,i) by taking such j that
larly, the sectional breakup probability density funct(r,, i) is J
defined as Y Ci<rC<YC, (58)
=i =i
e e e Fortresop v
' P ' (1) Generate a uniformly distributed random numper r
and is represented by (2) Generate i according®(i|7,) by taking such i that
Ne iz, . i «
Py(Tui) =B.‘ex{— > B;r} 0<T<e0; 1S p<isN, (49) 2, BisrBis 5 B (59)
PEatt k=p *+1 k=p *1
whereB! =nB(v) (50) Step 4. Secupnal ma§s balance
For coagulation event:
where pis the index of the section to whiclg fzelongs. (1) Remove gparticles from section i and particles from sec-
tion j where
MONTE CARLO SIMULATION ALGORITHM )
¢=min(1, ) (60)
The Monte Carlo simulation usif@g(r.,i,j) afl1,i) de- c=min(1,n (61)
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(2) Add(c,v; +c,v;)/v, particles to section k where k satisfies 0.25%
b,<cV, +c,v <b, (62)
~ 0.20% |
For breakup event: = :
(1) Remove &min(d, r)) particles from section i. 2 . From section ®
. . . S 0.15% —=— From section 26
(2) Generate the sizg, \0f a daughter particle according to the —— From section 46
normal density function given in Eq. (29) using ¢ °
(3) Calculate the size,\of the other daughter particle as GEJ 0.10% |
Va2 =C1V: “Var (63) %
> 0.05% |
(4) Addv,/v,, particles to section &ndv,/v,, particles to sec-
tion k, where k and k respectively satisfy
0.00% : T : ‘
Dy <Vy<by (64) 0 500 1000 1500 2000 2500 3000
Diameter, d (um)
bk2’1<vd2Sbk2 (65) . . . . .
) Fig. 1. Three steady state particle size distributions reached from
Step 5. Sampling hypothetical monodispersed distributions.
(1) If t=7, output the particle size distribution.
(2) If t=T, stop the simulation. Otherwise, go to Step 2. 0.35%
NUMERICAL SIMULATION 0.30%
. . o —~ ¢=0.18
In this section we present the results of Monte Carlo simulation € = 0-25% e $=0.23
for ABS latex coagulation. The purpose of the simulation is to in- = —— $=0.28
. : ; T 0.20%
vestigate the effects of operation variables such as slurry conter <
and agitation speed on the steady state particle size distribution. Unds* 5o,
the base conditions approximating the field operation (at Yochor "E’
plant of LG Chemical Ltd. in Korea), the latex solution with 23% g 0.10%
slurry content is fed to the agitated coagulator with the spatially aver >
aged velocity gradient G=40 sefChung et al., 1998]. Using the 0.05%
geometric sectioning scheme of Gelbard et al. [1980], the whole
o o . 0.00% .
particle size spectrum, with diameters ranging fronpuito 3 mm, 0 500 1000 1500 2000 2500 3000
was divided into 46 intervals, with the volume boundaries located Diameter, d (um)

in a geometric sequence of ratio 2. The following values of the mOdi:ig. 2. Effect of the slurry content on the steady state particle size
el parameters used by Chung et al. [1998] were adopted in this study: distribution.

a=1, A=200, y=1.5, a=1/3, p20.

The initially stable latex feed has its own size distribution rang-
ing from 0.1um to 3.2um, with the number of particles in the slurry  distribution shifts toward larger particles. In fact, this effect of slurry
volume of 1 liter exceeding T0Although our Monte Carlo model  content was expected from its contribution tosi, ratio given
can describe the evolution of particle size distribution starting from
this initial state to the ultimate steady state, the high number of par 0.80%
ticles requires excessively long computation time (about nine hour:
on a 400 MHz Pentium Il PC for N=%0We could by-pass this
problem and still fulfill the purpose of obtaining the steady state
particle size distribution by noticing that the steady state distribu-
tion does not depend on the initial distributions but or flagratio.
Specifically, we assumed that all the solid consisted of monodis < 0.40%
persed particles in a high-numbered section and carried out Mon@
Carlo simulation starting from this hypothetical distribution. The E
steady state was regarded to be reached wher/Bheal lies in o
the 1+£0.001 range. Fig. 1 shows three steady state particle size di >
tributions that were reached from the monodispersed distribution:
in section 6, 26, and 46, respectively. The three distributions are a 0.00%
most indistinguishable, suggesting that the steady state distributior
are independent of initial distributions.

Fig. 2 shows three steady state particle size distributions obtainegig. 3. Effect of the velocity gradient on the steady state particle
using different levels of slurry content. As the level increases, the size distribution.

0.70%

0.60%

0.50%

Ad (pm

0.30% |4

0.20%

0.10% L

0 500 1000 1500 2000 2500 3000
Diameter, d (um)
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in Eq. (43). In general, as thgk, ratio increases, coagulation has n,
a relatively larger edge over breakup, thus resulting in coarser partP,
cle size distributions. P,
Fig. 3 shows three steady state distributions corresponding to thrge
different levels of fluid shear. As the velocity gradient is increased,p’
the distribution shifts toward smaller particles. This effect is also ex+
pected from our model since the coagulation rate increases linearig
with the velocity gradient while the breakup rate increases in prot
portion to the power of y=1.5. In other words, increasing fluid sheart,
by more intense agitation provides more favorable conditions to part,
ticle breakup than to coagulation. It can be also regarded as the cofy-

sequence of the decreasif, ratio with increasing G. u
\Y,

CONCLUSIONS v
Vq

A Monte Carlo model was derived for colloidal particle coagu- v;
lation and breakup under turbulent fluid shear. The model is reprev.,,
sented by the probability density functions that describe the sto-
chastic coagulation and breakup phenomena occurring among nu,
merous particles. By converting the model in a dimensionless formy
two dimensionless groups, andk,, were derived that represent

: number of particles in section i [-]

: coagulation probability density functiori{s

: breakup probability density functiori s

: last index assigned to particles of sizevy, [-]

. index of the section to whichbelongs [-]

: random number uniformly distributed between 0 and 1 [-]
: breakup rate function3$

. time [s]

: final sampling time [s]

: sampling time [s]

: basis for dimensionless time [s]

: particle size [ri]

: volume of colloidal solution [rf)

: particle size [rf

: mean daughter particle size’Jm

: representative particle size of section i][m

: maximum size of particles which are stable under turbulent

shear [

: size of primary particle [fh
: breakup model parameter [-]

the relative intensity of the coagulation and breakup phenomenasreek Letters

The model was modified to the form suitable for carrying out sec-a
tional mass balance in order to alleviate the memory problem arising®
from an enormous number of particles encountered in typical coH”
loidal systems. The developed model and algorithm was applied ta,
ABS latex coagulation. It was found that the steady state particlex,
size distribution does not depend on initial distributions but on theg
K /K, ratio. Thus setting the operation variables to increase the ratia@,

: collision efficiency [-]

: collision frequency function [ s”]

: breakage distribution function [fih

: dimensionless group for coagulation [-]

. dimensionless group for breakup [-]

: slurry content [-]

: standard deviation of daughter particle size$ [m

shifts the particle size distribution toward larger particles. T :time [s]
T, . coagulation time [s]
ACKNOWLEDGEMENT T, :breakup time [s]

This study was supported by the Research Grant of Chonnarubscripts

National University of Korea. b : breakup

c : coagulation

NOMENCLATURE d : daughter particle

i, j, k, | : particle index or section index
A :breakup rate constant [ ] t : total
a : breakup model parameter [-]
B  :breakup kernel [§] Superscripts
B, :sum of breakup kernels Tk * : properties pertaining to section
B, :total sum of breakup kernels for monodispersed primary~ : dimensionless quantities

particles [31]
: right boundary of section i [th
C,, G, G number of particles associated with coagulation [-]

o
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