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Abstract−−−−For the study on the nonlinear dynamics of thin-film flow running down an inclined plane under the effect
of an electrostatic field, the mechanism of solitary waves has been examined by using a global bifurcation theory. First,
the existence of solitary waves has been chased by using an orbit homoclinic to a fixed point of saddle-focus type in
a linearized third-order ordinary differential equation which resulted from the evolution equation in a steady moving
frame. Then, the trajectories with several kinds of solitary waves have also been searched numerically for the nonlinear
system. In addition, the behavior of these waves has been directly confirmed by integrating the initial-value problem.
The slightly perturbed waves at the inception eventually evolve downstream into almost permanent pulse-like solitary
waves through the processes of coalescence and repulsion of the triggered subharmonics. In the global aspects the flow
system at a given Reynolds number becomes more unstable and chaotic than when there is no electrostatic force applied.
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INTRODUCTION

As a liquid layer flows down an inclined plane, it is susceptible
to the development of instability to turbulence. The linear stability
theories in parallel flows were first investigated by Benjamin [1957]
and Yih [1963]. They identified the regimes of linear stability and
determined the critical Reynolds number for instability. Then, the
weakly nonlinear analysis as an extended work for the linear theory
was performed by several authors, such as Benny [1966], Gjevik
[1970], Lin [1974], and Chang [1989]. Lin [1974] conducted a weak-
ly nonlinear analysis near the critical Reynolds number and found
a transition value separating supercritical from subcritical regime.
Chang [1989] examined the steady waves near the critical Rey-
nolds number and discovered two sets of waves, i.e., one family of
periodic waves and a single solitary wave by using a second-order
bifurcation analysis of an interface equation.

The interaction dynamics between the thin film flow and an elec-
trostatic field was studied for the first time by Kim et al. [1992] to
answer the feasibility of a new design concept of a space radiator.
In that article the basic question of how the liquid layer running down
an inclined plane and an electrostatic field would interact with each
other was answered. Kim [1997] extended this research scope to
nonlinear stability to address two-dimensional surface wave evolu-
tion. The applied electrostatic field always made the flow system
more unstable when compared with the free-charged case.

The aim of the present work is to explore the existence and in-
teraction of solitary waves on a fluid layer running down an inclined
plane under an electrostatic field. In the absence of the externally
applied electrostatic force, i.e., in the fluid system drained purely
under gravity, Pumir et al. [1983], Chang [1986, 1987], and Chang
et al. [1993] systematically analyzed the nonlinear dynamics of sur-
face waves moving down an inclined or a vertical plane. They stud-

ied and simulated numerically the mode of the solitary waves p
agating downstream at constant speed without changing their sh

Beyond the linearly unstable inception region, there would 
the evolution of short periodic and nearly sinusoidal waves, 
then after this regime very long solitary waves occur and domin
downstream until breaking into non-stationary three-dimensio
wave patterns.

Hence, these phenomena will easily be expected to happe
the flow mechanism affected by an electrostatic field while th
instability behavior has different mode. First, the onset conditio
of solitary waves and their characteristics in the proposed elec
hydrodynamic system have been found here numerically by u
the homoclinic orbits which are usually employed to track the 
pects of global bifurcation and chaos [Chang et al., 1987]. Sev
types of solitary waves can be classified according to their num
of humps. Next, using the solitary-wave onset values of Reyno
number and wave velocity resulting from the viewpoint of dyna
ical system theory, the initial-value evolution equation is integra
directly to examine the development of solitary waves through 
process of a great deal of coalescence and repulsion betwee
jacent waves. The obtained target equation has been based o
long wave lubrication approximation at low Reynolds numbe
Re~O(1).

The subsequent sections are composed of evolution equation
linear stability, stationary solitary waves in a moving coordina
numerical integration of the initial-value problem, and finally th
results are concluded.

EVOLUTION EQUATION AND LINEAR STABILITY

The liquid layer is assumed an incompressible, viscous and e
trically conductive thin film running down an inclined plane und
the action of gravity g. Above the liquid layer there is a vacuu
Within the vacuum region at a distance H from the plane of len
L locates a charged foil which has the same length as the plane
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situation is depicted in Fig. 1. An electrostatic field from the charged
foil will interact with the liquid flow through the induced pulling-
over force. Hence the film has been shown more unstable than that
in a free-charged case [Kim et al., 1992; Kim, 1997]. Suppose that
d is defined as the characteristic thickness of the primary film flow,
then the parameter ξ=d/L will be very small if the film is thin, i.e.,
thin relative to the expected length scale of the disturbances in the
horizontal.

Following the procedures already set up by Kim [1997], who
interpreted the longwave instabilities of the thin layer as the result
of the combined effects of electrostatic force, gravity and surface
tension, the dimensionless evolution equation describing the behav-
ior of the film thickness h(x, t) can be obtained by assuming the
Reynolds number Re~O(1), the capillary number Ca~O(ξ 2) and the
dimensionless electric force constant K~O(1). The result is given by

(1)

where B is the cotangent of the angle β between the horizontal and
x-axis. The subscripts represent the partial derivatives. The charac-
teristic unit of flow velocity is employed as equal to the maximum
velocity of the basic plane flow. The unit length in Eq. (1) is taken
the depth d of the primary flow. Here the fluid is assumed a perfect
conductor.

Next, to perform a linear stability analysis the Eq.(1) is perturbed
about its steady-state solution, i.e., h(x, t)=1+h(x, t). The small dis-
turbance h is assumed to have a simple harmonic form, i.e., h=exp
{i α(x−ct)}, where α≥0 is the wavenumber of the disturbance and
c is the complex wave speed, i.e., c=cr+ici. For positive α, if ci is
negative the flow is linearly stable, while if ci is positive the flow
becomes linearly unstable. Therefore in an α, Re diagram, the con-
dition ci=0 gives a neutral curve which defines the critical Reynolds
number:

(2)

When K=0, Eq. (2) reduces to the same result studied by Gj
[1970]. It can be seen that the first two terms in the right hand 
of Eq. (2) act as stabilizing effects while the last one describes
instability.

SOLITARY WAVES IN A MOVING COORDINATE

Beyond a short transition region from the inlet of the flow, und
some specific conditions the perturbed sinusoidal waves evolve do
stream into distinct pulse-like solitary waves which travel stead
at constant speeds over a comparatively long distance. Unlike
sinusoidal waves, the solitary wave has a wide band of Fourier 
monics whose phases are locked. Due to its strong nonlineari
is hard to find out the constructing conditions of the solitary wav
which will dominate all subsequent interfacial dynamics. Hence
effectively track the evolving mechanism of pulse-like solitary wav
in the proposed electrohydrodynamics, one can numerically se
the special solutions to Eq. (1) from the viewpoint of the dynam
cal systems theory. In a moving frame of z=x−vt, the waves are
assumed to travel without deformation in the frame moving a
constant speed v relative to the laboratory frame. In terms of
moving coordinate, Eq. (1) will be governed by an ordinary diff
ential equation, i.e., by letting h(x, t)=h(z) and denoting derivativ
with respect to z by primes, Eq. (1) with ξ=1 can be transformed
into the ordinary differential equation

(3)

To find out the above result, the Nusselt flat film condition at infin
has been applied: when z goes to ±∞, h tends to 1 and h'(z), h''(z),
h'''(z) tend to zero.

Before numerically integrating Eq. (3) to find out the solutio
associated with the pulse-like solitary waves, it is desirable to c
duct a local analysis around the fixed (equilibrium or critical) poi
so as to confirm whether the solutions exist or not in advance.
dynamical behavior of the system linearized about the fixed po
usually gives very significant information to predict the structu
stability of the original nonlinear dynamic system. Depending 
the types of the fixed points, the phase portrait is structurally st
or not. For instance, hyperbolic fixed points that will be hopefu
sought in the present problem illustrate the important general no
of structural stability [Strogatz, 1998]. For this dynamical syste
analysis, first Eq. (3) has to be written in the form of a first-ord
differential system:

(4)

where U1=h, U2=h', U3=h''. The system constitutes a flow in th
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Fig. 1. The physical configuration of the plane flow under an elec-
trostatic field.
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phase space made by (U1, U2, U3) and thus a phase point traces out
a solution of Eq. (4). For the nonlinear system like Eq. (4), there is
typically no hope of finding the trajectories analytically because it
is too complicated to provide much insight. Therefore to find the
system’s phase portrait qualitatively, it is necessary to figure out a
phase portrait of the corresponding linear system near the fixed point.
Fixed points of Eq. (4) are given by

(5)

There are two kinds of fixed points, that is, (U1, U2, U3)=(h1, 0, 0)
or (U1, U2, U3)=(h2, 0, 0), where h1=1 and h2(≠1) is the positive root
of the equation 1+U1+U1

2−(3/2)v=0. At the fixed point (1, 0, 0), the
eigenvalues of the linearized system are solutions of the equation

(6)

It is clear that for v>2 and Re>(5/4)B− (5/2)KH2/(H−1)3, there
are three eigenvalues λi(i=1, 2, 3) in Eq. (6) of which one (λ1) is a
positive real eigenvalue 2ρ and the others are −ρ±iω (complex con-
jugate) with a negative real part. The fixed point hence is hyper-
bolic and the three eigenvalues construct a saddle-focus homoclinic
orbit structure with a two-dimensional stable manifold and a one-di-
mensional unstable manifold. The solitary wave that is being sought
now will be well defined by the homoclinic trajectories because it
satisfies the Nusselt flat film condition at z=±∞. When v<2, the
situation will be opposite to the case of when v>2, that is, there are
a one-dimensional stable manifold and a two-dimensional unstable
manifold. The physical consequences will also have different modes
around v=2. When v>2, the front part of a solitary pulse which cor-
responds to z�∞ shows damped oscillations because of the complex
conjugate λ2 and λ3 with a negative real part while the rear smoothly
gets down to 1 without any oscillation because z tends to −∞ and
λ1 is a positive real. When v<2, the solitary wave mode is com-
pletely reversed and symmetric to the case of when v>2. Hence
v=2 plays an important role of the border of the velocity perturba-
tions in the nonlinear fluid dynamics producing solitary waves.

Considering the linearized system about the other fixed point (U1,
U2, U3)=(h2, 0, 0), where h2 is the positive root of 1+h+h2−(3/2)v=0
(h2>1), the corresponding eigenvalues are solutions of the equation

(7)

For v>2, h2 is always greater than 1 and Eq. (7) constructs a two-
dimensional unstable and a one-dimensional stable manifolds. In gen-
eral the two-dimensional manifold will be connected to the two-
dimensional stable manifold created by the other fixed point (U1,
U2, U3)=(1, 0, 0). The trajectory joining these two different fixed
points is called heteroclinic [Wiggins, 1990]. The heteroclinic orbit
is a solution describing a hydraulic jump with a height h2 upstream
and h1(=1) downstream. This heteroclinic behavior is irrelevant to
the present solitary wave dynamics and thus the homoclinic trajec-
tory starting from (1, 0, 0) and coming back to the same point will
be only considered to search for distinct pulse-like solitary waves
in a global phase space.
1. Numerical Search for Solitary Waves

With a set of parameters Re, B, Ca, K and H fixed, the certain

value of v producing a solitary wave has to be chased numeric
by solving the ordinary differential system of Eq. (4) in a three-
mensional phase space centered at the fixed point (1, 0, 0). I
value of v is exactly right, the solution trajectory starting along t
two-dimensional unstable manifold will come back to the neig
borhood of the fixed point along the one-dimensional stable m
fold. However, it is very complicate to find the specific v at one 
because the system of Eq. (4) is so delicate that the solution o
unstable manifold would not most often return to the fixed po
Hence the exact value of v has to be found numerically by con
uously adjusting the previously calculated value of v to approxim
the homoclinic trajectory. From an initially assumed value of v 
integration of system Eq. (4) supplies a phase portrait of soluti
If the trajectory is not homoclinic, the v has been changed to an
proved value. The modification of the value v would last until t
homoclinic trajectory maintains, that is, the distance between
returning trajectory and the fixed point is kept the minimum. T
minimum distance means that it is not available to get an exact h
oclinic trajectory but an approximate one. However, the present
merical approach confirms the existence of the distinct pulse-
solitary waves.

With Re=6, B=5, 1/Ca=3,000, K=10 and H=10 fixed, three kin
of homoclinic trajectories are obtained corresponding to differ

U2 = U3 = 0, 1− U1( ) 1+ U1+ U1
2

 − 
3
2
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 
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 + 
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3
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 + 
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5
4
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5
2
--- KH2

H  − h2( )3
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3
2
---Ca

h2
3

------ v − 2h2
2( ) = 0.

Fig. 2. (a) The single hump solitary wave at v=2.078553975 (Re=
6, B=5, 1/Ca=3,000, K=10, H=10). (b) The saddle-focus
homoclinic orbit for the single hump solitary wave at v=
2.078553975 (Re=6, B=5, 1/Ca=3,000, K=10, H=10).
Korean J. Chem. Eng.(Vol. 20, No. 5)
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values of v. The different homoclinic trajectories are classified by
the number of the principal humps in the solitary waves. Fig. 2a
and Fig. 2b show the single hump solitary wave and the correspond-
ing phase orbit, respectively, at the numerically obtained value of
v=2.078553975. In Fig. 3(a, b) and Fig. 4(a, b), the double hump
(v=2.040491995) and the triple hump (v=2.030010035) solitary
waves and phase portraits are depicted respectively. All the solitary
waves have a velocity greater than 2 and different values of v. Thus
in a (Re, v) domain, the solitary waves will have different branches
to the number of humps as seen in Fig. 5. All the solutions meet at
the values of v=2 and Re=5/4B−5/2[KH2/(H−1)3]. It has been also
found that there are maximumly attainable values of Re correspond-
ing to the types of solitary waves, and as the number of humps is
increased, the span of the velocities defining the specific kinds of
solitary waves becomes larger. In addition, it has been observed that
the amplitude and velocity of every solution on the upper branch
of Fig. 5 are rapidly augmented as Re decreases. To check the ef-
fect of electrostatic force strength on the occurrence of solitary waves,
the values of Re and v for a single hump solitary wave are plotted
in Fig. 6 according to several values of K. It is worth noticing that
at a constant velocity the Reynolds number creating the solitary wave
becomes smaller as the electric force gets stronger, i.e., the film flow
becomes more unstable in the nonlinear dynamics.
2. Analytical Approach for Some Limiting Cases

Investigating Fig. 5 around two ends of the curves, it can be ea
expected there are some linearities in the solutions as v approa
to zero or infinity. In the vicinity of {v=2, Re=5/4B−5/2[KH2/(H−
1)3]}, the numerical results show that the amplitude of solitary wa

Fig. 3. (a) The double hump solitary wave at v=2.040491995 (Re=
6, B=5, 1/Ca=3,000, K=10, H=10). (b) The saddle-focus
homoclinic orbit for the double hump solitary wave at v=
2.040491995 (Re=6, B=5, 1/Ca=3,000, K=10, H=10).

Fig. 4. (a) The triple hump solitary wave at v=2.030010035 (Re=
6, B=5, 1/Ca=3,000, K=10, H=10). (b) The saddle-focus
homoclinic orbit for the triple hump solitary wave at v=
2.030010035 (Re=6, B=5, 1/Ca=3,000, K=10, H=10).

Fig. 5. Re versus v for the homoclinic orbits at B=5, 1/Ca=3,000,
K=10 and H=10.
September, 2003
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h is very small if it is compared with the value obtained from the
other locations. Hence to get an analytical approach to this domain,
v and h are assumed such that v=2(1+ε) and h=1+εφ(ε is very small
parameter) to get the following differential equation from Eq. (3):

(8)

where the dot now represents the new derivative of =(3εCa )1/3z
and the constant µ is given by

(9)

Since for all µ≥0 Eq. (8) always has saddle-focus eigenvalues, there
exist families of homoclinic trajectories if the following condition
is satisfied:

(10)

To confirm the above analytic approach, the calculated value
(v−2) have been plotted to [Re−(5/4)B+(5/2)K{KH2/(H−1)3}] 3/2 for
the three kinds of solitary waves in Fig. 7 which shows a good ag
ment with the asymptotic analysis around {v=2, Re=5/4B−5/2[KH2/
(H−1)3]}.

To consider another analytical approach for the other limit
case, i.e., as Re�0 and v�∞, Eq. (3) has been modified such tha

(11)

Integration of Eq. (11) over (−∞, ∞) yields

(12)

where the assumption H>>h is used. Hence if h is replaced 
hmax, the deduced result is obtained from the analysis of order
magnitude:

(13)

In addition, the integration after the multiplication of Eq. (11) by'
leads to

(14)
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 h'
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3
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∫
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2 .∼

Re hmax

− 3 .∼

Fig. 6. Re versus v for single hump solitary waves with the K’s at
B=5, 1/Ca=3,000 and H=10.

Fig. 7. v−−−−2 versus [Re−−−−5/4B+5/2KH2/(H −−−−1)3]3/2 for B=5, 1/Ca=
3,000, K=10 and H=10.

Fig. 8. (a) v versus h2max for B=5, 1/Ca=3,000, K=10 and H=10. (b)
Re versus hmax

−−−−3 for B=5, 1/Ca=3,000, K=10 and H=10.
Korean J. Chem. Eng.(Vol. 20, No. 5)
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The asymptotic behaviors of Eq. (13) and Eq. (14) are in good agree-
ment with the numerical calculations as shown in Fig. 8a and Fig.
8b, respectively.

The analytical approach for the limiting cases is similar to that
done by Pumir et al. [1983] who considered the behavior of solitary
waves for the thin film flow without the electrostatic field.

NUMERICAL INTEGRATION
OF THE INITIAL-VALUE PROBLEM

In the previous section, the existence of solitary waves has been
pursued numerically in a steady moving coordinate. However, the
real evolution situation is time dependent and thus it is necessary to
confirm the formation of pulse-like solitary waves that will domi-
nate all subsequent interfacial dynamics. For this demonstration
the initial value problem given by Eq. (1) has been integrated with
periodic boundary conditions. The periodic computational domain is
defined in −π≤αx≤π (α is a wavenumber) for the laterally unbound-
ed flow region. With ξ=0.02, α=0.1, Re=6, B=5, 1/Ca=3,000, K=
10 and H=10 fixed, the time marching of Eq. (1) is performed by
virtue of a fourth-order modified Hamming’s predictor-corrector
method with the maximum tolerance of 10−11 in the centered finite
difference space scheme. For the initial forcing condition the flat
film is slightly perturbed as a small cosine-bell bump at x=0 with
the maximum amplitude of 1.02 as shown in the first graph (t=0)
of Fig. 9(a). In this case since the value of Rec is 2.836, if Re is less

than Rec, the flow becomes stable, i.e., the amplitude of the fi
tends to the basic one h=1 at large times. For Re>Rec the interfacial
height h which is initially perturbed grows and buckles to evo
into solitary pulses. If the Reynolds number is too much greater 
the critical one, the perturbed wave front becomes steeper an
last the flow system turns into a catastrophic situation as studie
Kim [1997] who calculated the nonlinear film evolution with va
ious wavenumbers and obtained the free-surface growth rates 
the Fourier-spectral method.

It will be demonstrated that the growth of the initial localize
perturbation and the interaction of the triggered subsequent rip
cause the free surface to coalesce into a bigger solitary pulse w
dominates the interfacial dynamics. The running film under the e
trostatic field with the infinitesimal disturbance as shown at t=0
Fig. 9(a) has been excited downstream through the interaction o
emerging wavetrains after the exponential growth of the free 
face from the inceptive stage. At t=300 in Fig. 9(a) the advent of a
solitary-like wave is observed among the small wavetrains throug
complicated nonlinear selection mechanism. As time further elap
the other graphs in Fig. 9(a) represent the active development
propagation of waves conceiving solitary pulses through the c
lescence of neighboring ripples. Throughout the graphs in Fig.
it can be easily seen that most of the ripples appeared in Fig. 9(a
merging into big significant humps which will be evolved into so
itary waves later through the processes of attracting and repe
with each other. In this time range the shapes of the interface

Fig. 9. (a) Surface-wave behavior of Eq. (1) for 0≤≤≤≤t ≤≤≤≤580 at ξξξξ=0.02, αααα=0.1, Re=6, B=5, 1/Ca=3,000, K=10, and H=10.
September, 2003
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Fig. 9. (b) Surface-wave behavior of Eq. (1) for 790≤≤≤≤t≤≤≤≤940 at ξξξξ=0.02, αααα=0.1, Re=6, B=5, 1/Ca=3,000, K=10, and H=10. (c) Surface-wave
behavior of Eq. (1) for 1,200≤≤≤≤t≤≤≤≤4,200 at ξξξξ=0.02, αααα=0.1, Re=6, B=5, 1/Ca=3,000, K=10, and H=10.
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still irregular with space and time changes. In Fig. 9(c) amazingly the
solution tends toward a regular arrangement of pulse-like solitary
waves after a very long time has passed. Until t=1,500, there is an
active collision between big waves and small wave because the small-
amplitude one is slower than the other big ones. At t=1,800 or t=
2,100 it is observed that the layer interface is almost all matured
with the solitary waves while it is still affected by a small wave,
which will be finally merged and disappeared as seen the graphs at
t=3,000 or t=4,200 in Fig. 9(c). It is noticeable that as the solitary
waves have formed, the thickness of the substrate layer has been
considerably reduced comparing to the initial film depth. On the
state of the thicker film at onset the gravity-capillary dispersion mech-
anism has delayed the phase locking of the Fourier modes to build
up solitary waves. However once formed, the pulse-like solitary
waves are less susceptible to transverse disturbances. If there is no
more transverse secondary instability occurred to the layer, the sol-
itary waves will dominate the electrohydrodynamics described by
Eq. (1). The numerical simulations presented here undoubtedly con-
firmed that there exist solitary waves of the kind derived from the
viewpoint of the dynamical systems theory.

CONCLUSIONS

The nonlinear dynamics composed of an evoultion equation de-
scribing thin-film flow running down an inclined plane under the ef-
fect of an electrostatic field has been closely examined for the mech-
anism of solitary waves. First of all, the existence of solitary waves
has been searched by using an orbit homoclinic to a fixed point of
saddle-focus type in a linearized third-order ordinary differential equa-
tion which resulted from the evolution equation in a moving frame
at a constant speed v relative to the laboratory frame. Then, the tra-
jectories with several kinds of solitary waves have been searched
numerically for the transformed nonlinear system. Finally, to under-
stand the nonlinear development of instability and transition to the
pulse-like solitary waves, the initial-value problem given by the par-
tial differential Eq. (1) has been integrated using periodic boundary
conditions. The slightly perturbed sinusoidal wave at the inception is
exponentially amplified downstream due to the linear instability mode.
After this stage the convectively unsatble system is controlled by
weakly nonlinear effects as the exponentially excited waves con-
verge to the values of finite amplitiudes. The system is still unsta-
ble and thus the neighboring waves interact with each other to be-
come a larger one due to a subharmonic instability. This kind of
grown wave acts as a solitary wave whose phase is locked and even-
turally dominates the interfacial dynamics if the Reynolds number
Re(>Rec) is smaller than a certain value above which the interface
becomes catastrophic. It has been numerically observed that in the
nonlinear dynamics as well as in the linear one, the flow system at
a given Reynolds number is more unstable and chaotic than there is
no electrostatic force applied. In addition, as the electric force gets
stronger the Reynolds number creating the solitary wave becomes
smaller at a constant velocity, i.e, the film flow becomes more un-
stable in the nonlinear dynamics.
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NOMENCLATURE

B : cotβ
Ca : capillary number
c : complex wave speed
d : characteristic film thickness
g : gravity
H : dimensionless distance from plane to charged foil
h : dimensionless free-surface thickness
h1, h2 : solutions of U1 in Eq. (5)
K : dimensionless electric force constant
L : characteristic length scale parallel to plane
Re : Reynolds number
t : dimensionless time
U1 : h
U2 : h'
U3 : h''
v : dimensionless wave velocity
x : dimensionless distance coordinate parallel to plane
y : dimensionless distance coordinate perpendicular to pla
z : x− vt

: (3εCa)1/3z

Greek Letters
α : wavenumber
β : inclination angle of plane with the horizontal
ε : small parameter
λ : eigenvalue
µ : dimensionless constant defined by Eq. (9)
ξ : d/L
φ : disturbed film thickness

Superscripts
' : derivative with z
� : derivative with 
� : small disturbance

Subscripts
c : critical value
i : imaginary part
max : maximum value
r : real part
t : partial derivative with t
x : partial derivative with x
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