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Abstract−−−−This paper addresses the control of the full particle size distribution (PSD) in a semibatch emulsion copoly-
merization reactor. The numerical approximation of a fundamental population balance model results in a high order
system to accurately describe the distribution of particle size; therefore, model order reduction is required. Pseudo
random input signals are input to the mechanistic model to generate a data set which covers the reachable region of
the system, on the basis of which the transformation matrices are calculated by principal component analysis (PCA).
A linear time varying model with reduced order obtained from the transformation matrices is augmented in the
prediction equation of linear model predictive control. The performance of the controller is evaluated to drive the
particle size distribution at the final time of the batch to the desired distribution in the presence of disturbances.

Key words: Particle Size Distribution, Model Order Reduction, Principal Component Analysis, Semibatch Emulsion Co-
polymerization Reactor

INTRODUCTION

The end-use quality of polymers produced by emulsion poly-
merization is highly dependent on the microstructural properties.
For example, when the polymer latex is employed as paint, many
of the end-use properties are directly related to the particle size dis-
tribution (PSD) of the polymer, while pressure sensitive adhesion
is determined by the molecular weight distribution (MWD) [Elizalde
et al., 2002]. Since a trial and error procedure is time consuming
and is ineffective for the production of polymers with desired end-
use property such as rheological properties and adhesion, research
has been focused on the optimization and the control of the pro-
cess on the basis of the available mathematical/mechanistic mod-
els. In order to describe the evolution of PSD in the emulsion poly-
merization, a population balance model [Ramkrishna, 2000] has
been developed which includes the three major phenomena in the
emulsion polymerization reactor: nucleation, growth and coagulation.
Since Min and Ray [1974] introduced the modeling of the entire
PSD, the population balance equation has been widely applied in
the analysis of the emulsion polymerization reaction [Rawlings and
Ray, 1987]. Coen et al. [1998] and Crowley et al. [2000] employed
the zero-one modeling approach with the assumption that the par-
ticle population is classified into a population with zero radicals
and a population with one radical, while Saldivar et al. [1998] ap-
plied a population balance equation to predict the PSD produced
by micellar nucleation by making the pseudo-homopolymerization
approximation. Zeaiter et al. [2002] modeled the semibatch emul-
sion polymerization reactor by using the zero-one model and the
coagulation reaction based on DLVO theory. Immanuel et al. [2002]
developed a mechanistic model in which the average number of

radicals per particle is calculated to account for the size-depen
growth rate and corroborated the effectiveness of the model by c
parison with experimental data. In their recent work [Immanue
al., 2003], they extended the model by including a coagulation m
anism.

As an analytical solution of the population balance model is 
tained only under very strict assumptions, most solution meth
are based on numerical analysis. The method of weighted resi
was described by Ramkrishna [1985], whereas Hounslow [1990]
Mantzaris et al. [2001] proposed a finite difference method (FD
for the solution of discretized population balances. The FDM w
also applied to an emulsion polymerization system [Gilbert, 199
Gelbard et al. [1980] and Langrebe and Pratsinis [1990] introdu
the sectional model obtained by dividing the continuous PSD 
a finite number of sections within which the size distribution fun
tion was assumed to be constant. Kumar and Ramkrishna [1
discretized the distribution into classes of particles defined by fin
particle size intervals and forced the discretization grid to move w
particle growth rate in such a way that the partial differential eq
tions were transformed from a differential to integral form over sm
intervals.

The control of polymer properties in emulsion polymerizatio
has been studied by using several different strategies. Since Ya
and MacGregor [1997] introduced the midcourse correction p
icy, this method was applied to the control of particle size distri
tion in the semibatch emulsion polymerization reactor by Flor
Cerrillo and MacGregor [2002]. Crowely et al. [2000] calculat
the optimal input trajectory using sequential quadratic progra
ming (SQP), while Immanuel and Doyle [2002] employed a gen
algorithm for the open-loop control of particle size distribution. A
for feedback-based control, since a numerical solution techn
for the time evolution of emulsion polymerization system (or a
system whose dynamics are governed by a partial differential e
tion) necessitates the discretization of spatial variables, the ord
the state in the corresponding control system becomes high.
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high dimensional model, however, is not directly amenable to dy-
namic analysis and model-based controller design. For example,
high-order and ill-conditioning might render the corresponding lin-
ear control problems Riccatti unsolvable [Su and Craig, 1991], and
special numerical techniques may be needed to assess the basic prop-
erties of the models such as controllability and observability [Boley,
1994]. Valappil and Georgakis [2002] used an approximated math-
ematical model for emulsion styrene polymerization reactor and
then controlled the end-use properties such as tensile strength and
melt index by applying a nonlinear model predictive control based
on the successive target region linearization method. Henson [2003]
chose the finite elements as the outputs and controlled the cell dis-
tribution of yeast by using a linear time-varying model predictive
control. Chiu and Christofides [1999] used the concept of inertial
manifolds to reduce the model order. They applied the method of
moments to a continuous crystallizer model and applied a nonlin-
ear output feedback control algorithm.

An important principle that guides the present work is that the
end-use properties are determined by the entire particle size distri-
bution. Hence, the method of using lumped values, such as the mo-
ments, is not useful for the control of the entire size distribution.
The system of our concern shows a bimodal distribution: one is the
primary peak by the homogeneous nucleation and the other is the
secondary peak by the micellar nucleation. Hence, the control aim
in this paper is to regulate the entire particle size distribution. In order
to reduce the order of the model, a principal component analysis
(PCA) based model order reduction method is applied. For this pur-
pose, the data set is generated by imposing a variety of input tra-
jectories into the mechanistic (or the first principles) model for sev-
eral batches. On the basis of the data at every sample time, the prin-
cipal components (latent variables) and loading matrices are calcu-
lated and then these transformation matrices are applied to a linear
time varying model produced by linearizing the nonlinear model
along the nominal trajectory. The linear time varying model with
reduced order is used in the application of a linear model predic-
tive control to produce the polymer products with desired particle
size distribution. In section 2, the mechanistic model is summarized
and the model order reduction method is introduced in section 3,
followed by section 4 in which the detailed procedure for the ap-
plication of model order reduction method and the results of par-
ticle size distribution control in a semibatch emulsion vinyl acetate
(VAc)/butyl acrylate (BuA) copolymerization reactor are discussed.

SEMIBATCH EMULSION COPOLYMERIZATION 
REACTOR MODEL

The mathematical model for the semibatch emulsion copolymer-
ization reactor is summarized in this section. For further details
about the model, the reader is referred to Immmanuel et al. [2002]
and Immanuel et al. [2003].

The evolution of particle size distribution in an emulsion poly-
merization is described by a population balance model of the fol-
lowing form:

(1)

where F(r, t) denotes the particle density function. The second term

on the left-hand side, the partial derivative with respect to r, is
growth kernel, while Rnuc and Rcoag represent the nucleation and co
agulation reactions of particles with r size, respectively. Nuclea
occurs by two methods: micellar nucleation and homogeneous n
ation. Micellar nucleation occurs when the concentration of f
surfactant (Sw) in the aqueous phase exceeds the critical micelle c
centration (cmc), whereas the oligomers in the aqueous phase
their length under the critical chain length (jcr) aggregate surfactant
molecules around them and bring about homogeneous nuclea
Thus, total nucleation rate is given by the combination of these 
mechanisms:

(2)

(3)

where eli,micelle and Vaq represent the entry rate constant for olig
mers of type i and the volume of the aqueous phase, respect
pwi, [Pw]

l, and Cmicelle mean the probability of a radical of type i in
the aqueous phase, the concentration of oligomer with chain le
l in the aqueous phase, and the concentration of micelles, res
tively.

Coagulation is explained by the thermodynamic instability of c
loidal particles. The coagulation rate is composed of two terms:
formation of a particle by coagulation of particles and the deple
of a particle by coagulation with other particles:

Rcoag(r, t)=H(rupper−r)Rformation(r, t)−H(rcutoff−r)Rdepletion (4)

Here, H is the Heaviside function which is unity when the arg
ment is non-negative and zero otherwise. rcutoff and rupper represent
the cut-off size below which the particles are prone to coagu
and the maximum size of particles that could result by the coag
tion of smaller particles, respectively. The rate of formation is giv
by

(5)

and the rate of depletion is calculated as follows:

(6)

The intrinsic coagulation rate (coagulation kernel, β) is calcu-
lated by considering the forces and potentials between the p
cles:

(7)

where D0 is the diffusion coefficient and W denotes the Fuch’s s
bility ratio.

The expression for the growth rate is a function of the part
radius (r):

(8)

where kpij, pi, and [Mj]p denote the rate constant for propagation 
polymer of type i with monomer j, the probability that a radical

∂
∂t
----F r t,( ) + 

∂
∂r
----- F r t,( )dr

dt
----- 

 
 = Rnuc r t,( ) + Rcoag r t,( )

Rmicellar = ei micelle,
l pwi Pw[ ]lCmicelleVaq

i = 1

2

∑
l = 0

jcr − 1

∑

Rhomogeneous = kpav
w Pw

jcr
− 1[ ]Vaq

Rformation r t,( ) = 
1

Vaq

------- β r' r'',( )F r' t,( )F r'' t,( ) r2

r3
 − r'( )3( )2 3⁄

--------------------------dr'∫

Rdepletion r t,( )  = 
1

Vaq

------- β r r',( )F r t,( )F r' t,( )dr'
rnuc

rmax∫

β r r',( ) = c1

4πD0 r + r'( )
W

---------------------------

Rgrowth r t,( ) = 
dr3

dt
------  = 

3
4πρp

----------- kpijpi

n r t,( )
NA

------------- M j[ ]pMW j
j = 1

2

∑
i = 1

2

∑

Korean J. Chem. Eng.(Vol. 21, No. 1)



170 M.-J. Park and F. J. Doyle III

o a
he
nd

 con-
hod
s by
ela-
 as-
out

en-
f
mers,
radi-
ribu-
en-

ry
dif-
evere
n the
 not
er-
ind

sed
ntrol
finite
s).

e to
di-
of type i in the particles, and the concentration of monomer j in the
particles, respectively. (r, t) and MWj are average number of ac-
tive radicals in particle of size r at time t and the molecular weight
of monomer j, respectively.

In addition to the balance equation for the particle size distribu-
tion, mass balance equations for initiator, initiator radical and mono-
mers are required. On the basis of the redox initiation system em-
ployed in the VAc/BuA copolymer system, the following material
balances for the oxidizer (Iw), the reducer (Y2) and the initiator rad-
ical (Rw) are calculated:

(9)

(10)

(11)

Here, kd1, rI and vi denote the kinetic constants for the oxidation step,
the stoichiometric ratio between the oxidizer and the reducer, and
the molar feed rate of component i. [Y1

r] and [Mi]w represent the
concentration of the catalyst in the reduced form and the concen-
tration of monomer i in the aqueous phase.

The mass balance for the monomers is given by:

(12)

where kpij/k
w
pij and ktrij /k

w
trij  are the rate constants in the particle/aque-

ous phases, for propagation and chain transfer to monomer, respec-
tively, for a polymer of type i with monomer j and [Oligomer]=

.
A great deal of research work has focused on developing solu-

tion techniques for distributed parameter systems [Ramkrishna, 1985];
and the ability to accurately solve population balance models has
motivated numerous research studies on the dynamics of particu-
late processes. Among the variety of solution methods, discretization
techniques are the most widely used. The finite difference method
(FDM), one of the discretization methods, approximates the actual
system by using finite differences in the spatial coordinate. This
method, however, requires a great number of discrete points for an
accurate solution and may result in spurious oscillations and numer-
ical dispersion problems. Another method for the solution of the
PBE is the method of weighted residuals (MWR). In this method,
the weighted sum of the residuals within sub-domains is driven to
zero. This method has a significant advantage over the FD method
in that the numerical dispersion problem is overcome. According
to the type of the basis function and weighting function used in the
solution, the MWR is classified into the collocation technique and
the Galerkin method. In the collocation method, an orthogonal poly-
nomial is employed as the basis function while the Galerkin meth-
od uses a weighting function identical to the basis function.

In this study, the solution technology developed by Immanuel

and Doyle [2003] is applied. The continuous PSD is divided int
finite number of sections within which an integral quantity of t
distribution is defined, in such a way that nucleation, growth a
coagulation processes that occur in each of the sectioins are
sidered individually to update the particle count. Since this met
determines the nucleation, growth and coagulation processe
the underlying thermodynamic and kinetic events, governed by r
tively simple equations with relaxed stiffness characteristics, the
sociated stiffness in the full solution is removed. For details ab
the method, refer to Immanuel and Doyle [2003].

To discretize the population balance equation for the particle d
sity function [cf. Eq. (1)], 250 elements (or grids) with a width o
2 nm are used and mass balance equations for the two mono
aqueous phase volume, surfactant, oxidizer, reducer and initial 
cals are calculated. Since the weight averaged particle size dist
tion (the controlled output) is calculated by using the particle d

sity function as wPSD(ri, t)=ri
3F(ri, t)/ , it also is com-

posed of 250 elements.

Fig. 1 shows the time evolution of particle density function eve
12 min in a logarithmic scale. As depicted in the diagram, the 
ferences of the magnitude of order between elements are so s
that the Jacobians become hypersensitive to slight changes i
variables. As a result, optimization based on gradient method is
applicable for the calculation of the optimal input values. Furth
more, as the magnitude changes very rapidly, it is difficult to f
the bounds to normalize the variables.

NONLINEAR MODEL ORDER REDUCTION

As stated in the previous section, the approach commonly u
in chemical engineering to address numerical solutions and co
problems for distributed parameter systems is based on the 
discretization of the governing partial differential equations (PDE
The discretization of the underlying conservation laws gives ris
dynamical systems of a very high order, often leading to ill-con
tioned and uncontrollable systems.

n

d Iw[ ]Vaq( )
dt

------------------------ = − kd1 Iw[ ] Y1
r[ ] + vIw

d Y2[ ]Vaq( )
dt

-------------------------  = − rIkd1 Iw[ ] Y1
r[ ] + vY2

d Rw[ ]Vaq( )
dt

-------------------------- = kd1 Iw[ ] Y1
r[ ]  − Vaq kri Rw[ ] M i[ ]w 

i = 1

2

∑

− Vaqktav
w Rw[ ] Pw[ ]l

 + Rw[ ]
l = 0

jcr
− 1

∑
 
 
 

dMj

dt
--------- = vMj

 − kpij
w

 + ktrij
w( )pwi Oligomer[ ] M j[ ]wVaq

i = 1

2

∑

− kpij  + ktrij( )pi M j[ ]p n r t,( )F r t,( )dr
r = rnuc

rmax∫
i = 1

2

∑

 
n = 0

jcr − 1
Pw[ ]n∑

ri
3F ri t,( )

i = 1

250

∑

Fig. 1. Time evolution of the particle density function (nominal
case) in increments of 12 minutes.
January, 2004
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The main goal of a model order reduction (MOR) technique is
to generate a model of the system with a reduced number of states
while preserving accurately the behavior of the original (full order)
system. In general, most MOR methods are based on the idea of
projecting the full order states onto a state space with a suitable re-
duced order. For this purpose, the original states are changed to new
states through a linear transformation:

x=Pz (13)

where z is a q-th order projection of state x∈RN in the reduced order
state space and P represents an orthonormal matrix for a transfor-
mation from the reduced one to the original state space.

Among the methods for the determination of the transformation
matrix P, the principal component analysis method (PCA) [Sharaf
et al., 1986] is applied in the current work. The PCA is one of sev-
eral multivariate statistical projection techniques in which the origi-
nal number of (possibly) correlated variables is transformed into a
(smaller) number of uncorrelated variables called principal compo-
nents. With this technique, limitations due to measurement noise,
correlated variables and unknown variables, and data set dimen-
sionality can be solved. In addition, the technique removes numeri-
cal ill-conditioning from the data in an effort to make the highly
sensitive system robust in the sense of resistance, that is, the ability
of a procedure to display insensitivity to either small changes in
most of the data or large changes in a small fraction of the data.

Before the PCA is applied, it is convenient to tailor the data in
the calibration set in order to make the calculations easier [Geladi
and Kowalski, 1986]. First, the values for each of the variables are
transformed to mean-centered form. In the second step, variance
scaling is used when the variables in a block are measured in dif-
ferent units: all the values for a certain variable are divided by the
standard deviation for that variable in such a way that the variance
for every variable is unity. In addition to these two scaling methods,
one can give a smaller weight to certain variables of less importance.

Principal component analysis involves the expression of a matrix
X of rank r as a sum of r matrices of rank one:

X=M1+M2+…+M r (14)

These rank one matrices can all be written as outer products of two
vectors; a score th and a loading p'h:

X=t1p'1+t2p'2+…tap'a (15)

or equivalently X=TP' (P' is composed of the p' as rows and T of
the t as columns). The elements of the principal component are the
direction cosines or the projections of a unit vector along the prin-
cipal component on the axes of the plot. The scores vector (th) is a
n×1 column vector (n: number of data). Its elements are the coor-
dinates of the respective points on the principal component line.
The scores and loadings can be calculated pair-by-pair by the non-
linear iterative partial least squares (NIPALS) method [Sharaf et
al., 1986].

Among all the principal components calculated by the PCA, only
the first few PCs are used as shown in Eq. (15) as the other PCs
are related to the noise. Too many PCs may cause collinearity prob-
lems. The number of principal components, a design variable that
determines adequate description of the data, can be assessed by us-
ing a cross validation method. Ideally, the number of principal com-

ponents would be equal to the number of modes of variations p
ent in the process. However, in practice, due to the inherent no
earity of the process and the measurement noise, more PCs m
needed to retain the relevant information present in the data m
[Kesavan et al., 2000].

For nonlinear model order reduction, we consider the follow
nonlinear model:

=f(x, u) (16)

The issues in applying the transformation matrix to a nonlin
system are associated with storage and evaluation. In order to 
form the original nonlinear system to the reduced order system,
should evaluate the transformation matrix at every numerical i
gration step, which is computationally expensive. To solve this pr
lem, a nonlinear model is linearized at every sample time by u
a certain state (for example, a steady state in a continuous sy
a nominal or initial point in a batch system) and a zero-order h
is used to calculate the discrete system matrices under the ass
tion that the state between sample times is not changed significa
This is shown as follows:

(17)

(18)

where the overline denotes the deviation from the nominal st
and Ak and Bk are Jacobians of f with respect to the state and in
at step k. Higher order terms are assumed to be negligible.

The transformation matrix P in Eq. (13) is applied to the linear-
ized model, and consequently the following reduced order mo
is obtained:

(19)

(20)

where Ak
r=P'AkP, Bk

r=P'Bk and Hk
r=HkP, respectively.

RESULTS AND DISCUSSION

1. Database Generation and Linear Transformation Matrix
In the basic steps of PCA, the generation of a database is the

crucial for the success of the procedure. However, there are a
priori comprehensive rules for the generation of the ensemble f
which the orthogonal principal axes will be extracted [Shvartsm
and Kevrekidis, 1998]. The data should be as completely repre
tative of the region of concern as possible. Methods of formin
representative ensemble reported in the literature include the c
bination of spatiotemporal motions at several values of opera
parameters [Bangia et al., 1997], mixing transients from initial c
ditions distributed randomly around the relevant regions of ph
space [Graham and Kevrekidis, 1996], and strong responses t
perturbation of actuators from their nominal settings [Loffler a
Marquardt, 1992; Aling et al., 1996].

In order to generate the database for the calculation of linear tr
formation matrices, pseudo random 4-level signals with switch
probability of 7% are imposed on the plant (the first principles m
el) and the corresponding responses including state and outpu
saved in the database at every sample time (1 min). One of the
nipulated variables is the flow rate of vinyl acetate feed with 0 a

x·

xk + 1= Akxk + Bkuk

yk = Hkxk

zk + 1 = Ak
rzk + Bk

ruk

yk = Hk
rzk
Korean J. Chem. Eng.(Vol. 21, No. 1)
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10.5 mol/s as low and high bounds, respectively, and the other is
the feed flow rate of surfactant solution between 0 and 4.97 mol/s.

The reactor is initially charged with deionized water 1 L, VAc
52 g, ferrous ammonium sulphate (FAS) 0.1 g and sodium ben-
zoate 1.12 g. The reaction temperature is assumed to be maintained
at 60oC. During the first 105 min, oxidizer (t-butyl hydrogen per-
oxide) and reducer (sodium formaldehyde sulphoxylate) are fed at
a fixed rate of 2.71×10−4 and 1.86×10−4 mol/s, respectively and in-
creased to 4.02×10−4 and 3.10×10−4 mol/s, respectively. The feed
of BuA is injected at 2.81×10−4 mol/s for the first 90 min and then
stopped until the end of the reaction.

Fig. 2 shows the results of weight averaged particle size distri-
bution (wPSD) at the final time for 60 batches. Since the inputs are
specified between the high and the low bounds, this figure accounts
for the reachable region of the system under the current operation
condition. During the early stage of the reaction, the amount of sur-
factant in the reactor does not reach the critical micelle concentra-
tion (cmc), so homogeneous nucleation occurs and the particles form
the primary peak in the wPSD at final time. After the surfactant con-
centration exceeds the cmc, only micellar nucleation takes place in
the reactor. It is observed in Fig. 2 that the primary peak has a sep-
arated region. This feature is explained by the effect of timing and
amount of the initial surfactant feed flow rate. The primary peaks
in the right-hand side (large particle primary peak region) are gen-
erated when the surfactant feed flow rate in the early stage is zero,
while those in the middle are produced when the input for surfac-
tant flow rate in the early stage has a value larger than zero. If the
surfactant is not fed in the early stage, the micellar nucleation is de-
layed due to the lack of surfactant. Small numbers of micelles are
responsible for the high monomer concentration in the particles and
the high growth rate during that period, and consequently large par-
ticles are generated. Since the primary peak is highly sensitive to
the amount and timing of the surfactant feed flow rate in the early
stage, the continuous region would be observed if the input is changed
more frequently (with high switching probability) and more input
levels are used.

The differences of amplitude among the peaks in the large parti-

cle primary peak region are attributed to the correlation of the 
cellar nucleation and the growth rate. If the rate of the micellar nu
ation is high, the number of micelle is increased and thus, the m
mer concentration in the particle and the growth rate become 
Therefore, the distribution which produces a primary peak of l
amplitude in the large particle primary peak region has a seco
ary peak of high amplitude.
2. Application to an Emulsion Copolymerization Process

From the principal component analysis results in the previ
section, linear time varying transformation matrices are determin
As discussed in the previous section, all the data are mean-
tered and scaled to have unit variance. For the principal compo
analysis, the Statistics Toolbox for MATLAB is used. Among th
state variables, the particle density functions and the weight a
aged particle size distributions at all grids for 60 batches are u
to calculate the transformation matrices at every sample time.

The results from the PCA reflect some of the characteristic
this system. Fig. 3 shows the loading that corresponds to the
principal component for the wPSD at final time. As observed
Fig. 3, the distribution in the small particle size has a different s
from that for the distribution in the large particle size, which mea
that the particles at each region have different sources: one 
the homogeneous nucleation (large particle) and the other from
micellar nucleation (small particle). Since the first PC covers ab
60% of total variances, the boundary for the different region in 
loading does not match the real boundary in the observed datcf.
Fig. 2).

The input trajectories used in the generation of database are
analyzed by using PCA. The input values at every 12 min are
lected for 60 batches and the loadings corresponding to the firs
for each input are presented in Fig. 4. As observed in the diag
the elements of loadings in the early state have the same sig
the distribution in the large particle size. As homogeneous nu
ation takes place in the early stage, the inputs during the first
minutes play a key role in controlling the peak by the homogene
nucleation.

The upper diagram in Fig. 5 shows the number of principal co

Fig. 2. Weight averaged particle size distribution at the final time
generated by pseudo random 4-level signals (60 batches).

Fig. 3. Loading for the first principal component of weight aver-
aged particle size distribution at final time.
January, 2004
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ponents for the particle density function (F) with 99.9% cumula-
tive variances at each sample time, respectively, while the lower
diagram presents the number of PCs for the wPSD. Since the pre-
diction of F with 90.0% cumulative variances shows disagreement
with the observed value (cf. Fig. 6), the number of PCs is deter-
mined so that the transformation matrix should constitute more than
99.9% of total variances. It is worth emphasizing that the PCA ap-
proach described in this paper employs the nonlinear fundamental
model directly, hence the unusually large variance is reasonable. If,
on the other hand, data were employed to generate the PCs, a lower
variance would be more practical to avoid capturing noise effects.
The number of PCs for F is chosen with the largest value (16) at
every sample time for the purpose of simplicity in constructing pre-
diction equation. As for the wPSD, the number of PCs for 99.9%
cumulative variances is determined as 15. It is noted that the state
variables for mass balance equations, such as monomer concentra-
tion in the reactor, are not projected to the latent variable space but
only the normalization is carried out as follows:

(21)

In general, the PCs for 80 or 90% variance predict the beha
of the original system in most of the results reported in the lite
ture, while the PCs for 99.9% variance are needed in this sys
This is because the measurement noise is not considered in th
set. If noise is present in the data set, a few dominant PCs wil
plain the behavior of the system and the others would be resp
ble for the measurement noise in such a way that fewer PCs
be needed.

After the transformation matrices are obtained, the reduced o
model is used in the prediction equation of linear model predic
control (MPC) to build the prediction of future output behavior wit
in a pre-specified horizon, called prediction horizon, in terms
current and future input moves within the control horizon. The p
diction equation is used to construct the performance index, w
is chosen to measure the output deviation from their respective
erence values, and the optimization is performed to find a sequ
of input moves that minimizes the performance index while sa
fying all the given constraints. The model predictive control alg
rithm implements only the first of the calculated input sequen
and the whole optimization is repeated at the next sampling ti
A key feature contributing to the success of MPC is that vario
process constraints can be incorporated directly into the on-line
timization performed at each time step. Various versions of M
based on the aforementioned principles have demonstrated 
effectiveness in application to complex processes [Garcia and Mo
1982; Lee and Ricker, 1994; Maner et al., 1996].

In the present system, the controller is applied to track the ti
varying wPSD reference trajectory under the assumption that
state is available by state feedback. The prediction (p) and co
(m) horizons are 10 and 5, respectively, and the sample time
min. The weighting matrices for control error (Λy) and input (Λu)
are 10×Iny×ny and diag([0.1, 0.52]), respectively. The constraints 
the input magnitude and the rate of input change are considere
follows:

xnormalized = 
x  − xmin

xmax − xmin

----------------------

Fig. 4. Loading for the first principal component of inputs.

Fig. 5. Number of principal components covering 99.9% of total
variance at each sample time.

Fig. 6. Comparison between the prediction of particle density func-
tion by principal components and the observed data.
Korean J. Chem. Eng.(Vol. 21, No. 1)
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Constraints on the input magnitude

0.0≤u1≤1.0×10−3 [mol/s]
0.0≤u2≤6.0×10−3 [mol/s]

Constraints on the rate of input change

−4.0×10−4≤∆u1≤4.0×10−4 [mol/s]
−2.0×10−3≤∆u2≤2.0×10−3 [mol/s]

Fig. 7 shows the wPSD at final time controlled by the linear MPC
under nominal condition, and Fig. 8 presents the input profile cal-
culated by the controller (solid line) and the nominal input profile
(dashed line) used in the calculation of the time-varying wPSD ref-
erence trajectory. When the controller based on the original full order
model is used, the closed loop system is hypersensitive to the change
of variable or a slight deviation from the setpoint; thus the perfor-
mance is not effective, even under the nominal case. As shown in

Figs. 7 and 8, the reduced order model yields a closed loop sy
that is well-conditioned and the performance is seen to be sati
tory.

To validate the performance of the controller for disturbance
jection, a disturbance is introduced to the surfactant concentra
in the feed. The concentration in the plant is less than that in
model by 10% and the result is shown in Figs. 9 and 10. In this c
the prediction and the control horizons are increased to 25 and
respectively, to improve the performance of the controller and
weighting matrices are changed to Λy=8.1×102Iny×ny and Λu=diag([0.1,
1.1]). Since the dynamic behavior of the system is determine
the early stage because of the characteristics of the batch re
the controller increases the feed flow rate of surfactant betwee
and 40min to compensate for the error by the disturbance. Altho
the inputs show aggressive responses between 70 and 100 m

Fig. 7. Weight averaged particle size distribution at the final time
controlled by the linear model predictive control on the basis
of the reduced order model under nominal condition (con-
trolled distribution and setpoint overlap each other).

Fig. 8. Input profiles calculated by the controller under nominal
condition and the nominal trajectories.

Fig. 9. Weight averaged particle size distribution at the final time
controlled by the linear model predictive control on the basis
of the reduced order model in the presence of disturbance
(surfactant concentration).

Fig. 10. Input profiles calculated by the controller in the presence
of disturbance and the nominal input trajectories.
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eliminate the effect of the disturbance on the primary peak, the in-
puts finally converge to the nominal profile because the effect of
the disturbance in the later stage of the reaction is not strong. At
the final time, the controlled output shows a slight deviation but the
error defined as

(22)

where || · || denotes the Euclidean norm is 1.84%. In summary, the
disturbance rejection performance of the controller based on the
reduced order model is shown to be quite good.

CONCLUSIONS

This article addresses the application of a model order reduction
using principal component analysis to project a first principles mod-
el with high order onto the well conditioned latent variable space.
The numerical solution of the population balance equation involves
the discretization of the spatial coordinate, and thus the order of the
system becomes high for the accurate prediction of the dynamic
behavior of the system. In order to reduce the order of the original
model, transformation matrices are calculated by using principal
component analysis at every sample time from the data set gener-
ated by the responses of pseudo random multi-level input signals.
Using these transformation matrices, the linear models obtained by
the linearization of the original model along the nominal trajectory
are transformed to the reduced order linear time-varying model.
Since the number of the states and the outputs is reduced to less
than 10% of the original order, and the magnitudes of order of la-
tent variables are reasonable, the closed loop system becomes well
conditioned in such a way that the controller developed by the re-
duced order model shows remarkable performance in controlling
the entire particle size distribution both under the nominal case and
in the presence of disturbance.

In our future work, the use of additional outputs such as total num-
ber of particles and solid content will be considered to improve the
performance of the controller. In addition, the effectiveness of the
transformation matrices will be corroborated under various types
of disturbances in experimental studies, and the validity of the strat-
egy to produce polymer product with a desired entire particle size
distribution will be proven.
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