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Abstract−−−−The temporal development of thermal disturbances in the fluid layer heated isothermally from below is
investigated, based on propagation theory. This theory is examined by using scaling. To examine the behavior of
thermal instability the mean-field approximation is employed and resulting equations are solved by Galerkin method.
The stability criteria to mark the onset of convective instability are newly suggested as the intersection point of the
growth rate of averaged temperature with that of its fluctuation. The resulting critical time is close to that derived from
propagation theory. By considering the nonlinear effects, the characteristic times to represent the detection time of
manifest convection and also to exhibit the minimum Nusselt number are discussed.
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INTRODUCTION

When a fluid layer is heated from below, it becomes potentially
unstable by the buoyancy forces due to the inverse density gradi-
ent. This phenomenon is familiar to anyone who has observed the
shimmering of air. The mechanism of such convective flow is re-
sponsible for some great ocean currents and for the global circula-
tion of the atmosphere. Since systematic experiments of Bénard
[1901] and linear stability theory of Lord Rayleigh [1916] were in-
troduced, a great deal of work has been conducted in the field of
mathematics, physics and engineering. Buoyancy-driven convec-
tion plays an important role in conventional heat and mass transfer
systems, materials processing requiring uniformity of products, and
in the design of reactors. In many practical processes, a sudden heat-
ing or cooling with a high temperature gradient is more common.
Buoyancy-driven convection can occur before the temperature pro-
file in the basic state becomes fully developed. Therefore, it is im-
portant to know when or where the buoyancy-driven convection
sets in.

For a system having a time-dependent nonlinear temperature pro-
file, the onset of natural convection was first investigated theoreti-
cally by Morton [1957] and experimentally by Soberman [1959],
respectively. Foster [1965] developed the amplification theory, which
uses an initial value technique to match disturbances with time in
the system. This theory requires the amplification factor to repre-
sent the detection time of manifest convection. With the mean-field
approximation involving nonlinear convective terms Herring [1963,
1964] analyzed the fully developed heat transport. Elder [1969] ex-
amined the time-dependent development of convective motion with
the mean-field approximation by using the finite difference scheme.
Using a stochastic model, Jhaveri and Homsy [1982] defined the
onset of convective motion by comparing the convective heat trans-
port with the conductive one. They employed stochastic white noise

as an initial condition. Hohenberg and Swift [1992] suggested a m
el where the Langevin noise term inducing convective motion
used as an initial condition.

Recently, the onset of natural convection has been analyze
various time-dependent systems by using propagation theory [C
et al., 1998; Kang et al., 2000; Kim et al., 2002; Yang and Ch
2002]. However, there exists some difference between the 
dicted onset times derived from propagation theory and availa
experimental data. In the present study the propagation theo
re-examined by using scaling and with the stability criteria from 
propagation theory the Oberbeek-Boussinesq equations are s
by the Galerkin method. The new stability criteria are suggested
comparing the temporal growth rate of the conduction tempera
field with that of fluctuations. The present study is concerned w
the case of a large Prandtl number Pr, especially Pr�∞, and the
characteristic time to mark the detection of manifest convectio
discussed in comparison with available theoretical predictions 
experimental data.

GOVERNING EQUATIONS

The system considered here is an initially quiescent Newton
fluid between the two horizontal rigid plates heated from below
shown in Fig. 1. Here Z denotes the vertical distance. The tem

Fig. 1. Schematic diagram of conduction state considered in the
present study.
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ature of fluid is Ti for time t≤0 and for t>0 there is a step change in
the bottom temperature to a higher value Tb. For a large ∆T(=Tb−
Ti), thermal instabilities inducing buoyancy forces will set in at a
certain time and grow with time. Based on the Boussinesq approx-
imation, the proper dimensionless governing equations are repre-
sented by

(1)

(2)

where u, θ, τ and ek denote the velocity vector, the temperature, the
time, and the unit vector in the z-direction, respectively. Here d, d

2
/

α, α/d and ∆T are scaling factors for distance, time, velocity, and
temperature, respectively. Symbols d and α denote the fluid depth
and the thermal diffusivity, respectively. Eq. (1) has been obtained
by eliminating the pressure from equations of continuity and mo-
tion. The important dimensionless parameters, the Prandtl number
Pr and the Rayleigh number Ra, are defined as

(3a-b)

where ν, α and β are the kinematic viscosity, the gravitational ac-
celeration and the thermal expansion coefficient, respectively.

PROPAGATION THEORY

By following the well-known linear stability analysis the infini-
tesimal perturbation quantities u1 and θ1 are superimposed on the
basic quantities u0 and θ0, respectively. Since the present system is
initially quiescent, u0=0. For the regular convective motion, the di-
mensionless vertical velocity component w1 and the temperature
one θ1 can be described as

(4)

where the subscript * and i denote the perturbed amplitude func-
tion and the imaginary number, respectively. Here ax and ay repre-
sent the dimensionless wavenumbers along the x- and y-direction,
respectively. Based on the above normal mode of disturbances, the
propagation theory assumes that the thermal disturbances at the crit-
ical onset time to mark the onset of a fastest growing instability are
propagated mainly within the thermal boundary layer [Yang and
Choi, 2002].

Under this assumption the scaling balances between viscous and
buoyancy forces in the Z-component of the equation of motion

(5)

where ∆T is the thermal boundary-layer thickness. From the above
relation the scaling relationship of  can be de-
rived. Here  is the dimensionless thermal boundary-layer
thickness with . For a given Ra, the velocity and tempera-
ture disturbances are assumed to have the form of 
and , where  represents the similarity variable.
Now, the new stability equations are produced self-similarly from
Eqs. (1) and (2):

(6)

(7)

with the following boundary conditions

(8)

where D=d(·)/dζ, Ra*=Raτ3/2 and a*=aτ1/2 with a= . Here τ
is regarded as parameter, i.e., τ=τc at critical condition.

For deep-pool systems, the upper boundary of ζ=1/  approach-
es the infinite as τ�0. The basic temperature, θ0, which is the tem-
perature profile in conduction state, is described by

as τ�0. (9)

For given Pr and a* the minimum value of Ra* is calculated numer-
ically. Then the minimum value of τ, i.e., , and its corresponding
wavenumber ac is obtained for given Pr and Ra. The minimum va
ue of Ra* increases with increasing n(≥0) and the case of n=0 con
stitutes the minimum bound, as shown in Fig. 2. If n<0, it is ir
tional since θ*�∞ as τ�0 near z=0. This procedure can be e
tended to the whole time domain by fixing τ in Eqs. (6)-(8) [Yang
and Choi, 2002; Kim et al., 2002]. For τ�∞ we can obtain the well-
known critical values, r=1,708 and ac=3.12, which correspond to
the case of the fully developed, linear temperature profile.

From marginal stability curves shown in Fig. 2, the stability c
teria to mark the onset of thermal instability are obtained:

tc
*=7.54Ra−2/3 with ac=0.197Ra1/3 as τ�0 and Pr�∞ (10)

At the condition of  with Ra=104 the normalized am-
plitudes of velocity and temperature disturbances are shown in
3. For Pr�∞, the velocity amplitude w* covers the whole domain
while the temperature one, θ* exists mainly within δT. It seems evi-

1
Pr
----- ∂

∂τ  

------ − ∇2

 
 ∇2u = 

1
Pr
-----∇ ∇ u ∇u⋅( )×( ) + Ra∇ ∇ ekθ×( )×× ,

∂
∂τ 

------  + u ∇⋅ 
 θ  = ∇2θ,

Pr = 
ν
α
---   and   Ra = 

gβ∆Td3

αν
------------------,

w1 θ1,( ) = w*
θ

*
,( )exp i axx + ayy( )[ ],

νW1

∆T
2

------- gβT1,∼

w1 Raθ1( )⁄ δT
2 τ∼ ∼

δT = ∆T d⁄( )
δT τ1 2⁄∝

w*  = τn + 1w* ζ( )
θ

*
 = τnθ* ζ( ) ζ = z τ⁄( )

D2
 − a*2( )2

 + 
1

2Pr
-------- ζD3

 − a*2ζD  + 2n + 2( )a*2[ ]
 
 
 

w*
 = Ra* a*2θ* ,

D2
 + 

1
2
---ζD  − a*2

 − n 
 θ*

 = w* Dθ0,

w*
 = Dw*

 = θ*
 = 0 at ζ = 0 and ζ  = 1 τ⁄ ,

ax
2

 + ay
2

τ

θ0 = 1− erf
ζ
2
--- 

 

τc
*

τc
*

 = 1.6 10− 2×

Fig. 2. Marginal stability curves for ττττ�0. The minimum of Ra*-
value=20.71 with ac

*=0.54 for n≥≥≥≥0.
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dent that the thermal disturbances are propagated mainly within the
thermal boundary layer until the temperature profiles deviate from
the conduction state and then disturbances are amplified enough to
be detected with naked eyes or thermocouples. The validity of this
statement is challenged below by using the Galerkin method.

GROWTH OF DISTURBANCES

1. Mean-Field Approximation
In the present study we employ the mean-field approximation

suggested by Herring [1964]. For initially quiescent fluid layer the
temperature and velocity fields are divided into the sum of a hori-
zontal mean and its fluctuating part:

(11a)
(11b)

Here  denotes the horizontally averaged one and the superscript
' represents the deviation from the mean temperature. The resulting
mean-field equations are obtained by introducing Eqs. (11) into (1)
and (2):

(12)

(13)

(14)

where . The terms H and M represent the fluc-
tuating self-interactions owing to advection of heat and momen-
tum, i.e., . For Pr�∞ the nonlinear term M in Eq. (12) can
be negligible. Since the mean temperature gradients are large near
the bottom boundary, H can be negligible in the bulk of the flow.
These are well illustrated by the work of Herring [1963] and Elder

[1969]. The proper boundary conditions are

at z=0, (15a)
at z=1. (15b)

2. Galerkin Method
When ignoring the convective terms of fluctuations, the we

known linear stability equations are recovered from Eqs. (12)-(1
In order to treat the transient behavior of thermal instabilities, 
Galerkin method is employed. The two-dimensional velocity a
temperature disturbances are assumed by a series of specifie
tial functions with time-dependent amplitude coefficients like E
(4):

(16)

(17)

(18)

where sin(πz)sin(nπz) and sin(nπz). These

functions automatically satisfy the boundary conditions. The t
functions of w* and θ* are the same as those of Gresho and S
[1971]. By substituting Eqs. (16)-(18) into (12)-(14) and using t
orthogonality of the trial functions we obtain the following linea
set of 3N simultaneous, first-order differential equations for the a
plitude coefficients:

(19)

(20)

(21)

where k=1, 2, 3, ……, N. The matrices Hkm, Kkmn and Nklm have the
following elements:

(22a)

(22b)

(22c)

The above amplitude Eqs. (19)-(21) need the rational initial c
ditions but they cannot be specified at τ=0. Therefore the calcula-
tion starts at τ=τi(<<tc

*). At τ=τi, the normalized quantities of dis
turbance amplitudes derived from the propagation theory are g
with proper magnitudes of w* and θ* in Eqs. (16) and (17), i.e., w*i

and θ*i, and mean temperature is obtained from Eq. (18). In the p
ent study we set τi=10−4. Then the initial coefficients are expressed 

(23)

(24)

(25)

θ τ x y z, , ,( ) = θ τ z,( )〈 〉  + θ ' τ x y z, , ,( ),
w τ x y z, , ,( ) = w τ z,( )〈 〉  + w' τ x y z, , ,( ).

  ⋅〈 〉

1
Pr
----- ∂

∂τ  

------ − ∇2

 
 ∇2w' = Ra∇1

2θ ' + 
M
Pr 

------,

∂
∂τ 

------  − ∇2

 
 θ  ' = − w'

∂ θ〈 〉
∂z

----------  + H,

∂
∂τ 

------  − 
∂

∂z2
------- 

  θ  〈 〉  = − 
∂
∂z
----- w'θ '〈 〉,

∇1
2

 = ∂2 ∂x2⁄  + ∂2 ∂y2⁄

u ∇   ⋅( )⋅

w' = ∂w' ∂z = θ  '⁄  = θ 〈 〉  − 1= 0
w' = ∂w' ∂z = θ  '⁄  = θ 〈 〉  = 0

w' τ x z, ,( )  = w*cos ax( ),

θ ' τ x z, ,( ) = θ*cos ax( ),

θ τ z,( )〈 〉 = 1− z + 2
Cn τ( )
nπ

------------sin nπz( ),
n = 1

∞

∑

w*  = A n τ( )
n = 1

∞

∑ θ
*  = Bn τ( )

n = 1

∞

∑

dAk

dτ
---------  = − Pr k2

 + 1( )π2
 + a2[ ]A k + 

4a2PrRa

k2
 + 1( )π2

 + a2[ ]
------------------------------------ BmHkm,

m= 1

N

∑

dBk

dτ
--------  = − k2π2

 + a2[ ]Bk + 2 AmHkm − 2 AmCnK kmn
n = 1

N

∑
m= 1

N

∑
m= 1

N

∑ ,

dCk

dτ
--------  = − k2π2Ck − 

kπ
2

------ A lBmNklm
m= 1

N

∑
l = 1

N

∑ ,

Hkm = sin kπz( )sin πz( )sin mπz( )dz,
0

1∫
K kmn = sin kπz( )sin πz( )sin mπz( )cos nπz( )dz,

0

1∫

Nklm = 

d
dz
----- sin mπz( )sin πz( )sin lπz( ){ }sin kπz( )dz.

0

1∫

A k τi( )  = 2 w
* iwp τc

* z,( )sin πz( )sin kπz( )dz,
0

1∫

Bk τi( ) = 2 θ
* iθp τc

* z,( )sin kπz( )dz,
0

1∫

Ck τi( ) = exp − k2π2τi( ),

Fig. 3. Amplitude profiles of basic temperature and normalized
temperature and velocity disturbances.
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where wp and θp are the normalized profiles at τ=τc
* (see Fig. 3)

and Nu, qw, and k denote the Nusselt number, the heat flux at the
bottom wall, and the thermal conductivity, respectively. Now, Eqs.
(19)-(21) can be integrated from τ=10−4 until the desired time. The
integration is done numerically by using Gear’s BDF method which
can treat the stiffness of nonlinear terms. If the coupled convective
term  does not exist in Eq. (14), less than 20 Fourier coef-
ficients are enough to describe development of fluctuations, as was
done by Foster [1965]. We chose ∆τ=10−4 with 120 Fourier terms.
The calculated values Ak, Bk and Ck are compared with the pre-
dicted ones of the previous time within the error tolerance of O(10−6).

Since we treat the case of Pr�∞, it is clear that dAk/dτ=0 in Eq.
(19). By choosing the proper θ* i-value we can proceed with the pres-
ent Galerkin scheme, starting from τ=τi.

RESULTS AND DISCUSSION

1. Fully Developed State
In the fully developed region with Ra=104 and Pr�∞, the pro-

files of the mean-field temperature and fluctuations are shown in
Fig. 4. Here ac for a fastest growing mode has been obtained from
the propagation theory. It is known that the quantities except w' are
seriously distorted from the initial shapes given in Fig. 3. Such a
behavior stresses the nonlinear coupling effect caused by the term

 in the present system. The profiles of θ ' and  show that
the conduction layers exist near the upper and lower boundaries.

Table 1 shows that for Ra=104 and a=9 there is a small differ-
ence in Nu according to the choice of numerical technique. In the
present study we used the 120 Fourier coefficients and the trial func-
tions defined by Gresho and Sani [1971] while Herring [1964] used
the Green function based on multiple wavenumbers and Elder [1969]
employed the finite difference method. The present results show

that the present Galerkin method is valid at Ra=104.
2. Temporal Evolution of Disturbances at Ra=104

The temporal evolution of the fluctuation fields for Ra=104 is
shown in Fig. 5. Here the maximum values of w' and θ ' have been
normalized by their initial maximum magnitudes w'i,max and θ 'i,max.
Up to τ=τc

* there is no significant change in the amplitudes of flu
tuation quantities. As Mahler et al. [1968] commented that the in
disturbances would be constant, such a behavior is shown in
time domain of 0≤τ≤τc

*. The ratio of w'max to θ 'max increases slowly
up to τ=τc

*. For τ>τc
*, there is a super exponential growth of di

turbances since the temperature field has been developed to a
preciable extent. In the fully developed region the fluctuation am
tude behaves like a damped oscillator and eventually converge
a constant value due to the effect of the nonlinear term, i.e., 

Fig. 6 shows that for 0<τ<τu the heat transport seems to be go
erned by conduction. Here τu is called the undershoot time. Mani
fest convection exists for τ≥τu. For small time the heat transfer rat
under the conduction state decreases with t1/2 while the thermal bound-
ary-layer thickness increases with t1/2. However, after manifest con-
vection is detected, the heat transfer rate starts to increase with
and the Nusselt number Nu starts to deviate from that of con
tion. Jhaveri and Homsy [1982] regarded the detection time of m
ifest convection as that time when the Nu-value is 1% larger t
that of conduction state. With θ*i=10−3, the predicted τu-value is close
to that in available experiments [Patrick and Wragg, 1975; Inoue e
1983]. Therefore it may be stated that  in the actual syste

Here we employ the root-mean-square (rms) quantity in orde

Nu = 
qwd
k∆T
----------  = 1− 2 Ck τ( ),

k = 1

N

∑

w'θ  '〈 〉

w'θ '〈 〉 θ〈 〉

w'θ  '〈 〉

τu 4τc
*≅Fig. 4. Fully developed profiles of basic and fluctuation quantities

for Ra=104 and ac=4.5.

Table 1. Comparison of present results with available ones in fully
developed state of Ra=104 and a=9

w'max θ 'max Nu

Present study 29.770 0.1847 2.788
Herring [1964] 21.950 0.1850 2.824
Elder [1969] 21.912 0.1847 2.823

Fig. 5. Temporal evolution of disturbances for Ra=104 and ac=4.5.
January, 2004
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(27)

where V is the total volume of the system considered. The rms con-
cept is applied to both the velocity and the temperature fields. Foster
[1965] proposed the so-called amplification factor using the rms
value of vertical velocity normalized with the initial value, i.e., (τ)=
w*, rms(τ)/w*i, rms(τi). From the linearized equations of (12)-(14) the
amplification theory is recovered. But this theory loses its validity
when the effect of nonlinear term  becomes significant. Gre-
sho and Sani [1971] assumed that =103 at the detection time of
manifest convection. For Ra=104, our results show that τc

*=1.6×10−2

with ac=4.5 and =697 at τ=τu, as shown in Fig. 6. In the figure
it is shown that linear theory is valid until τ≈τu. The coupled
nonlinear term plays a significant role for τ>τu.

To clarify the detection time of manifest convection we intro-
duce the following growth rates using the rms values of mean tem-
perature and its fluctuations:

(28a-b)

where r0 and r1 represent the growth rates of mean temperature and
its fluctuations, respectively. For small time r0=1/(4τ) from Eq. (9).
Their temporal behavior is shown in Fig. 7. For τ<τc, r0 is larger
than r1. The fluctuations are deamplified for r1<0 and τ c

* exists near
τc. The r1-value reaches the maximum r1,max at τ=τr1,max and then it
decreases sharply with time. Considering , it is supposed
that manifest convection would be detected near these characteris-
tic times. The critical time τc may be called the onset time of intrinsic
instability because τc is independent of magnitude of θ*i with τc<τc

*.
As shown in the figure, however, τr1,max is sensitive to the magni-
tude of θ*i.
3. Large-Ra Case

For Ra=105, 106 and 107, the above Galerkin scheme with θ*i=
10−3 has been used in obtaining τc, ac, r1 and Nu. Here ac is chosen
as the critical value like that of Ra=104, with which the earliest time
τc to reach r1=r0 is obtained. In Fig. 8, τc is compared with τ c

*. For
Pr>2000 the experimental τu-values of Patrick and Wragg [1975
and Inoue et al. [1983] are located near .

Fig. 9 shows the critical wavenumbers obtained from several m
els. For large Ra, the ac-values from the Galerkin method are muc
smaller than the others. For Ra=105, the present Galerkin schem
yields τc=3.7×10−3 with ac=5.5 while the propagation theory doe
τc

*=3.5×10−3 with ac=9.1 from Eq. (10). The onset of convectiv

  ⋅( )rms = 
1
V
----   ⋅( )2dV

V∫
1 2⁄

w

w'θ '〈 〉
w

w

r0 = 
1

θ〈 〉rms

-------------d
θ〈 〉rms

dτ
----------------, r1= 

1
θ 'rms

---------d
θ 'rms

dτ
------------,

τu τr1 max,≅
τ 4τc

*≅

Fig. 6. Nusselt number Nu and amplification factor  as a func-
tion of time ττττ for Ra=104 and ac=4.5.

w Fig. 7. Comparison of growth rate of mean temperature with its
perturbed one for θθθθ*=10−−−−3, 10−−−−6, 10−−−−9 with Ra=104 and ac=
4.5.

Fig. 8. Comparison of characteristic times with experimental data.
Korean J. Chem. Eng.(Vol. 21, No. 1)
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motion is first detected experimentally at τ=τm, which is usually a
little smaller than τu. It is supposed that with the proper θ* i-value,
e.g. θ* i=10−3, τm=τr1,max. From the amplification theory, Gresho and
Sani [1971] obtained τm=1.4×10−2 with ac=6.75 while Foster [1968]
did τm=1.2×10−2 with ac=5.8. These predictions show that 
and , and the ac-value from the Galerkin method is close
to Foster’s. The Nu-values obtained from the Galerkin method agree
well with the experimental data of Koschmieder and Pallas [1974]
for Ra≤105. But it is concluded that the present Galerkin scheme is
useful for Ra≤104 because τc

*>τc at Ra=105.
Elder [1969] analyzed the system, based on the growth rate of

the spatial maximum value of temperature fluctuations at each instant.

The present r1,max-values and his growth rates are compared in F
10. In both cases the growth rates are almost proportional to R2/3.
This means that they are inversely proportional to τc

* (see Eq. (10)).
Since r0=1/(4τ) from Eq. (9), the condition of r0=r1 yields r1=1/(4τc).
Now, it is suggested that the condition of r0=r1 is the measure to
predict the onset of thermal instability, i.e., τc and ac, for a given Ra
and Pr.

CONCLUSION

In the present study the temporal evolution of disturbance
the fluid layer heated from below has been investigated theo
cally for Pr�∞. Based on propagation theory, the Galerkin me
od has been employed. It is shown that the present Galerkin sch
is useful for Ra≤104. But it is believed that the results of Ra=104

would be extended qualitatively to the case of a higher Ra. We 
suggest a new measure to predict the onset of thermal insta
and also that of manifest convection, based on the growth rate
the basic temperature field and its fluctuations. This new param
(r1=r0) will be very useful in pursuing more refined stability anal
sis for large-Pr systems.
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NOMENCLATURE

a : wavenumber
d : depth of fluid layer
g : gravitational acceleration
k : heat conductivity
Nu : Nusselt number, qwd/(k∆T)
Pr : Prandtl number, ν/α
qw : bottom wall heat flux
r0 : growth rate of mean temperature
r1 : growth rate of temperature fluctuations
Ra : Rayleigh number, gβ∆Td3/(αν)
T : temperature
u : velocity vector
w : dimensionless vertical velocity, Wd/α
X : spanwise coordinate
Z : vertical coordinate
z : dimensionless vertical coordinate, Z/d

Greek Letters
α : thermal diffusivity
β : thermal expansivity
δT : dimensionless thermal boundary-layer thickness
∆T : dimensional thermal boundary-layer thickness
ν : kinematic viscosity
θ : dimensionless temperature, T/∆T
τ : dimensionless time, tα/d2

ζ : similarity variable, z/

Subscripts

τc τc
*≅

τm τu 4τc
*≅ ≅

τ

Fig. 9. Comparison of critical wave numbers from various mod-
els.

Fig. 10. Comparison of the present growth rate r1,max with Elder’s.
January, 2004
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rms : root-mean-square
i : initial condition

Superscript
' : perturbed state
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