
Korean J. Chem. Eng., 21(1), 69-74 (2004)

 this
p-

ble

 an

te 
dia-
The
sed

rav-
sion
69

†To whom correspondence should be addressed.
E-mail: mckim@cheju.ac.kr
‡This paper is dedicated to Professor Hyun-Ku Rhee on the occasion
of his retirement from Seoul National University.

Onset of Buoyancy-Driven Convection in the Horizontal Fluid Layer Heated
from Below with Time-Dependent Manner

Min Chan Kim †, Tae Joon Chung* and Chang Kyun Choi*

Department of Chemical Engineering, Cheju National University, Cheju 690-756, Korea
*School of Chemical Engineering, Seoul National University, Seoul 151-744, Korea

(Received 8 September 2003 • accepted 26 September 2003)

Abstract−−−−The onset of buoyancy-driven convection in an initially isothermal, quiescent fluid layer heated from below
with time-dependent manner is analyzed by using propagation theory. Here the dimensionless critical time τc to mark
the onset of convective instability is presented as a function of the Rayleigh number Raφ and the Prandtl number Pr.
The present stability analysis predicts that τc decreases with increasing Pr for a given Raφ. The present predictions com-
pare reasonably well with existing experimental results. It is found that in deep-pool systems the deviation of tem-
perature profiles from conduction state occurs starting from a certain time τ (2~4)τc.
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INTRODUCTION

When an initially quiescent, horizontal fluid layer is cooled from
above or heated rapidly from below, the basic temperature profile
of heat conduction develops with time and buoyancy-driven con-
vection sets in at a critical time. In this transient system the critical
time tc to mark the onset of convective instability becomes an im-
portant question. This instability problem may be called an exten-
sion of classical Rayleigh-Benard problems. The related instability
analysis has been conducted by using the frozen-time model [Mor-
ton, 1957], propagation theory [Choi et al., 1998; Yang and Choi,
2002; Kim et al., 2002], maximum-Rayleigh-number criterion [Tan
and Thorpe, 1999], amplification theory [Foster, 1965], and sto-
chastic model [Jhaveri and Homsy, 1982]. The first two models are
based on linear theory and yield the critical time tc. The last two
models require the initial conditions at the heating time t=0 and the
criterion to define manifest convection, which yields the character-
istic time tm to mark the first detection of manifest convection.

For transient conduction systems cooled from above or heated
from below, propagation theory has been used to analyze the insta-
bility problems. This model assumes that at t=tc infinitesimal tem-
perature disturbances are propagated mainly within the thermal pen-
etration depth and with this length-scaling factor all the variables
and parameters having the length scale are rescaled. The resulting
stability criteria have compared well with experimental data in solid-
ification [Hwang and Choi, 1996] and Marangoni-Benard convec-
tion [Kang et al., 2000]. Also, a similar approach is found to be suc-
cessful in cases of forced convection flow [Choi and Kim, 1994;
Kim et al., 1999, 2003] and porous media [Lee et al., 2000; Chung
et al., 2002].

Here we will concentrate on the instability problem in an initially
isothermal, quiescent fluid layer. Starting from time t=0, the lower

boundary is heated with a constant temporal heating rate. For
specific system the instability criteria will be obtained by using pro
agation theory. Our predictions will be compared with availa
experimental and theoretical results.

THEORETICAL ANALYSIS

1. Mathematical Formulations
The system considered here is a Newtonian fluid layer with

initial temperature Ti. For time t>0 the horizontal layer of fluid depth
d is heated from below with the constant temporal heating raφ
and its upper boundary is kept isothermally. The schematic 
gram of the basic system of pure conduction is shown in Fig. 1. 
governing equations of flow and temperature fields are expres
by employing the Boussinesq approximation as

(1)

(2)

(3) 

where U, T, P, ν, g, ρ, β, k and α represent the velocity vector, the
temperature, the dynamic pressure, the kinematic viscosity, the g
itational acceleration constant, the density, the thermal expan
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----∇P + ν∇2U  + gβTk,
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T  = α∇2T,

Fig. 1. Sketch of the basic conduction state considered here.
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coefficient, the vertical unit vector and thermal diffusivity, respec-
tively. The subscript r represents the reference state. The surface
temperature Ts at the vertical distance Z=0 increases with time dur-
ing the conduction period.

The important parameters for characterizing the onset of motion
in the present system are the Prandtl number (Pr), the Rayleigh num-
ber based on the temperature difference (Ra), and Rayleigh num-
ber based on the temporal heating rate (Raφ): Pr=ν/α, Ra=gβ∆Td3/
(αν) and Raφ=gβφd5/(αν). Under linear theory the nondimension-
alized conservation equations are given as usual:

(4)

(5)

where  is the three-dimensional Laplacian, and  is the hori-
zontal one with respect to x and y. Here z, τ, w1, θ0 and θ1 are the
dimensionless vertical distance, time, vertical velocity disturbance,
basic temperature and perturbed temperature, respectively. Each
variable has been nondimensionalized by using d, d2/α, α/d, φd2/α
and αν/gβd3, respectively. The proper boundary conditions of no
slip and no perturbation of temperature are

(6)

For the basic state of heat conduction the dimensionless temper-
ature profile is represented by

(7)

with the following initial and boundary conditions,

θ0(0, z)=0, θ0(τ, 0)=τ, θ0(τ, 1)=0. (8)

The exact solutions of Eqs. (7) and (8) can be easily obtained as 

(9)

Here A=n/ +ζ/2 and B=(n+1)/ −ζ/2, where ζ is the similar-
ity variable (=z/ ). The “inerfc” means the n-th integral of the
com- plementary error function. For deep-pool systems of small τ
the above temperature profile is approximated by

(10)

2. Propagation Theory
For a given Raφ and Pr the time to mark the onset of convective

instability should be found under the principle of the exchange of
stabilities from Eqs. (4) and (5), subjected to the boundary condi-
tions of Eq. (6). According to the normal mode analysis convec-
tive motion is assumed to exhibit the horizontal periodicity [Chand-
rasekhar, 1961]. Then the perturbed quantities are written in terms
of dimensionless wavenumbers ax and ay as

(11)

where ‘i’ is the imaginary number. Substitution of the above equa-

tion into Eqs. (4)-(6) produces the usual amplitude functions in te
of the dimensionless horizontal wavenumber a=(ax

2+ay
2)1/2.

The propagation theory employed to find the onset time of c
vective instability, i.e., the critical time tc, is based on the assump
tion that in deep-pool systems the infinitesimal temperature dis
bances are propagated mainly within the thermal penetration d
∆T(  at the onset time of convective instability and the fo
lowing scale relations are valid for perturbed quantities from E
(2) and (3):

(12)

(13)

from the balance between viscous and buoyancy terms in Eq
and also from the balance among terms in Eq. (3). Now, base
the relation (12), the following amplitude relation is obtained in 
mensionless form:

(14)

where δT(=∆T/ ) is the usual dimensionless thermal penet
tion depth following θ 0

*=0.01 at z=δT. The relation (13) yields

(15)

where Ra*=Raφτ5/2, w*=w1
*/τ and D=d/dζ.

With the above reasoning the dimensionless amplitude funct
of disturbances, based on the relation (14), are assumed to ha
form of

(16)

The similarity variable ζ is introduced to take into account the po
sition and temporal dependencies of disturbances. By using 
(10), (11) and (16), the following dimensionless stability equatio
are obtained for τ�0:

(17)

(18)

with boundary conditions,

at ζ=0 and ζ�∞, (19)

where a*=a . Here a* and Ra* have been assumed to be eige
values. In the limiting case of Pr�0, the viscous terms are negli
gible, and the above stability equations reduce to

(20)

(21)

The boundary conditions at the heated surface are given as

w*=θ *=0 at ζ=0. (22)

The above equations involve the time dependency implicitly. 

1
Pr
----- ∂

∂τ
----- − ∇2

 
 
 

∇2
w1 = − ∇1

2θ1,

∂θ1

∂τ
------- + Raφw1

∂θ0

∂z
------- = ∇2θ1,

∇2 ∇1

2

w1 = 
∂w1

∂z
---------  = θ1= 0   at   z = 0   and   z = 1.

∂θ0

∂τ
------- = 

∂2θ0

∂z2
---------,

θ0 = 4τ i2erfcA − i2erfcB[ ].
n = 0

∞

∑

τ τ
τ

θ0 = 4τi2erfc
ζ
2
--- 

      as τ 0→ .

w1 τ x y z, , ,( ), θ1 τ x y z, , ,( )[ ]
= w1

* τ z,( ), θ1
* τ z,( )[ ]exp i axx + ayy( )[ ]

αt∝

νW1

∆T
2

------- gβT1,∼

W1

∂T0

∂Z
-------- αT1

∆T
2

-----,∼

w1
*

θ1
*

------ δ T
 2 τ,∼ ∼

d τ∝

Ra*w*Dθ0
* θ1

* ,∼

w1
* τ z,( ), θ1

* τ z,( )[ ] = τw* ζ( ), θ* ζ( )[ ].

D2
 − a*2( )2

 + 
1

2Pr
-------- ζD3

 − a*2ζD  + 2a*2( )
 
 
 

w*
 = a*2θ* ,

D2
 + 

1
2
---ζD  − a*2

 
 θ*

 = Ra*w*Dθ0
* ,

w*
 = Dw*

 = θ*
 = 0

τ

ζ
2
---D3

 − 
ζ
2
---a*2D  + a*2

 
 w*

 = a*2θ* ,

D2
 + 

1
2
---ζD  − a*2

 
 θ*

 = PrRa*w*Dθ0
* .
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For a given Pr the minimum value of Ra* should be found in the
plot of Ra* vs a* under the principle of the exchange of stabilities.
In other words, the minimum value of τ, i.e., τc and its correspond-
ing wavenumber αc are obtained for a given Pr and Raφ. Since time
is frozen by letting  under the frame of amplitude co-
ordinates τ and ζ instead τ and z (see Eqs. (10), (17) and (18)), the
propagation theory may be called the relaxed frozen-time model
by implicitly treating τc as the parameter but it considers the time
dependency.

The conventional frozen-time model neglects the terms involv-
ing  in Eqs. (4) and (5) in amplitude coordinates τ and z.
This results in (D2−a*2)2w*=a*2θ* and (D2−a*2)θ*=Ra*w*Dθ0

* instead
of Eqs. (17) and (18). The resulting stability criteria become inde-
pendent of Pr and τc is obtained for a given Raφ

3. Solution Method
In order to integrate the stability Eqs. (17) and (18), the trial value

of the eigenvalue Ra* and the boundary conditions D3w* and Dθ *

at ζ=0 are assumed properly for given Pr and a*. Since the bound-
ary conditions represented by Eq. (19) are all homogeneous, the
value of Dw* at ζ=0 can be assigned arbitrarily. This procedure is
based on the outward shooting method in which the boundary value
problem is transformed into the initial value problem. The trial val-
ues, together with the four known conditions at the heated bound-
ary, give all the information to perform the numerical integration.

The integration based on the 4th-order Runge-Kutta method is
done from ζ=0 to a fictitious distance to satisfy the infinite bound-
ary conditions. With the Newton-Raphson iteration the trial values
of Ra*, D3w* and Dθ * are corrected until the stability equations sat-
isfy the infinite boundary conditions within the maximum relative
tolerance of 10−8. Then, by increasing the distance step by step the
above integration is repeated. Finally, the value of Ra* is decided
through the extrapolation. Using the similar procedure, the results
from the frozen-time model are obtained.

RESULTS AND DISCUSSION

The predicted values based on the propagation theory constitute
the stability curve, as shown in Fig. 2. From the minimum Ra*-value

the earliest time to mark the onset of thermal instability, i.e., τc is
obtained for a given Pr and Raφ. The critical conditions predicted
for deep-pool systems are shown in Fig. 3 and also in Table 1. B
on these results, the critical conditions are correlated as

(23)

within the error bound of 2%. It is believed that for a given Raφ and
Pr a fastest growing mode of infinitesimal disturbances would
in at t=tc with a=ac. The above equations show that τc decreases
with an increase in Raφ and also Pr. Eq. (23) can be rewritten as
function of Ra:

(24)

where Ra=Raφτc. This equation is less convenient in predicting τc

but it is more useful for comparison with isothermally heated s
tems. The Pr-effect on τc becomes pronounced for Pr<1, that mea
the inertia terms make the system more stable. For Pr>100 τc is al-
most independent of Pr, as shown in Fig. 3. The critical waven
ber ac decreases with increasing Pr for a given Raφ, as featured in
Table 1.

Now, the domain of time is extended to τc>0.01 by keeping Eqs.
(17) and (18) and using the basic temperature profiles of Eq.
The upper boundary ζ�∞ is replaced with z=1, i.e., ζ=1/  in-
stead of Eq. (19) and in Eqs. (17) and (18) Ra* and a* are replaced
with  and . Also, in Eq. (9) τ is replaced with τc but ζ is
maintained. Since τc is the fixed parameter, the resulting stabili
equations are a function of ζ only and the physics of Eqs. (14) an
(15) is still alive. For a given Pr and τc the minimum Raφ-value and
its corresponding wavenumber ac are obtained. This extension o

∂   ⋅( )∂τ 0≡

∂   ⋅( ) ∂τ⁄

τc = 4.34 1+ 
0.508

Pr
------------- 

 
7 10⁄ 4 7⁄

Raφ
− 2 5⁄  for τc 0.01< ,

τc = 11.55 1+ 
0.508

Pr
------------- 

 
7 10⁄ 20 21⁄

Ra
− 2 3⁄  for τc 0.01< ,

τc

Raτc
5 2⁄ a τc

Fig. 2. Marginal stability curves of various Pr-values in present
deep-pool systems.

Fig. 3. Effect of Pr on the critical condition in present deep-pool
systems.

Table 1. Stability criteria predicted from the propagation theory
for deep-pool systems

Pr 0 0.01 0.1 0.7 1 7 10 100 ∞

Rac
* 2240 297 85.2 72.9 45.0 43.4 39.7 39.3

ac
* 0.94 0.95 0.91 0.79 0.76 0.64 0.63 0.60 0.59

19.95
Pr

-------------
Korean J. Chem. Eng.(Vol. 21, No. 1)
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the propagation theory is well described in the work of Yang and
Choi [2002] and Kim et al. [2002]. In the present system the nu-
merical procedure is almost the same as that in the previous sec-
tion. The results are summarized in Fig. 4, wherein those obtained
from the conventional frozen-time model are also shown. For τc<
0.01 the former ones are the same as those of deep-pool systems
(Eq. (23)). For large τc they approach the well-known critical con-
ditions of Raφτc=1708 in the isothermal heated system since the
basic temperature profiles become linear. It is known that for small
τ the frozen-time model yields the lower bound of τc and the terms
involving  in Eqs. (4) and (5) stabilize the system. It is in-
teresting that the propagation theory yields smoothly the stability
criteria over the whole domain of time.

Davenport and King [1972, 1974] measured the bottom temper-
ature and defined its deviation from the conduction state as the char-
acteristic time. This time represents the detection time of manifest
convection (tm). Their experimental data are compared with the pres-
ent predictions from the propagation theory in Fig. 5. In Fig. 5(a) the
experimental τm-values approaches the predicted τc-values with time
but with increasing Raφ the difference between τc and τm becomes
relatively large. In Fig. 5(b) it is shown that for air  is kept.

The relation of  was suggested by Foster [1969]. This
means that a fastest growing mode of instabilities, which set in at
t=tc, will grow with time until manifest convection is near the whole
bottom boundary detected at , as illustrated in Fig. 4. This sce-
nario is supported to a certain degree by the above experimental
and theoretical results for water. The validity of  requires a
further study but this relation is kept even in other transient diffu-
sive systems [Choi et al., 1998; Kang et al., 2000]. It seems evident
that convective motion is relatively weak during tc≤t<tm since the
related heat transport is well represented by the conduction state.

Recently Tan and Thorpe [1999] suggested a very simple insta-
bility analysis assuming that at the onset of manifest convection
the following relation is maintained, based on Eq. (10):

Maximum of (25)

which are satisfied by  ierfc  at

Zmax= 2.35  from Eq. (10). This results in τm=12.5Raφ
−2/5 and

ac=0.24 Raφ
1/5, independently of Pr. It may be stated that th

predictions correspond to those in deep-pool systems of Pr�∞,
which yield the relation of . This relation compares we
with the experimental data, as shown in Fig. 5(a). But their mo
lacks the phys- ics. For example, the constants in Eq. (25), w
were estimated with the Biot number of 1, are not valid.

Considering the above results, it is known that for deep-pool 
tems of Pr>1 the relation of τm=(2~4)τc (see Fig. 5(a)) and for Pr>1

 (see Fig. 5(b)), based on the present τc-values from the prop-
agation theory. But the first detection time of convective motion
very difficult experimentally. Furthermore, the dependency of ph
ical properties on the temperature may cause a discrepancy be
models and experimental data. In Davenport and King’s [1972]
periments, the maximum temperature difference is 0.5oC for Pr=7
(methanol) and 23.5oC for Pr=8500 (1000 cS silicon oil). A tem-
perature increase of 23.5oC for 1000 cS silicon oil would reduce
its viscosity by 30%, so the variable-viscosity effect should be c
sidered [Davaille and Jaupart, 1993]. The effect of the depende
of physical properties on the temperature for high Pr-fluids m

∂   ⋅( ) ∂τ⁄

τm 4τc≅
τm 4τc≅

t 4tc≅

tm 4tc≅

gβZ4

αν
------------

∂T0

∂Z
-------- 

 
 
 
 

 = 960, 
ac 7.664× Zmax×

2π
------------------------------------ = 2.45,

∂T0 ∂Z  = − 2φ t α⁄⁄ Z 4αt⁄( )

αt

τm 3τc≅

τm 4τc≅

Fig. 4. Characteristic times with respect to Raφφφφ for a given Pr.

Fig. 5. Comparison of critical Rayleigh numbers with available ex-
perimental data.
January, 2004
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mitigate the discrepancy, as suggested by Tan and Thorpe [1999].
Also, the above models themselves are not valid ones. Even in the
propagation theory the validity of Eq. (16) should be justified. Very
recently Choi et al. [2003] reported that in isothermally heated sys-
tems the propagation theory yields approximate τc-values for small
τ, and the relation of , based on the τc-values obtained from
the numerical simulation, is more preferred for constant-properties
systems of large Pr.

CONCLUSIONS

The critical condition to mark the onset of convective instability
in an initially quiescent, horizontal fluid layer heated from below
with a constant temporal heating rate has been analyzed by using
propagation theory and also the frozen-time model. The resulting
relations of  for Pr>1 and  for Pr<1 compare rea-
sonably well with Davenport and King’s [1972] experimental data
for deep-pool systems. For τ<τm, the velocity disturbances seem
relatively weak. For τ>1 decision of the first detection of manifest
convection is very difficult experimentally; that shows the discrep-
ancy between the present relation and the experimental data. The
present results also show that the propagation theory can be applied
to the stability analysis of diffusive systems without loss of gener-
ality.
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NOMENCLATURE

a : dimensionless wavenumber
d : depth of the fluid layer [m]
Pr : Prandtl number, ν/α
Ra : Rayleigh number based on the temperature difference,

gβ∆Td3/(αν)
Raφ : Rayleigh number based on the temporal heating rate,

gβφd5/(α2ν)
T : temperature [K]
t : time [s]
(U, V, W) : velocities in Cartesian coordinates [m/s]
(u, v, w) : dimensionless velocity disturbances in Cartesian coor-

dinates
(X, Y, Z) : Cartesian coordinates [m]
(x, y, z) : dimensionless Cartesian coordinates

Greek Letters
α : thermal diffusivity [m2/s]
∆T : thermal boundary-layer thickness [m]
δT : dimensionless thermal boundary-layer thickness, ∆T/d
φ : temporal heating rate [K/s]
θ : dimensionless temperature disturbance, gβd3T1/(αν)
θ0 : dimensionless basic temperature, α(T0− Ti)/(φd2)
ν : kinematic viscosity [m2/s]
τ : dimensionless time, αt/d2

ζ : similarity variable, z/

Subscripts
c : critical conditions
i : inlet condition
0 : basic quantities
1 : perturbed quantities

Superscript
* : transformed quantities
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