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Abstract −−−−In this paper, we present a simulation-based dynamic programming method that learns the ‘cost-to-go’
function in an iterative manner. The method is intended to combat two important drawbacks of the conventional Model
Predictive Control (MPC) formulation, which are the potentially exorbitant online computational requirement and the
inability to consider the future interplay between uncertainty and estimation in the optimal control calculation. We use
a nonlinear Van de Vusse reactor to investigate the efficacy of the proposed approach and identify further research issues.
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INTRODUCTION

Model predictive control (MPC) has been the most popular ad-
vanced control technique for the process industry owing to its abil-
ity to handle a large multi-variable system with constraints. In a typ-
ical MPC formulation, a dynamic model is used at each sample time
to build a prediction of future output behavior, which is subsequently
used in the optimization routine to find a sequence of input moves
to minimize output deviation from a set-point trajectory. Since its
arrival in the early 80s, the two decades of intensive research has
brought sound theories and fundamental understandings into its be-
havior, and spawned a myriad of design methods that guarantee
stability and certain optimality properties [Morari and Lee, 1999;
Mayne et al., 2000].

Despite this, two important issues remain for MPC, which are
both theoretical and practical in nature. The first is the potentially
exorbitant online computation needed to calculate the optimal con-
trol moves at each sample time. This issue is particularly relevant
when the underlying system model is large in dimension, demands
the use of long prediction/control horizons, and is nonlinear or hy-
brid in nature [Morari and Lee, 1999; Mayne et al., 2000; Bempo-
rad and Morari, 1999]. The resulting optimization problem to be
solved online is a large-scale nonlinear program or mixed integer
program, which still presents significant computational challenges
despite all the advances made in computational hardware and nu-
merical methods. The second is the MPC’s inability to take into
account the future interplay between uncertainty and estimation in
the optimal control calculation [Lee and Cooley, 1997; Chikkula
and Lee, 2000]. The problem the conventional MPC solves at each
time is a deterministic open-loop optimal control problem, which
thus ignores the uncertainty and feedback at future time points. MPC
tries to address the issue of uncertainty by updating the prediction
equation based on fresh measurements and re-solving the optimi-

zation on a moving window at each sample time, which is refer
to as receding horizon control implementation. For problems 
involve uncertainties and feedback, however, this approach is in
ently suboptimal.

Both issues can be addressed in theory by the approach of
chastic) dynamic programming (DP) [Bellman, 1957]. The ‘co
to-go’ function in DP can be used to reduce a multi-stage prob
into an equivalent single stage problem, thus reducing the on
computational load dramatically. Also, in stochastic DP, the ‘co
to-go’ function is calculated with respect to the information vec
(sometimes called ‘hyper-state’) to reflect the effect of uncertai
on the future costs under the optimal feedback control [Bertsekas,
2000; Åström and Helmersson, 1986; Åström and Wittenmark, 19
Lee and Yu, 1997]. The proper accounting of the uncertainty 
dows the resulting control policy with several desirable proper
like cautiousness and active reduction of uncertainty (i.e., ac
probing) according to its importance for future control performan
However, the DP approach is considered largely impractical bec
analytical solution is seldom possible and numerical solution 
discretization suffers from what is referred to as ‘curse-of-dim
sionality’ [Bellman, 1957].

In this paper, to tackle the aforementioned deficiencies of the M
formulation, we present an approach based on simulation and
namic programming, which is inspired by Reinforcement Lea
ing (RL) [Sutton and Barto, 1998] and Neuro-Dynamic Progra
ming (NDP) [Bertsekas and Tsitsiklis, 1996] developed in the fi
of Artificial Intelligence. RL and NDP approaches were both i
tended to alleviate the curse-of-dimensionality. They both use s
ulation or real data to build an approximation of the ‘cost-to-g
function, typically by fitting an artificial neural network. Compare
to the classical numerical solution approach for DP, which perfo
exhaustive sampling of the entire state (or hyper-state) space in 
ing the stage-wise optimization, these approaches sample on
small fraction of the state space and thus require dramatically
computation. The sample points of the state space are decide
performing simulations of the system under various known (s
optimal) policies and all conditions to be encountered potentia
This “judicious” sampling makes them applicable to practical-s
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problems. The approach has received significant attention for its suc-
cesses in several applications, including a program that plays Back-
gammon at the world champion level, an elevator dispatcher pro-
gram that is more efficient than several heuristic-based algorithms
used in practice, and job shop scheduling problems [Tesauro, 1992;
Crites and Barto, 1996; Zhang and Dietterich, 1995]. We had previ-
ously explored the approach for chemical process control problems
including nonlinear control problems [Kaisare et al., 2002; Lee and
Lee, 2003] and a stochastic optimal control problem [Lee and Lee,
2001].

The rest of the paper is organized as follows. In section 2, we
compare the conventional MPC formulation with the DP formula-
tion to bring out the key advantages of the latter. In section 3, we
discuss the simulation-based DP formulation and an algorithm for
iterative improvement of the ‘cost-to-go’ function. We also show
how the resulting ‘cost-to-go’ function can be used online for real-
time control calculations. In section 4, a case study involving a non-
linear Van de Vusse reactor is presented to illustrate how the new
approach can be used to lower the online computational burden and
also improve upon the performance compared to the suboptimal
MPC policy we started out with. In section 5, we offer some conclu-
sions and suggestions for successful implementation of the approach.

PRELIMINARIES

1. Conventional MPC: Open-Loop Optimal Feedback Control
Conventional MPC solves the following open-loop optimal con-

trol problem at each sample time after a feedback update of the state,

(1)

with a dynamic model =f(x, u) for given initial state x(0), which
is the current state (estimate) and a piecewise constant input u(τ)=
u(i) for i·ts≤τ≤(i+1)·ts. φ is the single-stage cost, φt is the cost of the
terminal state and ts is a sample time. Some additional constraints
such as input and output limits can be added to the above. The above
open-loop optimal control problem (OLOCP) implicitly defines a
relationship between initial state x(0) and the optimal initial control
adjustment u(0), which can be denoted as u(0)=µ(x(0)). µ is a pol-
icy that maps the state to action. Thus u(t)=µ(x(t)) represents the
feedback law for MPC. Since the feedback law is only implicitly
defined through the OLOCP, its implementation requires solving
the optimization problem online with x(0)=x(t) (or = (t), which is
an estimate of x(t)) at each sample time. Depending on the size and
the nature of the underlying model, the computational burden can
be unwieldy. This is particularly true when the underlying model is
nonlinear leading to a nonlinear program [Henson, 1998], or hybrid
leading to a mixed integer program [Bemporad and Morari, 1999].
Moreover, it was shown to be advantageous to solve an infinite ho-
rizon problem, which worsens the complexity of the optimization
problem.

In addition, for a process for which uncertainties are character-
ized, as a stochastic process for example, the estimation problem
and the control problem are interlaced as the quality of estimation
is affected by control and vice versa. The formulation based on the
OLOCP is fundamentally incapable of addressing this interplay.

For example, since sampled data values for the input trajecto
are directly optimized in the formulation, the ameliorating effe
of exploratory input actions on future estimation through the g
eration of additional signals are not considered. This is true e
when the uncertainty information is incorporated explicitly into t
OLOCP - to minimize the average cost or the worst-case cos
summary, the MPC’s approach of solving the OLOCP repeate
with feedback updates leads to only suboptimal control in the c
of an uncertain system [Lee and Yu, 1997; Lee and Cooley, 19
2. Dynamic Programming Approach for Optimal Control

Dynamic Programming (DP) is a general mathematical fram
work for solving multi-stage optimization problems with or witho
uncertainties [Bellman, 1957]. The approach can provide a closed-
loop optimal solution and involves stage-wise calculation of t
so-called ‘cost-to-go’ values for all states. The ‘cost-to-go’ of a state
is the sum of all costs that one can expect to incur under a g
policy (usually the optimal policy) starting from the state, and hen
expresses the quality of a state in terms of future performance. Hence,
given the optimal cost-to-go function, one can easily calculate
optimal action simply by minimizing the sum of the cost of the cu
rent state and the cost-to-go of the next state.
2-1. Deterministic Systems

For a deterministic system with a fixed starting state and a de
ministic policy, the entire future sequence of states and action
determined. The ‘cost-to-go’ function under a policy µ is the sum
of stage-wise costs up to the end of the horizon.

(2)

The optimal ‘cost-to-go’ function, J*=Jµ*, is the cost-to-go function
under an optimal policy and is unique. For a finite horizon pro
lem, the optimal cost-to-go function should satisfy 

(3)

where Fts(x, u) denotes the state resulting from integrating the d
ferential equation for one sample time interval with initial state
and constant input u. To solve the above optimality equation,
quential calculation of J* for all states is performed, usually in a bac
ward manner starting from the terminal stage where i=0 and 0

*=
φp(x).

With the optimal cost-to-go function for the p−1 stage (J*p−1(x))
calculated offline, one can solve the following single stage probl
which is equivalent to p-stage problem defined earlier:

(4)

It may even be possible to solve the above optimization offline
all x to characterize the optimal feedback law completely.

For infinite horizon problems, by letting i�∞, we obtain the
following ‘Bellman Equation,’ which must be solved for all x t
obtain the cost-to-go function:

(5)

While DP can in principle help reduce the online computatio
burden for optimal control, in order for the approach to be pra
cal, one must be able to solve the equation for the cost-to-go f

φ x i( ) u i( ),( )
i = 0

p − 1

∑  + φt x p( )( )
 
 
 

u 0( ) … u p − 1( ), ,
limmin

x·

x̂

Ji
µ x p − i( )( ) = φ x j( ) µ x j( )( ),( ) + φt x p( )( )

j = p − i

p − 1

∑

Ji
* x( ) = φ x u,( )  + Ji − 1

* Fts x u,( )( ){ }
u

limmin

φ x u,( ) + Jp − 1
* Fts x u,( )( ){ }

u
limmin

J∞
* x( )  = φ x u,( ) + J∞

* Fts x u,( )( ){ }
u

limmin
Korean J. Chem. Eng.(Vol. 21, No. 2)
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tion (i.e., Bellman Equation). Analytical solution is not possible ex-
cept for a few special cases (e.g. unconstrained linear quadratic con-
trol problem) and numerical solution through discretization of the
state space is possible only for small-size problems [Bertsekas, 2000].
2-2. Stochastic Systems

Whereas the DP (closed-loop) and the MPC (open-loop) formu-
lations result in the same solution in the case of a deterministic sys-
tem, the two approaches lead to very different results in the case of
a stochastic system. Because the conventional MPC formulation
treats the future inputs as deterministic, it represents only a subopti-
mal feedback strategy. For optimal feedback control, one should
solve the following p-stage problem.

(6)

where Ii is a vector summarizing the information available at the
ith stage and fi is an arbitrary function. It is assumed that there is an
underlying equation for dynamic propagation of x and I. Note that
the inputs are no longer optimized as deterministic variables as I is
stochastic. The consideration of feedback control gives rise to a sto-
chastic dynamic program, which must be solved in a similarly se-
quential manner.

For the infinite horizon problem, the following discounted cost
index can be used to bound the cost [Bertsekas, 2000]:

(7)

where α is a parameter between 0 and 1. Then, the exponentially
weighted infinite horizon optimal cost-to-go function can be calcu-
lated through the equation

(8)

where I is the information vector. It typically consists of the param-
eters defining the conditional probability distribution of the state,
e.g., the state estimate and the error covariance matrix for a Gauss-
ian system. Fts(I, u) is the stochastic equation that relates the infor-
mation vector from one sample time to the next. It is assumed that
the equation for recursive calculation of I is available.

Again, the approach is computationally infeasible, even for small-
size problems, because of the large sample space (the information
vector space, which is generally quite large) and the need to eval-
uate the expectation.

SIMULATION-BASED DYNAMIC
PROGRAMMING APPROACH

The simulation-based approach attempts to overcome the ‘curse-
of-dimensionality’ of DP by solving the DP only within limited re-
gions of the state space. This is done by performing simulations of
the system under known suboptimal policies subject to various pos-
sible disturbances/operation conditions. The premise is that although
the state space may be huge, only a very small fraction of it would
be relevant for optimal or near-optimal control in practice. The ra-
tionale for using closed-loop simulations is that several suboptimal
policies combined together should span an envelope in the state space,

within which satisfactory controls can be found. Of course, this
not always true and one should consider adaptive adjustment o
envelope through cautious exploration and additional simulati
from the resulting DP-based policies. Hence, the proposed sch
is characterized by simulation and iteration between function app
imation and improvement of the ‘cost-to-go’ approximation. Ne
the offline iteration and online implementation procedures are 
scribed for both deterministic and stochastic systems.
1. Deterministic Systems

The following are the steps for constructing and improving 
cost-to-go function offline:

(1) Perform simulations of the closed-loop system with so
suboptimal control policy or policies (µ0) under all representative
operating conditions. The quality of suboptimal control policies m
ter: The closer they are to the optimal policy, the better. Howe
optimal or near optimal policies may be unknown or computati
ally too expensive to simulate. It is recommended that several 
icies effective in different regions of the state space and condit
be simulated.

(2) Using the simulation data, calculate the infinite (or finite) h
rizon cost-to-go (J

µ0

) for each state visited during the simulation.
(3) Construct a function approximator for the data to approxim

the cost-to-go as a function of the state, denoted as 
µ0

(x).
(4) To improve the cost-to-go, which is suboptimal because 

with respect to the simulated suboptimal policy, use a value or po
iteration. The algorithms described below are for infinite horiz
problems. The formula for the finite horizon case is equally straig
forward to derive based on Eq. (3).
A. Value Iteration

In value iteration, one attempts to solve the Bellman equatio
(5) for each sampled state in an iterative manner. At each itera
step, we calculate Ji+1

 for the given sample points of x by solving

(9)

where i denotes the ith iteration step. Once the cost-to-go va
are updated for all the states, then we fit another cost-to-go f
tion approximation to the x vs. Ji+1

(x) data.
B. Policy Iteration

Policy iteration consists of two steps. The first step is policy evalu-
ation where the cost-to-go function is computed and approxima
for a given policy. The second step is policy improvement where a
new greedy policy is computed.

The policy evaluation algorithm computes and approximates c
to-go function for a given policy until convergence.

(10)

Once the policy evaluation step is converged (say after L steps)
policy is improved by taking the greedy policy, which is given by

(11)

where l and i are the iteration indices of policy evaluation and i
provement steps, respectively. The policy iteration continues u
µ i+1(x)=µ i(x).
C. Comments

For finite Markov Decision Processes (MDPs), it was shown t

E φ x i( ) u i( ),( )
i = 0

p − 1

∑  + φt x p( )( )
 
 
 

u i( ) = fi I i( )
limmin

E αiφ x i( ) u i( ),( )
i = 0

∞

∑
 
 
 

J∞
* I( )  = E φ x u,( ) + αJ∞

* Fts I u,( )( ) I{ }
u

limmin

J̃

Ji + 1 x( )  = φ x u,( ) + J̃i Fts x u,( )( ){ }
u

limmin

J̃l + 1 x( )  = φ x µi x( ),( ) + J̃l Fts x µi x( ),( )( )

µi + 1 x( )  = arg φ x u,( ) + J̃L Fts x u,( )( ){ }
u

limmin
March, 2004
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value and policy iteration algorithms (with exact ‘cost-to-go’ cal-
culation without function approximation error for the entire state
space) converge to an optimal policy [Howard, 1960]. While policy
iteration requires the policy evaluation between steps of policy im-
provement, this can usually be done in relatively few iteration steps
because the cost-to-go function seldom changes much when the
policy is improved only slightly. In addition, we can expect the pol-
icy iteration to require fewer policy improvement steps than the value
iteration because the policy improvements are based on more ac-
curate cost-to-go information. The results have been shown theo-
retically [Puterman, 1994]. However, since function approxima-
tions based on limited data in a continuous state space are used in
our iterations, approximation errors at each step can be significant
and the above results do not hold. In addition, even convergence
cannot be guaranteed. Also, the question of which algorithm per-
forms better for various practical scenarios is an open question.

The main premise behind working with only the sampled states
from the closed-loop simulation, which generally covers only a very
small fraction of the entire state space, is that not all parts of the
state space are needed for good control, and critical regions needed
for good control can be identified by performing closed-loop simu-
lations with a judiciously chosen set of suboptimal policies. Hence,
conditions for the simulation as well as the suboptimal policies must
be chosen carefully. Points not sampled during the simulation are
left at the mercy of interpolation and extrapolation. Compared to
the classical numerical solution approach for DP, the above approach
reduces the computational burden significantly for two reasons: First,
even for very high-dimensional systems, the operating regions the
closed-loop system occupies may represent a low-dimensional man-
ifold. Second, for the infinite horizon cost-to-go calculation, the iter-
ation of the Bellman equation is started with a very good estimate

µ0

, which is obtained through simulation with a suboptimal (but
good) control policy.

Online implementation of the optimal control law is based on
the converged cost-to-go function and involves solving at each sam-
ple time

(12)

which is relatively simple to solve computationally. Of course, o
could iterate the closed-loop simulation with the new control p
icy defined above in order to add more state samples and o
more accurate cost-to-go data for them. This evolutionary sch
is outside the scope of this paper although the research is alr
underway. Fig. 1 shows the value iteration scheme described ab
2. Stochastic Systems

In the stochastic case, the procedure is further complicated
the need to evaluate the expectation operator. However, the ge
idea remains the same as the following procedure shows:

(1) Execute Monte Carlo simulations of the closed-loop syst
with some judiciously chosen suboptimal control law. For exa
ple, start with a control scheme that couples some state estim
like the extended Kalman Filter (EKF) and a deterministic con
policy.

(2) From the simulation data, calculate the discounted cost-to
for all the visited states and construct data for ‘information vect
vs. cost-to-go.

(3) Using a function approximation method, fit the data to o
tain an initial approximation for the cost-to-go function,  

µ0

(I).
(4) Perform value (or policy) iteration until convergence as f

lows.
A. With the current estimate (I), calculate Ji+1

 for the given sam-
ple points of I by solving

(13)

This step is more demanding than before owing to the presenc
the expectation operator (which arises because of the fact thatts

(I,
u) is a stochastic equation).

B. Fit an improved cost-to-go approximation to the I vs. Ji+1
(I)

data.
(5) One may also iterate the steps (1)-(4) with the updated 

optimal control policy for more improvement.

Online implementation involves solving the following one-ste
optimization problem:

(14)

Note that, in calculating the expected cost-to-go from simulat
data in the above iteration step, the expectation operator is no
plicitly evaluated. Instead, it is thought that, by fitting an appro
mator to the data from various realizations of the stochastic sys
(i.e., Monte Carlo simulations), the fitted cost will represent the 
pected cost. This simulation-based approach also provides s
additional flexibility such as the choice of disturbances. One d
not have to limit oneself to some linear process driven by an i
Gaussian noise. One can work with non-normal distributions 
(randomly occurring) deterministic disturbances mixed with s
chastic noises.

Here we assumed a fixed estimator and it is not further o
mized. This is not limiting as long as the model does not have 
structural error. However, the information supplied to the estima
is influenced by the control decision and hence is optimized 
the particularly chosen estimator) directly for future control perf
mance. Thus, one automatically gets some probing (i.e., active le

J̃

φ x u,( ) + J̃ Fts
x u,( )( )

u
limmin

J̃

J̃i

Ji + 1 I( )  = E φ I u,( )  + αJ̃i Fts I u,( )( ){ }
u

limmin

E φ I u,( )  + αJ̃ Fts I u,( )( ){ }
u

limmin

Fig. 1. A schematic diagram of value iteration algorithm with sim-
ulation and function approximation.
Korean J. Chem. Eng.(Vol. 21, No. 2)
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ing), designed for optimal control performance.
In the stochastic case, the exploration step (described in Step 5

of the aforementioned procedure) may be more important because
the optimal control policy is known to behave very differently from
the certainty equivalence control policy that ignores the uncertainty.
Also, one may enhance the performance by performing closed-loop
data subjected to some dithering. In this way, the benefit of active
exploration can be incorporated into the cost-to-go approximation.

This line of thought also suggests a way to improve an already-
implemented control policy in an evolutionary manner. One could
collect the cost-to-go values from real operation and use it to im-
prove the cost-to-go approximation and the corresponding control
policy with the relatively simple framework described above.

APPLICATION TO VAN DE VUSSE REACTOR

We consider a Van de Vusse reaction [Van de Vusse, 1963] in
isothermal CSTR described by

(15)

(16)

where k1=50 h−1, k2=100 h−1, k3=10l/mol·h and x1f =10 mol/l. The
state variables x1 and x2 represent the concentrations of the reactant
and the intermediate, respectively. x1f represents the concentration
of the reactant in the feed, and u represents the dilution rate. The
control objective is to regulate the output y=x2, the concentration
of the intermediate, at the set-point of 1.2 by manipulating the dilu-
tion rate with a sample time of 0.002 h. With the set-point, we have
two steady state solutions: {x1, x2, u}={5.5362, 1.2, 130.6758} and
{3.4960, 1.2, 45.6683}.

This reactor shows input multiplicities and process zero shifts
from left-half-plane zero to right-half-plane zero at u=77.5 when
the output variable is x2 [Sistu and Bequette, 1995]. A sufficiently
long horizon is needed due to the nonminimum phase behavior of
this system [Meadows and Rawlings, 1997].
1. Deterministic Case
1-1. Suboptimal Nonlinear MPC

We consider the deterministic system and introduce step changes
of various sizes in the parameters, k1 and x1f at t=0. Hence, the cost-
to-go function we construct is a function of k1 and x1f as well as the
two states.

As a starting suboptimal control policy, we use the nonlinear MPC
algorithm based on successive linearization described in Lee and
Ricker [1994]. The method linearizes the nonlinear model at each
current state and input values to calculate a prediction equation lin-
ear in terms of the future manipulated input moves. The control is
computed by solving quadratic programming (QP), of which the
Hessian matrix and the gradient vector are updated at each sample
time. Here we assumed that the full state variables are measured.

The one-stage cost φ(x, u) was chosen as:

(17)

Note that (x(t), u(t))Q (x(t), u(t))=xT(t+1)Qx(t+1). By formu-
lating the single stage cost to include a penalty on the error of the

state at next sample time, we ensure that, in the online contro
culation of Eq. (12), the one-step-ahead error is counted exactly (
er than through the approximated cost-to-go function), thus ma
the formulation more robust to approximation errors. The weig
ing factors we used are Q=1000 and R=1 in Eq. (17).

Assuming higher dilution rate is undesirable, we place an up
limit on the control input (70 h−1) to prevent the input from drifting
to the other side of the steady-state curve. The problem is the 
inverse response, which can cause the MPC to drive the pro
away from the desired operating condition. To prevent this, we u
a fairly large prediction horizon p=50.
1-2. Simulation-Based DP Approach

We first employed the nonlinear MPC scheme as a subopti
control policy to generate closed-loop data for the initial cost-to
calculation. Within ±2% of the nominal parameter values, we sa
pled 17 representative points from the disturbance space of k1 and
x1f to cover the probable operating range. From the 17 simula
runs, 1360 data points for states vs. cost-to-go were obtained.
architecture for the cost-to-go function approximation we used
this work is a multilayer perceptron with 10 hidden nodes. The va
iteration was used for offline cost-to-go improvement and it co
verged after two runs with the termination condition,

(18)

where N is the number of data points 1360. Table 1 compares
initial and converged cost-to-go for the 1360 data points.

In Table 2, we compare the online performance by calcula
the infinite horizon costs from two different control policies, th
NMPC control policy with p=50 and the simulation-based DP co
trol policy of Eq. (12). The actual infinite horizon costs were co
puted by performing closed-loop simulations with 10 fresh init
states that are different from those in the training set. The CPU 
shown is the averaged value over the 10 simulations performed
MATLAB ® 6 on Pentium III (800 MHz). We can clearly see th
superior performance of the control policy obtained from the sim
lation-based DP approach, both in terms of the cost and comp
tional time.
2. Stochastic Case with Full State Feedback

Consider the case where integrated white noises are introd
in k1 and x1f of Eqs. (15) and (16).

k1(t+1)=x3(t+1)=x3(t)+e1(t) (19)

dx1

dt
------- = − k1x1 − k3x1

2
 + x1f  − x1( )u

dx2

dt
------- = k1x1 − k2x2 − x2u

φ x u,( ) = Fts
T x u,( )QFts x u,( )  + ∆uTR∆u

Fts

T Fts

1
N
---- J̃i + 1 xk( ) − J̃i xk( )

k = 1

N

∑ 0.3<

Table 1. Converged cost-to-go value in value iteration (determin-
istic case)

Infinite horizon cost Average Min. Max.

Initial policy (NMPC) 1.0100 0 125.27
Converged policy 0.7810 0 107.56

Table 2. Online performance: closed-loop cost comparison of two
control policies for 10 sample points (deterministic case)

Infinite horizon cost Average Min. Max. CPU time

NMPC 58.95 5.92 113.25 110.17s
Sim-based DP 24.39 2.57049.69 052.62s
March, 2004
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x1f(t+1)=x4(t+1)=x4(t)+e2(t) (20)

where e1(t)~N(0, 0.22) and e2(t)~N(0, 0.042).
For reasonable sampling of the augmented state space, four rep-

resentative realizations of the stochastic disturbances were selected:
(1) monotonic increases x3 and x4, (2) monotonic increase in x3 and
monotonic decrease in x4, (3) monotonic decrease in x3 and mono-
tonic increase in x4 and (4) monotonic decreases in x3 and x4. It is
important to note that we did not sample every possible state. The
use of simulation to “judiciously” sample the space is the key idea.
The total number of the state samples visited during the four sto-
chastic simulations was 1200, and 800 data points were used for
cost-to-go approximation with the discount factor of 0.9.

In the simulation, the previously used state-feedback suboptimal
nonlinear MPC with p=50, gave an average discounted infinite ho-
rizon cost of 33.19 (averaged over all the states visited during the
four simulations). We fitted to the ‘state vs. cost-to-go’ data from
the four simulations using a multi-layer perceptron with 10 hidden
nodes. This was followed by value iteration where the expectation
was taken over 50 realizations. The termination condition of the
iteration was

(21)

After 21 iterations, the average discounted cost associated with the
converged approximator was 12.46, a significant reduction from the
starting value, which means more optimal control policy was learnt.

In order to compare control performances, we generated 10 fresh
integrated noise disturbances sets (different from those in the train-
ing set). Table  3 shows the averaged result of the closed-loop sim-
ulation under the nonlinear MPC with p=50 and the simulation-
based converged cost-to-go with the test data set. The cost in the
table is calculated for 300 time steps without discount factor.

SUMMARY

In this paper, a simulation-based DP framework for nonlinear
process control was proposed to combat two important deficien-
cies of current threads of open-loop optimal control framework (e.g.
MPC). By solving DP for the important region of state space with
a function approximation scheme, the new framework was shown
to offer enhanced computation time for online optimization and more
improved control policy from a starting one. Simulation results from
a nonlinear Van de Vusse reactor indicate that the suggested ap-
proach provides a promising framework to generalize MPC to han-
dle nonlinear and/or hybrid system models as well as stochastic sys-
tem models in a computationally amenable way. Our experience
shows that cautious utilization of simulation data and design of ap-
proximators are requisite for the success of the proposed scheme.
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NOMENCLATURE

e : sequence of white noise
f : differential equation describing system dynamics
i : discrete time index, number of stages, iteration index
I : information vector
Fts : state transition equation from one sample time to nex
j : discrete time index
J : cost-to-go
J*, J

µ*

: optimal cost-to-go
: approximated cost-to-go function

k : index number for data points
k1 : rate constant [h−1]
k2 : rate constant [h−1]
k3 : rate constant [l/(mol·h)]
l : iteration index of policy evaluation step
N : number of data points for offline iteration, normal distribu

tion
p : prediction horizon
Q : output weighting matrix for objective function
R : input weighting matrix for objective function
t : time (continuous, discrete)
ts : sample time
u : control action, dilution rate [h−1]
x : state vector

: estimated state vector
α : discount factor
µ : control policy
φ : single-stage cost
φt : terminal cost
τ : time
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