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Abstract—In this paper, we present a simulation-based dynamic programming method that learns the ‘cost-to-go’
function in an iterative manner. The method is intended to combat two important drawbacks of the conventional Model
Predictive Control (MPC) formulation, which are the potentially exorbitant online computational requirement and the
inability to consider the future interplay between uncertainty and estimation in the optimal control calculation. We use
a nonlinear Van de Vusse reactor to investigate the efficacy of the proposed approach and identify further research issues.
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INTRODUCTION zation on a moving window at each sample time, which is referred
to as receding horizon control implementation. For problems that
Model predictive control (MPC) has been the most popular ad-involve uncertainties and feedback, however, this approach is inher-
vanced control technique for the process industry owing to its abil-ently suboptimal.
ity to handle a large multi-variable system with constraints. In atyp- Both issues can be addressed in theory by the approach of (sto-
ical MPC formulation, a dynamic model is used at each sample timehastic) dynamic programming (DP) [Bellman, 1957]. The ‘cost-
to build a prediction of future output behavior, which is subsequentlyto-go’ function in DP can be used to reduce a multi-stage problem
used in the optimization routine to find a sequence of input movesnto an equivalent single stage problem, thus reducing the online
to minimize output deviation from a set-point trajectory. Since its computational load dramatically. Also, in stochastic DP, the ‘cost-
arrival in the early 80s, the two decades of intensive research has-go’ function is calculated with respect to the information vector
brought sound theories and fundamental understandings into its b¢sometimes called ‘hyper-state’) to reflect the effect of uncertainty
havior, and spawned a myriad of design methods that guarantean the future costs under the optifedbaclcontrol [Bertsekas,
stability and certain optimality properties [Morari and Lee, 1999; 2000; Astrém and Helmersson, 1986; Astrém and Wittenmark, 1989;
Mayne et al., 2000]. Lee and Yu, 1997]. The proper accounting of the uncertainty en-
Despite this, two important issues remain for MPC, which aredows the resulting control policy with several desirable properties
both theoretical and practical in nature. The first is the potentiallylike cautiousness and active reduction of uncertainty (i.e., active
exorbitant online computation needed to calculate the optimal conprobing) according to its importance for future control performance.
trol moves at each sample time. This issue is particularly relevantHowever, the DP approach is considered largely impractical because
when the underlying system model is large in dimension, demandanalytical solution is seldom possible and numerical solution via
the use of long prediction/control horizons, and is nonlinear or hy-discretization suffers from what is referred to as ‘curse-of-dimen-
brid in nature [Morari and Lee, 1999; Mayne et al., 2000; Bempo-sionality’ [Bellman, 1957].
rad and Morari, 1999]. The resulting optimization problem to be In this paper, to tackle the aforementioned deficiencies of the MPC
solved online is a large-scale nonlinear program or mixed integeformulation, we present an approach based on simulation and dy-
program, which still presents significant computational challengesnamic programming, which is inspired by Reinforcement Learn-
despite all the advances made in computational hardware and nirg (RL) [Sutton and Barto, 1998] and Neuro-Dynamic Program-
merical methods. The second is the MPC's inability to take intoming (NDP) [Bertsekas and Tsitsiklis, 1996] developed in the field
account the future interplay between uncertainty and estimation irof Artificial Intelligence. RL and NDP approaches were both in-
the optimal control calculation [Lee and Cooley, 1997; Chikkula tended to alleviate the curse-of-dimensionality. They both use sim-
and Lee, 2000]. The problem the conventional MPC solves at eachlation or real data to build an approximation of the ‘cost-to-go’
time is adeterministicopen-loop optimal control problem, which  function, typically by fitting an artificial neural network. Compared
thus ignores the uncertainty and feedback at future time points. MP@ the classical numerical solution approach for DP, which performs
tries to address the issue of uncertainty by updating the predictioexhaustive sampling of the entire state (or hyper-state) space in solv-
equation based on fresh measurements and re-solving the optiniig the stage-wise optimization, these approaches sample only a
small fraction of the state space and thus require dramatically less
computation. The sample points of the state space are decided by
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E-mail: jay.lee@chbe.gatech.edu performing simulations of the system under various known (sub-
“This paper is dedicated to Professor Hyun-Ku Rhee on the occasio@ptimal) policies and all conditions to be encountered potentially.
of his retirement from Seoul National University. This “judicious” sampling makes them applicable to practical-size
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problems. The approach has received significant attention for its sud-or example, since sampled data values for the input trajectories
cesses in several applications, including a program that plays Baclare directly optimized in the formulation, the ameliorating effects
gammon at the world champion level, an elevator dispatcher proef exploratory input actions on future estimation through the gen-
gram that is more efficient than several heuristic-based algorithmeration of additional signals are not considered. This is true even
used in practice, and job shop scheduling problems [Tesauro, 1992then the uncertainty information is incorporated explicitly into the
Crites and Barto, 1996; Zhang and Dietterich, 1995]. We had previOLOCP - to minimize the average cost or the worst-case cost. In
ously explored the approach for chemical process control problemsummary, the MPC'’s approach of solving the OLOCP repeatedly
including nonlinear control problems [Kaisare et al., 2002; Lee andwith feedback updates leads to only suboptimal control in the case
Lee, 2003] and a stochastic optimal control problem [Lee and Leegf an uncertain system [Lee and Yu, 1997; Lee and Cooley, 1997].
2001]. 2. Dynamic Programming Approach for Optimal Control
The rest of the paper is organized as follows. In section 2, we Dynamic Programming (DP) is a general mathematical frame-
compare the conventional MPC formulation with the DP formula- work for solving multi-stage optimization problems with or without
tion to bring out the key advantages of the latter. In section 3, wauncertainties [Bellman, 1957]. The approach can provalesad-
discuss the simulation-based DP formulation and an algorithm fofoop optimal solution and involves stage-wise calculation of the
iterative improvement of the ‘cost-to-go’ function. We also show so-called ‘cost-to-go’ values fall states. The ‘cost-to-go’ of a state
how the resulting ‘cost-to-go’ function can be used online for real-is the sum of all costs that one can expect to incur under a given
time control calculations. In section 4, a case study involving a nonjolicy (usually the optimal policy) starting from the state, and hence
linear Van de Vusse reactor is presented to illustrate how the nevexpresses the quality of a state in ternfistofe performance. Hence,
approach can be used to lower the online computational burden argiven the optimal cost-to-go function, one can easily calculate the
also improve upon the performance compared to the suboptimabptimal action simply by minimizing the sum of the cost of the cur-
MPC policy we started out with. In section 5, we offer some conclu-rent state and the cost-to-go of the next state.
sions and suggestions for successful implementation of the approacl:1. Deterministic Systems
For a deterministic system with a fixed starting state and a deter-
PRELIMINARIES ministic policy, the entire future sequence of states and actions is
determined. The ‘cost-to-go’ function under a polici the sum
1. Conventional MPC: Open-Loop Optimal Feedback Control of stage-wise costs up to the end of the horizon.
Conventional MPC solves the following open-loop optimal con-

p~1

trol problem at each sample time after a feedback update of the state, ¥ (x(p=i)) = S @x(j), u(x(}))) +@(x(p)) ©)
min a:"zlq,(x(i), u(i))} + qq(X(p))% Q@ The optimal ‘cost-0-go’ functi'onf;lt}", is the cost-o-go fgnction
u(©). - wp=1 [ =0 O under an optimal policy and is unique. For a finite horizon prob-

lem, the optimal cost-to-go function should satisfy
with a dynamic modek  =f(x, u) for given initial state x(0), which

is the current state (estimate) and a piecewise constant imput u( 3 (X) =min{ ¢(x,u) +J-(F(x,u))} (©)
u(i) for i-t<1<(i+1)-t. @is the single-stage cogtjs the cost of the
terminal state and is a sample time. Some additional constraints Where F{x, u) denotes the state resulting from integrating the dif-
such as input and output limits can be added to the above. The abofg§ential equation for one sample time interval with initial state x
open-loop optimal control problem (OLOCP) implicitly defines a and constant input u. To solve the above optimality equation, se-
relationship between initial state x(0) and the optimal initial control quential calculation of Jor all states is performed, usually in a back-
adjustment u(0), which can be denoted as w(@8)). i is a pol- ward manner starting from the terminal stage where i=0gand J
icy that maps the state to action. Thus w(fy&t)) represents the ~ @(X)-
feedback law for MPC. Since the feedback law is only implicity ~ With the optimal cost-to-go function for the b stage (1,(x))
defined through the OLOCP, its implementation requires solvingcalculated offiine, one can solve the following single stage problem,
the optimization problem online with x(0)=x(t) (oR= (t), which is Which is equivalent tp-stage problem defined earlier:
an estimate of x(t)) at each sample time. Depending on the size and _. .
the nature of the underlying model, the computational burden can min{ ¢(x,u) *3-+(F. (o ud} @
be u.nW|eIdy. Th|s s pamcglarly frue when the underlying model S 1t may even be possible to solve the above optimization offline for
nonl!near Ieadm 9 tq anoninear program [Henson, 1998], or hybnda" x to characterize the optimal feedback law completely.
leading to a mixed integer program [Bemporad and MOI’QI’I,. 1.999]' For infinite horizon problems, by letting-tc, we obtain the
Moreover, twas shown to be advantage0u§ o solve an '|nf'|n|te. hofollowing ‘Bellman Equation,” which must be solved for all x to
rizon problem, which worsens the complexity of the optimization obtain the cost-to-go function:
problem.

In addition, for a process for which uncertainties are character- J.(x) =min{ @(x,u) +J(F, (x,u))} (5)
ized, as a stochastic process for example, the estimation problem !
and the control problem are interlaced as the quality of estimationWhile DP can in principle help reduce the online computational
is affected by control and vice versa. The formulation based on théurden for optimal control, in order for the approach to be practi-
OLOCP is fundamentally incapable of addressing this interplay.cal, one must be able to solve the equation for the cost-to-go func-
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tion (i.e., Bellman Equation). Analytical solution is not possible ex- within which satisfactory controls can be found. Of course, this is

cept for a few special cases (e.g. unconstrained linear quadratic conet always true and one should consider adaptive adjustment of the

trol problem) and numerical solution through discretization of the envelope through cautious exploration and additional simulations

state space is possible only for small-size problems [Bertsekas, 2000fom the resulting DP-based policies. Hence, the proposed scheme

2-2. Stochastic Systems is characterized by simulation and iteration between function approx-
Whereas the DP (closed-loop) and the MPC (open-loop) formuimation and improvement of the ‘cost-to-go’ approximation. Next,

lations result in the same solution in the case of a deterministic syshe offline iteration and online implementation procedures are de-

tem, the two approaches lead to very different results in the case atribed for both deterministic and stochastic systems.

a stochastic system. Because the conventional MPC formulatiod. Deterministic Systems

treats the future inputs as deterministic, it represents only a subopti- The following are the steps for constructing and improving the

mal feedback strategy. For optimal feedback control, one shouldost-to-go function offiine:

solve the followingy-stage problem.

(1) Perform simulations of the closed-loop system with some
min Ea:pzl(p(x(i),u(i))} + qq(x(p))% ©) subopf[imal corﬁrol policy or policie;st”;[ unf:ier all represe'ntative
u=a) [ %o O operating conditions. The quality of suboptimal control policies mat-

} o . ) . ter: The closer they are to the optimal policy, the better. However,
yvhere lis a vector summarizing the mformaﬂon available aF the optimal or near optimal policies may be unknown or computation-
ith stage and fs an arbitrary function. It is assumed that there is anally too expensive to simulate. It is recommended that several pol-

underlying equation for dynamic propagation of x and I. Note thaticjeg effective in different regions of the state space and conditions
the inputs are no longer optimized as deterministic variables as | i§g simulated.

stochastic. The consideration of feedback control gives rise to a sto- (2) Using the simulation data, calculate the infinite (or finite) ho-

chastic dynamic program, which must be solved in a similarly se+j,on cost-to-go () for each state visited during the simulation.

quential manner. (3) Construct a function approximator for the data to approximate
For the infinite horizon problem, the following discounted cost e cost-to-go as a function of the state, denota"ci(a}s
index can be used to bound the cost [Bertsekas, 2000]: (4) To improve the cost-to-go, which is suboptimal because it is
. 0 with respect to the simulated suboptimal policy, use a value or policy
EEZ a'g(x@i),ui))g @) iteration. The algorithms described below are for infinite horizon
- O problems. The formula for the finite horizon case is equally straight-
)jorward to derive based on Eq. (3).
A. Value Iteration
In value iteration, one attempts to solve the Bellman equation of
(5) for each sampled state in an iterative manner. At each iteration
J(1) =minE{ ¢(x, u) +ad.(F.(1,u))]1} @)  step, we calculaté Jfor the given sample points of x by solving

J7(x) =min{ @(x, u) +J(F,(x,u))} ©

wherea is a parameter between 0 and 1. Then, the exponentiall
weighted infinite horizon optimal cost-to-go function can be calcu-
lated through the equation

where | is the information vector. It typically consists of the param-

eters defining the conditional probability distribution of the state, . - .

. . . where i denotes the ith iteration step. Once the cost-to-go values
e.g., the state estimate and the error covariance matrix for a Gauss- 3
. . . ) . are updated for all the states, then we fit another cost-to-go func-
ian system. H, u) is the stochastic equation that relates the infor- . o 1

; . : tjon approximation to the x vs. (k) data.
mation vector from one sample time to the next. It is assumed th ) .
: . : . . . Policy lteration

the equation for recursive calculation of | is available.

) : : ; : Palicy iteration consists of two steps. The first stgolisy evalu-
Again, the approach is computationally infeasible, even for small-_.. T .
. . . ation where the cost-to-go function is computed and approximated
size problems, because of the large sample space (the informati

(fgr a given policy. The second stepddicy improvementvhere a
vector space, which is generally quite large) and the need to eva 9 policy. IPGICY IMmp

Late the expectation new greedy policy is computed.
P ' The poalicy evaluation algorithm computes and approximates cost-

SIMULATION-BASED DYNAMIC to-go function for a given policy until convergence.
PROGRAMMING APPROACH I %) =@x, (%)) +I(F (x, (X)) (20)

The simulation-based approach attempts to overcome the ‘curse(z? nce the policy evaluation step is converged (say after L steps), the

of-dimensionality’ of DP by solving the DP only within limited re- policy is improved by taking the greedy policy, which is given by
gions of the state space. This is done by performing simulations of 1/ ™(x) =argmin{ ¢(x, u) +3(F_(x,u))} (11)

the system under known suboptimal policies subject to various pos- ¢

sible disturbances/operation conditions. The premise is that althougivherel and i are the iteration indices of policy evaluation and im-
the state space may be huge, only a very small fraction of it woulghrovement steps, respectively. The policy iteration continues until
be relevant for optimal or near-optimal control in practice. The ra-p™(x)=L/'(x).

tionale for using closed-loop simulations is that several suboptimalC. Comments

policies combined together should span an envelope in the state spaceFor finite Markov Decision Processes (MDPs), it was shown that
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value and policy iteration algorithms (with exact ‘cost-to-go’ cal- which is relatively simple to solve computationally. Of course, one
culation without function approximation error for the entire state could iterate the closed-loop simulation with the new control pol-
space) converge to an optimal policy [Howard, 1960]. While policy icy defined above in order to add more state samples and obtain
iteration requires the policy evaluation between steps of policy im-more accurate cost-to-go data for them. This evolutionary scheme
provement, this can usually be done in relatively few iteration stepss outside the scope of this paper although the research is already
because the cost-to-go function seldom changes much when thanderway. Fig. 1 shows the value iteration scheme described above.
policy is improved only slightly. In addition, we can expect the pol- 2. Stochastic Systems

icy iteration to require fewer policy improvement steps than the value In the stochastic case, the procedure is further complicated by
iteration because the policy improvements are based on more athe need to evaluate the expectation operator. However, the general
curate cost-to-go information. The results have been shown thededea remains the same as the following procedure shows:

retically [Puterman, 1994]. However, since function approxima-

tions based on limited data in a continuous state space are used in(1) Execute Monte Carlo simulations of the closed-loop system
our iterations, approximation errors at each step can be significanwith some judiciously chosen suboptimal control law. For exam-
and the above results do not hold. In addition, even convergencple, start with a control scheme that couples some state estimator
cannot be guaranteed. Also, the gquestion of which algorithm perlike the extended Kalman Filter (EKF) and a deterministic control
forms better for various practical scenarios is an open question.  policy.

The main premise behind working with only the sampled states (2) From the simulation data, calculate the discounted cost-to-go
from the closed-loop simulation, which generally covers only a veryfor all the visited states and construct data for ‘information vector’
small fraction of the entire state space, is that not all parts of thes. cost-to-go.
state space are needed for good control, and critical regions needed(3) Using a function approximation method, fit the data to ob-
for good control can be identified by performing closed-loop simu-tain an initial approximation for the cost-to-go functid‘ﬁo(l).
lations with a judiciously chosen set of suboptimal policies. Hence, (4) Perform value (or policy) iteration until convergence as fol-
conditions for the simulation as well as the suboptimal policies mustows. _
be chosen carefully. Points not sampled during the simulation are A. With the current estimatk (1), calculaffé fbr the given sam-
left at the mercy of interpolation and extrapolation. Compared tople points of | by solving
the classical numerical solution roach for DP, the above approach ., . _ . ~
reduces the computational burdi?npsigniﬁcantly for two reasonz:pFirst, 30 -mn Bl ql.u) *aJ(F(1Lw)} (3
even for very high-dimensional systems, the operating regions th
.CIOSGd'lOOp system occupies may represent a Iow-dlm(.ensmnal' Mathe expectation operator (which arises because of the facf(that F
ifold. Second, for the infinite horizon cost-to-go calculation, the iter- .~ ) .

. L g . u) is a stochastic equation).
ation of the Bellman equation is started with a very good estimate ; : I i
J* which is obtained through simulation with a suboptimal (but B.Fit an improved cost-to-go approximation to the | Vl)J

: data.
good) control policy. . i . i
Online implementation of the optimal control law is based on (5) One may also iterate the steps (1)-(4) with the updated sub

the converged cost-to-go function and involves solving at each samc-)pt'mal control policy for more improvement.

This step is more demanding than before owing to the presence of

ple time Online implementation involves solving the following one-step
ming(x, u) +3(F, (x, u)) (12) optimization problem:
minE{ @(1,u) +a3(F (1,u))} (14)
policy update Note that, in calculating the expected cost-to-go from simulation
for uncovered-region - - - - i
ifneeded. - ! @ data in the above iteration step, the expectation operator is not ex-

plicitly evaluated. Instead, it is thought that, by fitting an approxi-

L]

Suboptimal Optimality Equation mator to the data from various realizations of the stochastic system
Control Policy Sy =min{ o6c )+ JE (5, ) (i.e., Monte Carlo simulations), the fitted cost will represent the ex-
! ) pected cost. This simulation-based approach also provides some
additional flexibility such as the choice of disturbances. One does
Closed-loop , not have to limit oneself to some linear process driven by an i.i.d.
Smulation 7 Gaussian noise. One can work with non-normal distributions and
] N (randomly occurring) deterministic disturbances mixed with sto-
Cost-to-Go Function Approximation chastic noises. - . P .
Caloulation |+« v v vreneenn ) Here we assumed a fixed estimator and it is not further opti-
), u(®), S () o= () — Jx () mized. This is not limiting as long as the model does not have any
structural error. However, the information supplied to the estimator
Simulation Part Approximation Part is influenced by the control decision and hence is optimized (for
Fig. 1. A schematic diagram of value iteration algorithm with sim- ~ the particularly chosen estimator) directly for future control perfor-
ulation and function approximation. mance. Thus, one automatically gets some probing (i.e., active learn-
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ing), designed for optimal control performance. state at next sample time, we ensure that, in the online control cal-
In the stochastic case, the exploration step (described in Step &ulation of Eq. (12), the one-step-ahead error is counted exactly (rath-
of the aforementioned procedure) may be more important becausar than through the approximated cost-to-go function), thus making
the optimal control policy is known to behave very differently from the formulation more robust to approximation errors. The weight-
the certainty equivalence control policy that ignores the uncertaintying factors we used are Q=1000 and R=1 in Eq. (17).
Also, one may enhance the performance by performing closed-loop Assuming higher dilution rate is undesirable, we place an upper
data subjected to some dithering. In this way, the benefit of activdimit on the control input (701 to prevent the input from drifting
exploration can be incorporated into the cost-to-go approximation.to the other side of the steady-state curve. The problem is the large
This line of thought also suggests a way to improve an alreadyinverse response, which can cause the MPC to drive the process
implemented control policy in an evolutionary manner. One couldaway from the desired operating condition. To prevent this, we used
collect the cost-to-go values from real operation and use it to ima fairly large prediction horizon p=50.
prove the cost-to-go approximation and the corresponding contrdl-2. Simulation-Based DP Approach

policy with the relatively simple framework described above. We first employed the nonlinear MPC scheme as a suboptimal
control policy to generate closed-loop data for the initial cost-to-go
APPLICATION TO VAN DE VUSSE REACTOR calculation. Within £2% of the nominal parameter values, we sam-

pled 17 representative points from the disturbance spacgewod k
We consider a Van de Vusse reaction [Van de Vusse, 1963] irx, to cover the probable operating range. From the 17 simulation

isothermal CSTR described by runs, 1360 data points for states vs. cost-to-go were obtained. The
architecture for the cost-to-go function approximation we used in
dd_)? =—KyX; ~KaxX? +(Xy ~X1)U (15) this work is a multilayer perceptron with 10 hidden nodes. The value

iteration was used for offline cost-to-go improvement and it con-

dx verged after two runs with the termination condition,
—2 =KX, ~KoX, ~X,U (16)
dt 171 282 2 l N
PACORIENEE (18)

where k=50 h*, k,=100 h?, k,=101/mol-h and ¥=10 moll. The
state variables,and x represent the concentrations of the reactant,yhere N is the number of data points 1360. Table 1 compares the
and the intermediate, respectively.represents the concentration initia| and converged cost-to-go for the 1360 data points.
of the reactant in the feed, and u represents the dilution rate. The |y Taple 2, we compare the online performance by calculating
control objective is to regulate the output y=tke concentration  the infinite horizon costs from two different control policies, the
of the intermediate, at the set-point of 1.2 by manipulating the dilu\MPC control policy with p=50 and the simulation-based DP con-
tion rate with a sample time of 0.002 h. With the set-point, we haveyo| policy of Eq. (12). The actual infinite horizon costs were com-
two steady state solutions:{x, u}={5.5362, 1.2, 130.6758} and = pyted by performing closed-loop simulations with 10 fresh initial
{34960, 1.2, 45.6683}. states that are different from those in the training set. The CPU time
This reactor shows input multiplicities and process zero shiftsshown is the averaged value over the 10 simulations performed with
from left-half-plane zero to right-half-plane zero at u=77.5 when \ATLAB ® 6 on Pentium Il (800 MHz). We can clearly see the
the output variable is,fSistu and Bequette, 1995]. A sufficiently  syperior performance of the control policy obtained from the simu-
long horizon is needed due to the nonminimum phase behavior qftion-hased DP approach, both in terms of the cost and computa-

this system [Meadows and Rawlings, 1997]. tional time.
1. Deterministic Case 2. Stochastic Case with Full State Feedback
1-1. Suboptimal Nonlinear MPC Consider the case where integrated white noises are introduced

We consider the deterministic system and introduce step changgg k. and x, of Egs. (15) and (16).
of various sizes in the parametersaikd X, at t=0. Hence, the cost-

to-go function we construct is a function ofkd x as well as the ky(t+1)=x(t+ D)=x(t)+e () (19)
two states.
Asla starting suboptimal control _pO"C)_” we use the'nonllljear MPCraple 1. Converged cost-to-go value in value iteration (determin-

algorithm based on successive linearization described in Lee and istic case)
Ricker [1994]. The method linearizes the nonlinear model at eaci—— - -

. - .. Infinite horizon cost Average Min. Max.
current state and input values to calculate a prediction equation lin-——— :
ear in terms of the future manipulated input moves. The control is  Initial policy (NMPC) 1.0z 0 125.27
computed by solving quadratic programming (QP), of which the Converged policy 0.7810 0 107.56

Hessian matrix and the gradient vector are updated at each sample
time. Here we assumed that the full state variables are measured.

Table 2. Online performance: closed-loop cost comparison of two
The one-stage cogfx, u) was chosen as: P b P

control policies for 10 sample points (deterministic case)

@x, u) =F(x, u)QF,(x,u) *Au'RAuU 7 Infinite horizon cost Average Min. Max. CPU time
Note thatF; (x(t), u®)@. (x(t), u®)=+1)Qx(t+1). By formu- NMPC 58.95 592 11325 110.17s
lating the single stage cost to include a penalty on the error of the Sim-based DP 2439 257 4969  52.62s
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X(t+1)=xt+1)=x0)+e) (20)

where g(t)~N(0, 0.2) and g(t)~N(0, 0.04).

For reasonable sampling of the augmented state space, four re,
resentative realizations of the stochastic disturbances were selected:
(1) monotonic increases and %, (2) monotonic increase inand
monotonic decrease in, X3) monotonic decrease inand mono-
tonic increase in xand (4) monotonic decreases jrard x%. It is
important to note that we did not sample every possible state. Th
use of simulation to “judiciously” sample the space is the key idea.I
The total number of the state samples visited during the four sto-
chastic simulations was 1200, and 800 data points were used f
cost-to-go approximation with the discount factor of 0.9.

In the simulation, the previously used state-feedback suboptiszj
nonlinear MPC with p=50, gave an average discounted infinite ho-
rizon cost of 33.19 (averaged over all the states visited during the’
four simulations). We fitted to the ‘state vs. cost-to-go’ data from
the four simulations using a multi-layer perceptron with 10 hidden
nodes. This was followed by value iteration where the expectatioq(l
was taken over 50 realizations. The termination condition of the 2

s
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NOMENCLATURE

: sequence of white noise
. differential equation describing system dynamics
: discrete time index, number of stages, iteration index
: information vector
: state transition equation from one sample time to next
: discrete time index
: cost-to-go
J" : optimal cost-to-go
: approximated cost-to-go function
: index number for data points
: rate constant [H]
: rate constant [H]

. . k; :rate constantf(mol-h)]
iteration was : S ) )
I . iteration index of policy evaluation step
N : number of data points for offline iteration, normal distribu-

L3135 (x) (<10 (21)
k=1
After 21 iterations, the average discounted cost associated with t%
converged approximator was 12.46, a significant reduction from thﬁ'q
starting value, which means more optimal control policy was leamt.
In order to compare control performances, we generated 10 fres|
integrated noise disturbances sets (different from those in the train®
ing set). Table 3 shows the averaged result of the closed-loop sim-
ulation under the nonlinear MPC with p=50 and the simulation-
based converged cost-to-go with the test data set. The cost in th
table is calculated for 300 time steps without discount factor.
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SUMMARY

N8 €K Q

In this paper, a simulation-based DP framework for nonlinear
process control was proposed to combat two important deficien-
cies of current threads of open-loop optimal control framework (e.g.
MPC). By solving DP for the important region of state space with A
a function approximation scheme, the new framework was shown
to offer enhanced computation time for online optimization and morey
improved control policy from a starting one. Simulation results from

a nonlinear Van de Vusse reactor indicate that the suggested ag-,

proach provides a promising framework to generalize MPC to han-

dle nonlinear and/or hybrid system models as well as stochastic SV,
tem models in a computationally amenable way. Our experience
shows that cautious utilization of simulation data and design of ap-
proximators are requisite for the success of the proposed scheme.

tion

: prediction horizon

: output weighting matrix for objective function
: input weighting matrix for objective function
: time (continuous, discrete)

: sample time

: control action, dilution rate T§

: state vector

: estimated state vector

: discount factor

: control policy

: single-stage cost

: terminal cost

s time
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