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Abstract−−−−Cocurrent first order hyperbolic partial differential equations (PDE’s) have finite impulse response (FIR)
characteristics. A finite difference scheme that preserve these nice dynamic characteristics is recently developed
[Choi, submitted]. Employing the resulting genuine FIR model, the design of receding horizon control is easier. In this
paper, a receding horizon control scheme for cocurrent first order hyperbolic PDE systems is proposed using the FIR
model and is elucidated with a tubular reactor example.
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INTRODUCTION

Most of chemical processes are infinite dimensional systems be-
cause transport phenomena described by PDE’s are often involved.
When diffusive transport is negligible and convective transport is
dominant, a process is described by a first order hyperbolic PDE.
For instance, tubular reactors [Ray, 1981], fixed bed reactors [Stange-
land and Foss, 1970] and pressure swinging adsorption [Ruthven
and Sircar, 1994] are contained in such a category. Additional ex-
amples can be found in [Rhee et al., 1986]. On the other hand, when
diffusive transport is not negligible, a process is described by sec-
ond order parabolic PDE. Such processes include a fluidized bed
reactor or a packed bed reactor.

For infinite dimensional systems, the design of fully distributed
controllers such as optimal control [Wang, 1966; Lo, 1973; Balas,
1986] and their implementations are quite complicated. However,
design and implementation of controllers for finite dimensional sys-
tems are very well developed. Hence, in most practices, the origi-
nal infinite dimensional systems described by a PDE is spatially
discretized into a finite dimensional approximate model and, then, a
finite dimensional controller is designed and implemented. For dif-
fusion dominant systems described by parabolic PDE’s, there are
infinite number of discrete modes among which only a finite num-
ber of modes are slow and all the rests are stable and fast [Balas,
1979; Friedman, 1976]. Hence, for such a system, a meaningful low
dimensional approximation is possible through modal decomposi-
tion and a finite dimensional controller can be found [Christofides
and Daoutidis, 1997]. However, for first order hyperbolic PDE’s,
all the modes have the same, or almost the same, energy and, thus,
a low dimensional model through modal decomposition is not pos-
sible since a large number of modes are necessary for accurate ap-
proximation of the original system. Hence, traditionally, the opti-
mal control approach was adopted for control of hyperbolic PDE
systems, that leads to fully distributed infinite dimensional control-

lers [Wang, 1966; Lo, 1973; Balas, 1986]. However, such cont
lers suffer from the complicated design and implementation. To o
come this difficulty, a geometric control theory based design of
finite dimensional controller without resorting to the optimal co
trol techniques was proposed in [Christofides and Daoutidis, 19
Recently, a digital regulation technique for first order hyperbo
PDE systems was also proposed exploiting iterative learning c
trol in [Choi et al., 2001].

Receding horizon control, also called model predictive cont
was quite successful in chemical process industry. Hence, the d
opment of receding horizon control for first order hyperbolic PD
systems will be beneficial. Receding horizon control with blind s
tial discretization is obvious. As mentioned above, a low dime
sional model through modal decomposition is not possible for f
order hyperbolic PDE systems. However, cocurrent first order 
perbolic PDE systems have nice characteristics that the real 
of all the eigenvalues are at negative infinity and thus have FIR c
acteristics. A finite difference scheme that preserves these good
namic characteristics is recently proposed [Choi, submitted]. Exp
ing this preserved FIR property with the finite difference schem
design and analysis of receding horizon control is easier. In this p
employing this FIR preserving scheme, we propose a receding
rizon control that is suitable for cocurrent first order hyperbolic PD
systems. The proposed methodology is illustrated with a tub
reactor example.

FORMULATION

Consider a linear first order hyperbolic partial differential equatio

(1)

with the boundary condition

q(t, 0)=qB

and the initial condition:

q(0, z)=q0(z), �z∈[0, L].

Such a system may be obtained from the linearization around a

∂q
∂t
------  = − A

∂q
∂z
------  + B z( )q + C z( )u
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sired steady state of a quasi-linear first order PDE system such as a
reaction convection process:

or a nonlinear first order PDE system:

From the hyperbolicity, the matrix A is simple and, by possibly chang-
ing coordinates, is assumed in the form

where a1≥a2≥…≥aN>0. In other words, we consider the cocurrent
case only. Hence, in scalar form, we have

where Bi(z) and Ci(z) are the ith row of B(z) and C(z), respectively.
Fully distributed measurement and actuation are hard to imple-

ment. Hence, we consider a typical chemical process control con-
figuration of first order hyperbolic PDE systems where a finite num-
ber of control actuators and a finite number of point sensors are em-
ployed. Namely, as depicted in Fig. 1, a different control input is ap-
plied in each prespecified interval and states are measured at a finite
number of locations by point sensors. From the configuration, the
system is very unlikely to be controllable. Hence, the desired steady
state may be outside the reachable region and thus may not be achiev-
able with the above control actuators. In this case, the best state we
can achieve with the above control configuration is the closest to
the desired one in some sense. For simplicity, we assume that the
linearization was achieved around this best achievable state.

We now summarize the characteristics of first order hyperbolic
PDE systems that play an important role in later development. The
most important property of first order hyperbolic PDE systems is
the following that can be found from [Russel, 1978].

Theorem: Consider the linear first order hyperbolic PDE sys-
tems in (1) with u=0. Suppose, as assumed above, that

a1≥a2≥…≥aN>0.

Then, the eigenvalues of the operator

are in the form

λn=−∞+nπj.

This mathematical theorem represents key characteristics o
ear first order hyperbolic PDE systems. Firstly, this theorem s
that all the eigenvalues with different imaginary parts (frequen
mode) have the same, or almost the same, energy due to the in
real part. Therefore, no one of them is dominant over the others
thus, a low dimensional approximation with low frequency mod
is difficult in general. Hence, a meaningful reduction can only 
found with the information about initial conditions and inputs th
set up and excite the each mode of frequency. Contrary to this 
ative effect, this theorem leads to a nice result that a linear first o
hyperbolic PDE system has a finite impulse response property.
well known that a linear finite dimensional continuous system c
not have poles at s=− ∞. As a result, the best possible convergen
is an exponential convergence and a finite step convergence i
possible. Moreover, placing the pole of the closed loop system
s=− ∞ is not physically possible since it requires an infinite insta
taneous input. However, a discrete time system can achieve a 
step convergence when its poles are at the origin that corresp
to the poles at s=−∞ of continuous case. However, as in the abo
theorem, the eigenvalues of � are on vertical line crossing the rea
axis at s=− ∞ and a finite time convergence is possible. This effe
can be best understood with the method of characteristics for
order hyperbolic PDE systems. The method of characteristics ad
the characteristic line direction and spatial coordinate system ins
of the temporal and spatial direction coordinate system. In the s
dard method of characteristics [Lapidus and Pinder, 1982; Rhe
al., 1986], however, the unit characteristic line direction vecto
not used in the coordinate system and the discretization of th
sulting equation can be confusing. Hence, the unit character
line direction vector is employed here. The characteristic line eq
tion for qi is

or

z−ait=const.

The characteristic line direction vector must satisfy this constra
Hence, the unit characteristic line direction vector is

Suppose τ and x represent the variables in the characteristic 
direction and the spatial direction, respectively. Then, the coordi
transformation is

Hence, in the characteristic line direction and spatial direction co

∂q
∂t
------ = − A

∂q
∂z
------  + F q( )q + G q( )u

∂q
∂t
------ = − A

∂q
∂z
------  + H q u,( ).

A  = 

a1 0 ... 0

0 a2
... 0

..

. ...
... ..

.

0 ... 0 aN

∂qi

∂t
-------  = − ai

∂qi

∂z
------- + Bi z( )qi  + Ci z( )u

�q = − A
∂q
∂z
------ + B z( )q

dz
dt
-----  = ai

ai

1+ ai
2

---------------

1

1+ ai
2

---------------
.

z

t
 = 

1
ai

1+ ai
2

---------------

0
1

1+ ai
2

---------------

x
τ

.

Fig. 1. Sensors and actuators.
March, 2004
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dinate,

To illustrate the FIR property of cocurrent hyperbolic systems, we
assume that u is not a feedback control input that can destroy the
FIR property of the open loop system. As shown in the left figure
of Fig. 2, the computation of qi(z, t) requires the information of q
on the characteristic lines of qi’s in the third quadrant from (z, t). To
compute each of the information, we again need the information
on the characteristic lines emanating from it. Tracing the necessary
information back this way, it is clear that the computation of q at
(z, t) requires all the information in the cone formed by the charac-
teristic lines of q1 and qN passing through (z, t). As shown in the
right figure of Fig. 2, without feedback control, the computation of
q on or above the diagonal does not require the initial conditions.
On the other hand, the initial conditions are necessary to compute
q below the diagonal. Hence, the region on which the initial condi-
tions have influences is the triangle below the diagonal in the right
figure of Fig. 2. To this end, the effects of the initial conditions die
out in finite time.

Most of the control strategies are nowadays implemented with
computer. Hence, we will consider a discrete time model predic-
tive control. Therefore, we need to discretize the first order hyper-
bolic PDE in both time and space. To preserve the FIR property
after discretization, the grid points in the upper initial condition inde-
pendent triangle of Fig. 2 should be independent of the grid points
below the triangle. However, all the known schemes such as up-
wind, Lax-Wendroff, Crank-Nicolson schemes [Lapidus and Pin-
der, 1982] utilize the points below the triangle due to temporal discret-
ization and thus do not preserve the FIR property. Recently, a FIR
property preserving finite difference scheme is developed for cocur-
rent first order hyperbolic PDE [Choi, submitted]. The key idea is
to take difference along the characteristic line of aN instead of the
temporal differencing. However, for well defined states of the dis-
cretized system, rectangular grid points are necessary. To achieve
these two goals simultaneously, the rectangular grid points are cho-
sen so that a block formed by four adjacent grid points has the diag-
onal with slope 1/aN as in Fig. 3. As shown in [Choi, submitted], the
spatial differencing may need to be taken over several blocks for
stability of the scheme. Indeed, the stability is guaranteed if a0=[(l+
1)h]/k=(l+1)aN≥ a1 where l is the number of the blocks over which

the spatial differencing is taken. To this end, the overall picture
the gird points is shown in Fig. 4 where the solid dots represent 
points, the steep dotted lines have the slope 1/aN and the gentle dot-
ted lines have the slope 1/a0.

Now, for discretization, consider the coordinate consisting of 
direction with the slope 1/aN and the spatial direction. In this coord
nate, we have

through the aforementioned coordinate transformation. Let k be
sampling interval in time t=1/ τ. Then, the sampling inter-
val in spatial direction is h=aNk and the length of the diagonal of 
block is k. Hence, the discretization over the parallelogr
in Fig. 3 becomes

or

∂qi

∂τ
-------  = 

∂qi

∂t
-------∂t

∂τ
-----  + 

∂qi

∂z
-------∂z

∂τ
-----  = 

1

1+ ai
2

---------------Bi z( )q + 
1

1+ ai
2

---------------Ci z( )u.

∂qi

∂τ
-------  = − 

ai  − aN( )

1+ aN
2

------------------
∂qi

∂z
------- + 

1

1+ aN
2

----------------Bi z( )q + 
1

1+ aN
2

----------------Ci z( )u.

1+ aN
2

1+ aN
2

qi m,
n + 1− qi m− 1,

n

k 1+ aN
2

------------------------- = − 
ai  − aN( )

1+ aN
2

------------------qi m − 1,
n − qi m − l − 1,

n

lh
-------------------------------  + 

1

1+ aN
2

----------------Bi m − 1( )h( )qm− 1
n

+ 
1

1+ aN
2

----------------Ci m − 1( )h( )um− 1
n

qi m,
n + 1= 1− 

ai  − aN

laN

------------- 
 qi m − 1,

n + kBi m − 1( )h( )qm− 1
n

+ 
ai  − aN

laN

-------------qi m − l − 1,
n + kCi m − 1( )h( )um− 1

n .

Fig. 2. Information flow for computation.

Fig. 3. Parallelogram for differencing.

Fig. 4. Finite difference scheme.
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As shown in [Choi, submitted], the discretization is consistent, non-
dissipative and nondispersive. Moreover, it is stable if l≥(a1−aN)/aN.

Near the left boundary (m<l+1), m−l−1 is negative and the above
discretization is no longer valid if ai≠aN. Now suppose ai≠aN. The
simplest implementation in this case is to use qn

i,m− l− 1=qi,B for m−
l−1<0. Then, for 1<m<l+1,

and

However, when l is not small, this strategy can be very poor. A bet-
ter but more intricate implementation in boundary can be found in
[Choi, submitted].

Let L be the number of grid points contained in the zone of each
control input. Then, it must hold that un

L*( j−1)+1=un
L*(j− 1)+2=…=un

L*j− 1

where j=1, …, J. Notice that J is the number of actuators. Then, we
get the following discrete state space model through discretization:

x(p+1)=�x(p)+�v(p).

where

Notice that � is a nilpotent matrix and, thus, the system is an F
system.

With this FIR model, any standard receding horizon control [Kw
and Pearson, 1977; Rawlings and Muske, 1993] or any model
dictive control [Cutler and Ramaker, 1980] can be applied. Fr
the FIR property, the receding horizon control with infinite horizo
[Rawlings and Muske, 1993] does not have any advantage 
the one with zero terminal state constraints [Kwon and Pear
1977] since the state converges to zero in a finite time in both ca
The DMC [Cutler and Ramaker, 1980] was designed with an F
approximation of discretized infinite impulse response (IIR) pla
model. But, for cocurrent first order hyperbolic PDE systems, 
FIR plant model derived above is not an approximation of an 
model and is even more accurate than the IIR model. With this 
model, the design of receding horizon control is easier. For insta
the choice of prediction horizon is straightforward since the infin
prediction horizon can be reduced to a finite one.

Instead of the standard control schemes mentioned above
will consider a slightly modified receding horizon control schem
where control actions are considered only over the initial condi
dependent zone. Namely, nonzero control will be considered 
in the smallest region covering the initial condition dependent z
(below the bold lines in Fig. 5). Then, the receding horizon con
problem becomes

qi m,
n + 1 = 1− 

ai  − aN

laN

------------- 
 qi m − 1,

n + kB i m − 1( )h( )qm− 1
n

+ 
ai  − aN

laN

-------------qi B,  + kCi m − 1( )h( )um− 1
n

qi 1,
n + 1 = qi B,  + kBi 0( )qB + kCi 0( )u0

n.

x p( )  = 

q1
p

..

.

qJL
p

v p( ) = 

u1
p

..

.

u J − 1( )L + 1
p

� = 

0 0 0

diag 1− γi{ } + kB1 0 0

0
...

...

0 ... diag 1− γi{ }  + kB l − 2

diag γi{ } 0 ...

... ... ...

0 ... diag γi{ }

0 ... 0

0 ... 0
... ... 0

0 ... 0

diag 1− γi{ }  + kBl − 1 ... 0
...

... ..
.

0 diag 1− γi{ }  + kBJL − 1 0

� = 

kC1 0 ... 0
..
.

0 ... 0

kCL 0 ... 0

0 kCL + 1 ... 0

0 ..
. ... 0

0 kC2L ... 0
... ... ... ...

0 ... 0 kC J − 1( )L + 1

0 ... 0 ..
.

0 ... 0 kCJL

γi  = 
ai  − aN

laN

-------------, Br
 = B r  − 1( )h( ), Cr

 = C r − 1( )h( ).

minJ x p( )( ) = x p + j  + 1 p( )TRx p + j  + 1 p( )
j = 0

2JL − 1

∑

Fig. 5. Nonzero control zone.
March, 2004
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x(p+j+1|p)=�x(p+j|p)+�u(p+j|p)
Gu(p+j|p)=0

where G is the matrix with 0 or 1 elements so that the control inputs
in the region above the bold line in Fig. 5 become zero. Notice that
the prediction horizon doesn't have to be greater than 2JL−1 from
the FIR property since the states are zero after 2JL−1 time steps.

By decomposing the problem into different regions with differ-
ent number of nonzero control inputs, the above receding horizon
control problem can be rewritten as

subject to

xs(p+j+1|p)=�xs(p+j|p)+�sus(p+j|p)
xs+1(p|p)=xs(p+L|p)

where

�1=�

�J+1=0.

Notice that the last sum from j=0 to JL−1 can be replaced with the
infinite sum. It is nothing more than

or RJ+1 can be obtained by the Lyapunov equation for the infinite
sum

RJ+1=�
TRJ+1�+R.

Then, the solution of the problem can be obtained by the back track-
ing principle of dynamic programming. Namely, we need to succes-
sively solve the following standard linear quadratic optimal control

problems whose solution can be found with Riccati equations [Le
and Syrmos, 1995]:

subject to

xs(p+j+1|p)=�xs(p+j|p)+�sus(p+j|p).

Notice that xs(p+L|p)TRsxs(p+L|p) is the optimal cost xs+1(p|p)TRs

xs+1(p|p) of the (s+1)th problem.
Finally, the proof of the stability of the proposed control strate

can be established similarly to those in [Kwon and Pearson, 19
[Rawlings and Muske, 1993] and [Choi and Kwon, 2003].

APPLICATION TO NONISOTHERMAL
TUBULAR REACTOR

Consider the nonisothermal tubular reactor that is a reaction 
vection process. We assume a first order endothermic reaction 
place in the reactor:

A�B

and the associated reaction kinetics follows the Arrhenius Law:

where CA is the concentration of species A; T the reactor tempe
ture; k0 the pre-exponential constant; E the activation energy; R
gas constant. We adopt the following standard assumptions o
ideal tubular reactor:

• Perfect radial mixing takes place
• Diffusion is negligible
• Densities and heat capacities for A and B are the same and

stant

Under these assumptions, the species balance for A and en
balance become

with the boundary conditions

and initial conditions

where v is the velocity of the flow; ∆Hr the heat of reaction; ρ the
density; cp the heat capacity; Tj the jacket temperature, U the hea
transfer coefficient; V the volume of reactor. The length L of t
reactor is assumed 1 m. Notice that these are quasi-linear hy
bolic PDE’s. The process parameters are listed in Table 1.

The desired steady state profile is assumed to be the one w

+ u p + j p( )TSu p + j p( )
j = 0

2JL − 1

∑

minJ x p( )( )  = xs p + j  + 1 p( )TRxs p + j  + 1 p( )
j = 0

L − 1

∑




s= 1

J

∑

+ us p + j p( )TSus p + j p( )
j = 0

L − 1

∑




+ xJ + 1 p + j  + 1 p( )TRxJ + 1 p + j  + 1 p( )
j = 0

JL − 1

∑

�s = 

kC1 0 ... 0
..
.

0 ... 0

kCL 0 ... 0

0 kCL + 1 ... 0

0 ... ... 0

0 kC2L ... 0
..
. ..

. ... ..
.

0 ... 0 kC J − s( )L + 1

0 ... 0 ..
.

0 ... 0 kC J − s+ 1( )L

0 ... 0 0
..
. ..

. ... ..
.

0 ... 0 0

, s = 2,…,J

xJ + 1 p p( )T
�

T( )j
R�j

j = 0

JL − 1

∑
 
 
 

xJ + 1 p p( ) =  : xJ + 1 p p( )TRJ + 1xJ + 1 p p( )

min xs p + j  + 1 p( )TRxs p + j  + 1 p( )
j = 0

L − 1

∑

+ us p + j p( )TSus p + j p( ) + xs p +  L p( )TRsxs p + L p( )
j = 0

L − 1

∑

− 
dCA

dt
--------- 

 
rxn

 = k0e
− 

E
RT
-------

CA

∂CA

∂t
---------  = − v

∂CA

∂z
---------  − k0e

− 
E

RT
-------

CA

∂T
∂t
------  = − v

∂T
∂z
------  − 

∆Hr

ρcp

---------k0e
− 

E
RT
-------

CA + 
U

ρcpV
------------ T j  − T( )

CA 0 t,( ) = CA
0, T 0 t,( ) = T0

CA z 0,( )  = CA0 z( ), T z 0,( )  = T0 z( )
Korean J. Chem. Eng.(Vol. 21, No. 2)
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the jacket temperature is constant at 350oK. It is depicted in Fig. 6.
For the application of the control strategy proposed in this paper,
we need linear hyperbolic PDE’s. Hence we linearize the quasi-
linear hyperbolic PDE’s around the desired steady state. Since the
exact solution of desired steady state is difficult to find, we find an
analytic expression of the desired steady state through the regres-
sion with the 8th order polynomial (see Fig. 6) and use it for linear-
ization. It is

CAss(z)=4.00005−0.44522z−1.72573z2−5.06454z3+12.70154z4

CAss(z)=−8.70048z5−1.92157z6+5.06086z7−1.76172z8,
Tss(z)=320.00048+91.32149z−159.62909z2+122.33974z3+23.97147z4

Tss(z)=−115.3329z5+76.04642z6−13.00251z7−2.43448z8.

Since the shape of the desired steady state is simple, the fitting re
error with the 8th order polynomial was less than 10−4. Through lin-
earization, we have

with the boundary conditions

x1(0, t)=0, x2(0, t)=0

and initial conditions

x1(z, 0)=x10(z), x2(z, 0)=x20(z)

where

x1(t, z)=CA(t, z)−CAss(z), x2(t, z)=T(t, z)−Tss(z), u(t, z)=Tj(t, z)−350.

The discretization of this model using the technique propose
the previous section corresponds to the one along the characte
line. Along the characteristic line, we have the following ODE
along the characteristic line.

These ODE’s are discretized with the sampling time ∆t=0.025 min.
Now we are ready to apply the control strategy proposed in 

paper. For this, we assume the reactor is divided into five differ
zones with the same length and each zone is heated by a separa
ing jacket. Moreover we assume the temperature and the con
tration are measured at every discretized point by point sensors

The weighting matrices associated with the receding horizon c
trol are as follows:

The simulation of the closed loop system starting from a n
steady state trajectory has been carried out. The simulation re
are shown in Figs. 7, 8 and 9. The trajectories converge to the
sired ones.

CONCLUSION

In this paper, recently developed FIR property preserving fin
difference discretization for cocurrent hyperbolic PDE systems [C
submitted] is employed to proposed a model predictive control s

∂x1

∂t
-------  = − v

∂x1

∂z
------- − k0e

− 
E

RTss z( )
-----------------

x1 − k0
E

RTss
2 z( )

-----------------e
− 

E
RTss z( )
-----------------

CAss z( )x2

∂x2

∂t
-------  = − v

∂x2

∂z
------- − 

∆Hr

ρcp

---------k0e
− 

E
RTss z( )
-----------------

x1

− 
∆Hr( )
ρcp

-------------k0
E

RTss
2 z( )

-----------------e
− 

E
RTss z( )
-----------------

CAss z( ) + 
U

ρcpV
------------ 

 x2 + 
U

ρcpV
------------u

dx1

dt
-------  = −  k0e

− 
E

RTss vt( )
-------------------

x1 − k0

E

RTss
2 vt( )

-------------------e
− 

E
RTss vt( )
-------------------

CAss vt( )x2

dx2

dt
-------  = − 

∆Hr

ρcp

---------k0e
− 

E
RTss vt( )
-------------------

x1

− 
∆Hr( )
ρcp

-------------k0
E

RTss
2 vt( )

-------------------e
− 

E
RTss vt( )
-------------------

CAss vt( ) + 
U

ρcpV
------------ 

 x2 + 
U

ρcpV
------------u

R = diag 280 0

0 0.4
, S = diag 0.1{ }.

Table 1. Process parameters

Process parameter Value

v (m/min) 1
E (cal/mol) 2.0×104

R (cal/mol·K) 1.987
ρ (kg/lt) 0.09
cp (cal/kg·K) 700.231
k0 (1/min) 5×1012

Uw (cal/min·K) 2000.0
∆H (cal/mol) 548.0001
V (lt) 10
L (m) 1

Fig. 6. Steady state profiles.
March, 2004
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lar reactor example.
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