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Abstract−Experimental and modeling studies have been conducted on CO2 absorption in a cyclone scrubber operated
at room temperature. The effects of parameters such as the initial concentration of alkali in the solution and the liquid -
gas ratio on the CO2 absorbed flux were experimentally and theoretically investigated. A phenomenological model
and three-layer feed-forward neural networks have been applied to estimate the CO2 absorbed flux in the cyclone scrub-
ber. It was shown that the neural networks’ values agreed well with the experimental data, while the values by phe-
nomenological model partly agreed with the experimental data around the initial concentration of alkali in the solution,
CBo≤0.001 kmol/m3 (pH≤11).
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INTRODUCTION

The development of a low cost process for the removal of acid
gases and dusts in flue gases of incinerators is desirable. A cyclone
scrubber is considered to be one of the processes that can absorb
gases, separate particles, and decrease the gas temperature simulta-
neously. It is very important to understand the mechanism of gas
absorption and particle separation in a cyclone scrubber for the prop-
er design and the optimum operation of the process. Despite the
relatively simple design and the broad use of these types of scrub-
bers, the fluid dynamics are quite complex and give rise to rather
complicated problems. Consequently, its modeling is a complex task
since a system of nonlinear differential equations with many trans-
port and chemical parameters must be solved.

A few phenomenological models for cyclones have been devel-
oped to understand the mechanism of particle separation and gas
absorption in the cyclone [Johnstone and Silcox, 1947; Schrauwen
and Thoenes, 1988; Mothes and Loffler, 1988; Patterson and Munz,
1996]. The phenomenological models of gas absorption with chem-
ical reaction in various types of absorbers have also been reported
in many studies [Uchida and Wen, 1973; Row and Lee, 1984; Asai
et al., 1997; Park et al., 1999, 2002; Oh et al., 1999]. However, due
to the complexity of the process in the cyclone scrubber system, it
is very difficult to obtain accurate phenomenological models. Even
if such models are obtained, they may be highly complicated and
require simplifying assumptions for their solution.

Another method for practical process modeling is the black box
approach, where models are obtained exclusively from experimen-
tal plant data. Such models do not provide a detailed knowledge of
the underlying physics of the problem, but they do provide a de-
scription of the dynamic relationship between input and output var-
iables. The statistical model based on the regression analysis is an
example of such a black box approach that commonly relies on linear

system identification models. Unfortunately, the majority of pro-
cesses found in the chemical industries are non-linear and the per-
formances of the linear models cannot be adequate in those cases.

The neural network has been found in numerous applications in
representing the non-linear functional relationship among variables
and has been applied in several complex chemical engineering pro-
cesses [Galvan et al., 1996; Chouai et al., 2001; Himmelblau, 2000;
Sohn et al., 1999; Roj and Wilk, 1998]. Parisi and Labored [2001]
used three layer feed-forward neural networks to evaluate global
reaction rate for heterogeneous gas-solid reactors and compared
the results with the results from physical model. Iliuta and Lavric
[1999] used the neural network for studying hydrodynamic param-
eters in a two-phase flow fixed-bed reactor and compared the results
with the results from reported correlations. Although the neural net-
work has been applied in several complex chemical engineering
processes, it has not yet been applied in the cyclone scrubber sys-
tem.

In the present work, the phenomenological model used for
simulating a cyclone scrubber system at room temperature is de-
scribed by physical principles. In order to calculate overall CO2 ab-
sorbed flux in this system, a mass balance inside the liquid droplets
and liquid film on the cyclone wall must be performed. This pro-
cedure may be time consuming. A model using three-layer feed-
forward neural networks (3-FFNN) to estimate the overall CO2 ab-
sorbed flux is proposed. Both methods are applied, compared and
discussed to the cyclone scrubber system.

EXPERIMENTAL METHOD

The experimental apparatus is shown in Fig. 1. The cyclone con-
sists of a cylindrical section with 11.6cm in height joined to a conical
section with 26.1 cm in height. Other dimensions are 5.9 cm in cy-
clone diameter, 2.7 cm in outlet duct diameter, 1 cm in apex diam-
eter, 6.8 cm of gas outlet duct height, 1.4 cm in inlet duct width, 2.9
cm in inlet duct height, and 10 cm in inlet duct length. The liquid
is injected by spraying through the nozzle (Full Cone Spray Noz-
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zle, orifice diameter of 1 mm, pressure of 2 kg/m2, and spray angle
of 70o, Ikeuchi, Co. Japan) into the gas stream in the inlet duct of
the cyclone. The outlet concentration of CO2 was continuously mon-
itored by a CO2 analyzer (URA-107 Shimadzu, Co. Japan). The
experimental conditions are as follows: gas flow rate=5±0.2 liter/
min, liquid rate=0.35-0.8 liter/min; liquid and gas temperatures=
292±1 K; inlet CO2 concentration=17±0.1%; and initial concen-
tration of alkali in solution, CB0=1×10−8-0.1 kmol/m3.

PHENOMENOLOGICAL MODEL

The absorption in the cyclone occurs in two places: in the inlet
duct of the cyclone and in the cyclone itself. To simplify the model,
several assumptions are made as follows. (a) The liquid droplet to
be sprayed is assumed to be spherical shape; (b) The reaction is in-
stantaneous; (c) All the physical properties of gas and liquid are con-
stant throughout; (d) When the absorption occurs at room tempera-
ture, the liquid and gas temperatures are constant during the absorp-
tion and there is no evaporation of liquid to the gas phase; and (e)
The gas velocity in the cyclone was determined by the assumption
of Mothes and Loffler [1988] and Paterson and Munz [1996].
1. Absorption in Inlet Duct

The equation of motion of a liquid droplet derived by Uchida
and Wen [1973] in a venturi scrubber is applied to the present case
in the inlet duct of the cyclone.

(1)

The relationships for mass balance between gas and liquid in the
inlet duct are used to derive the following set of differential equa-
tions:

(2)

(3)

(4)

This set of differential equations is numerically solved by using
given initial conditions at the nozzle point.

The liquid-phase mass transfer coefficient with an instantaneous
reaction is given as follows if both the diffusivity of the gas and
that of the reactant in the liquid are nearly the same [Brunson and
Welek, 1970]:

kL=[1+(CB0/CAi)]kLP (5) 

where kLP is the mass transfer coefficient for the physical absorp-
tion into the droplet, CAi is the interfacial concentration of CO2 and
can be defined as [Uchida and Wen, 1973]

(6)

(7)

where,  

The solubility, H, and the diffusivity of CO2 in alkaline solution, DA,
are estimated by using the methods presented by Schumpe [1993]
and Hikita et al. [1976], respectively. The gas-phase mass transfer
coefficient of an individual droplet is calculated by Steinberger and
Treybal’s correlation [1960]:

(8)

where   

The applicable ranges of this correlation are 1<NRe<30,000 and
0.6<NSc<30,000, which are always satisfied in the experimental
conditions investigated here.

Mass mean diameter of droplet, dp, is estimated by Kim and Mar-
shall’s correlation [1971] and the slip velocity, vs, is given by vs=
vG−vd.
2. Absorption in Cyclone

The mass transfer in the cyclone scrubber occurs in two places: in
the liquid droplets and in the liquid film on the cyclone wall [John-
stone and Silcox, 1947]. By assuming that the absorption by the
liquid phase is predominant in the cyclone, the mass transfer in the
cyclone can be expressed as

(9)

The integral represents the total number of transfer units and the
terms on the right represent the number of transfer units resulting
from the absorption in the liquid droplets and in the liquid film on
the cyclone wall, respectively.

The liquid-phase mass transfer coefficient with an instantaneous
reaction, kL, into the droplet is estimated by using the same correla-
tions as for the inlet duct [Eq. (5)]. The effective value of kLA (cm3/
s) is estimated from the value of kL into the droplet and the inter-
facial area of droplets, A. The interfacial area of droplets is the prod-
uct of the number of droplets moving in the cyclone and the droplet
surface area. The number of droplets is determined from the liquid
supply, the droplet volume and the flight time. The gas-phase mass
transfer coefficient around the droplets, kG, in the cyclone is esti-
mated from the average value of Sherwood numbers over the ve-
locity calculated at each position in the cyclone which is calculated
according to Steinberger and Treybal’s correlation [1960]. Analo-
gous with slip velocity in the inlet duct, slip velocity in the cyclone
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Fig. 1. Experimental apparatus.
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was defined by

vs=vG(resultant)−vd(resultant) (10)

where , 

The gas velocities in the cyclone for the cylindrical section are
modeled according to (cylindrical coordinates) [Patterson and Munz,
1996]:

 (11)

(12)

(13)

Eqs. (11) to (13) can also be used for conical section by chang-
ing the cylindrical section radius, rc, with the conical section radius,
rc

*. The conical section radius is a function of the conical height as
follows [Mothes and Loffler, 1988]:

(14)

The liquid drops trajectories are estimated by using differential
equations of force balances with cylindrical coordinates [Schrau-
wen and Thoenes, 1988].

(15)

(16)

(17)

This set of differential equations is numerically solved by using
given initial conditions at the end of the inlet duct of the cyclone as
shown in Fig. 2.

The mass transfer coefficient in the liquid film on the cyclone
wall, kLwAw, is predicted by a correlation based on the measurements
of Johnstone and Silcox [1947] in a cyclone spray tower as quoted
by Schrauwen [1988] as follows:

(18)

NEURAL NETWORK MODEL

Many artificial neural network architectures have been proposed.
In this study, the three-layer feed-forward neural network (3-FFNN)
is used as shown in Fig. 3. A more detailed description of 3-FFNN
will be found in many textbooks that have been published on neural
networks [Freeman and Skapura, 1991].

Many studies have proved the ability of 3-FFNN to approximate
any nonlinear relationship between a set of input and output. In the
present case, we are interested in finding the CO2 absorbed flux (out-
put of the network) as a function of state variables (input of the net-
work). In our system the inputs will be the initial concentration of
alkali in the solution, CB0, and the liquid-gas ratio, L/G. The cor-
relation between input and output can be expressed as the follow-
ing equation:

(19)

To achieve a proper neural network system, which may give an
adequate result for Eq. (19), two parameters, namely, the speed of
the network and the computation time should be kept in mind. To
determine the speed of the network and to improve the convergence
rate, both learning and momentum rates were employed. By trial
and error of the neural network program, the relative minimum error
and computation time to be used in the neural network parameters
are given as in Table 1. These parameters are used in the further
computation.
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Fig. 2. Initial conditions of differential equations inside cyclone.

Fig. 3. The structure of three layer feed-forward neural network
(3-FFNN).

Table 1. Parameters for neural network calculation

Learning rate 0.12
Momentum rate 0.12
Iteration cycles 2000
Mean squared error 1.00E-05
Structure:

Input neurons 3
Hidden neurons 6
Output neurons 1

Transfer function:
Hidden layer Sigmoid
Output layer Linear
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The facilities of the Neural Network Toolbox of the MATLAB
software (MATLAB V5.3, 1999) have been used in the present com-
putation. All the data as shown in Figs. 4 and 5, were used in the
calculation.

RESULTS AND DISCUSSION

Fig. 4 shows the effect of the initial concentration of alkali, CB0,

on CO2 absorbed flux for two absorbents at L/G of 0.16. The in-

crease in CB0 slightly increased the CO2 absorbed flux. The flux in-
creased significantly from the initial concentration of alkali in solu-
tion, CB0=0.001 kmol/m3. It indicates that the reaction between CO2

and the solutions can take place in a basic solution of CB0=0.001
kmol/m3 (pH≥11). Although the reaction also occurs at pH lower
than 11, it can be considered negligible. In all cases, CO2 was ab-
sorbed significantly when the initial concentration was increased
[Camacho et al., 2000]. Fig. 4 also shows that the experimental data
agreed well with the simulation result by the neural network. The
phenomenological model gives partly agreeable results with the
experimental data around CB0≤0.001 kmol/m3 (pH≤11). The devi-
ation becomes significant with CB0.

The effect of the liquid - gas ratio on absorption is presented in
Fig.5 with the constant gas flow rate. The increase in L/G obviously
increased the CO2 absorbed flux. The consequence of a higher L/G
ratio is a higher surface area. According to Jorg and Buttner [1994],
the number of droplets increases and thus the mean distance between
droplets is reduced and the surface area of droplets significantly
increase at a higher L/G ratio. Fig. 5 also shows that the experi-
mental data agrees well with calculated values by the neural net-
work. The phenomenological values also show in good agreement
with the experimental data.

Fig. 6 shows the comparison of the experimental results of CO2

absorbed flux with those calculated by Eq. (20) using neural net-
work and by the phenomenological model, while the absolute mean
relative errors are summarized in Table 2.

(20)

The neural network gives much better results than the phenome-
nological model. The largest absolute mean relative error was found
to be 0.725% by neural network and 8.965% by phenomenologi-
cal model. It might be concluded that the 3-FFNN has enough ac-
curacy to obtain the CO2 absorbed flux in the cyclone scrubber under

Relative error = 
calculated CO2 abs. flux

experimental CO2 abs. flux
----------------------------------------------------------------- − 1 

  100%×

Fig. 4. Effect of initial concentration of alkali in solution, CB0, on
CO2 absorbed flux.

Fig. 5. Effect of liquid-gas ratio, L/G, on CO2 absorbed flux.
Fig. 6. Parity plot of experimental CO2 absorbed flux vs. calculated

values.
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the current experimental conditions. Because of a narrow data range
used in this study, more data are necessary to make the proposed
model more confident. The absolute mean relative error between
phenomenological model and experimental data is less than 10%,
which it is reasonable prediction for a phenomenological model.

CONCLUSION

This paper presents modeling strategies by the phenomenologi-
cal model and artificial neural networks for the non-linear dynamic
processes of a cyclone scrubber. The phenomenological models were
built on physical principles. The three layer feed-forward neural
network (3-FFNN) has been chosen for neural network modeling.

The comparison of the simulation results of the neural network
model and the nonlinear phenomenological model with experimen-
tal data has been discussed to show the validity of the proposed mod-
els. The comparison illustrates that the accuracy of 3-FFNN and
the phenomenological model is satisfactory with experimental data.
In conclusion, the highly non-linear behavior of cyclone scrubber
can be modeled successfully by utilizing the 3-FFNN, and the phe-
nomenological model can be the next best description of the per-
formance of gas absorption in the cyclone scrubber.

NOMENCLATURE

a : contact area per unit volume [m2/m3]
A : interfacial area of droplet [m2]
Ad : cross sectional area of droplet [m2]
Aw : interfacial area of wetted wall [m2]
CA : concentration of CO2 at time [kmol/m3]
CA

* : concentration of CO2 in equilibrium with CO2 in gas phase
[kmol/m3]

CB0 : initial concentration of alkaline solution [kmol/m3]
CD : drag coefficient [-]
dp : diameter of droplet [m]
D : momentum exchange parameter [-]
DAG : diffusivity of CO2 in gas [m2/s]
g : standard acceleration of gravity [m/s2]
G : volumetric gas flow rate [m3/s]
Gm : molar gas flow rate [kmol/s]
Gmf : molar gas flow through the inlet duct of the cyclone [kmol/

(s·m2)]
H : Henry’s constant [kmol/(m3·atm)]
ht : total height of the cyclone [m]

h : height position in cyclone [m]
kG : gas-phase mass transfer coefficient for CO2 [kmol/(m2·s·

atm)]
kL : mass transfer coefficient for CO2 with reaction for droplets

[m/s]
kLw : mass transfer coefficient for CO2 with reaction for wetted

wall [m/s]
Lm : molar liquid flow rate [kmol/s]
L : volumetric liquid flow rate [m3/s]
P : total pressure of CO2 [atm]
PA : partial pressure of CO2 [atm]
P* : equilibrium pressure of CO2 [atm]
PA1 : partial pressure of CO2 in inlet gas [atm]
PA2 : partial pressure of CO2 in outlet gas [atm]
re : radius of gas outlet duct [m]
ro : initial radius of droplet [m]
R : gas law constant [kmol/(m3·K)]
Rg− L : ratio of gas-side resistance to liquid-side resistance [-]
s : gas outlet duct height [m]
S : cross-sectional area of tangential inlet duct [m2]
ti : contact time in tangential inlet duct of the cyclone [s]
tc : contact time in cyclone [s]
v : velocity [m/s]
T : temperature [K]
Vcon. : volume of conical section [m3]
Vd : volume of droplet [m3]
z : distance from nozzle point [m]
zcon. : height position in conical section [m]
zw : wetted height of the cyclone [m]

Greek Letters
∆CA : driving force based on liquid concentration [kg/m3]
ρ : density [kg/m3]
ρm : molar density of liquid [kmol/m3]
µ : viscosity [kg/(m·s)]

Subscripts
d : droplet
G : gas
L : liquid
r : radial
θ : tangential
w : cyclone wall
z : axial
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