
Korean J. Chem. Eng., 21(4), 753-760 (2004)

753

†To whom correspondence should be addressed.
E-mail: dryang@korea.ac.kr

Experimental Simultaneous State and Parameter Identification of a pH NeutralizationG
Process Based on an Extended Kalman Filter

Ahrim Yoo, Tae Chul Lee and Dae Ryook Yang†

Department of Chemical & Biological Engineering, Korea University, 1-Anamdong, Sungbukku, Seoul 136-701, Korea
(Received 29 July 2003 • accepted 10 March 2004)

Abstract−The pH neutralization process is a representative nonlinear process. If a change in feed or buffer streams
is introduced, the characteristics of the titration curve are altered and the way of change in titration curve is highly
nonlinear. Moreover, if the changes are introduced in the middle of operation, then the nature of the process becomes
nonlinear and time-varying. This is the one of the reason why conventional PID controller may fail. Even though the
use of buffer solution may alleviate the nonlinearity, the improvement may be limited. A better way to tackle this type
of process is to use nonlinear model-based control techniques with online parameter estimation. However, in most
cases, the measurements of the process are not adequate enough so that the full state feedback control techniques can
be utilized. If the states and crucial parameters are estimated online simultaneously, the effectiveness of the nonlinear
state feedback control can be greatly enhanced. Thus, in this study, the capability of simultaneous estimation of states
and parameters using Extended Kalman Filter (EKF) are experimentally investigated for a pH neutralization process.
The process is modelled using reaction invariants and the concentrations of reaction invariants of the effluent stream
(states) and the feed concentrations (parameters) are estimated online. From the comparison of experiments and
simulations, it is found that the states and parameters can efficiently be identified simultaneously with EKF so that the
estimated information can be exploited by state-feedback control techniques.
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INTRODUCTION

It is widely known that the neutralization of a pH process exhib-
its nonlinear and time-varying nature even for some nonimal oper-
ating conditions [Waller and Gustaffson, 1983]. Thus, it has long
been taken as a representative benchmark problem of nonlinear chem-
ical process control. It is not only due to its importance in various
chemical and related industries but also due to the intricate and tricky
intrinsic nonlinearities that may change sensitively to small changes
in process conditions. Several different approaches for control have
been proposed in order to deal with this nonlinear system. These
include a simple PID for regulation, self tuning adaptive control,
nonlinear linearization control and various model based control.
Addressing such nonlinear characteristics, recent pH control stud-
ies are mostly directed to development and/or application of model-
based nonlinear control techniques. However, as has been indicated
in Waller [1985] and Gustafsson [1992] and Henson and Seborg
[1992, 1994], performance enhancement from the employment of
nonlinear control techniques may be only marginal compared to
that of well-tuned linear controllers despite the computational com-
plexity. One of the reasons for this is the limitation of the nonlinear
pH models. Most models are tuned only over a narrow operating
region or constructed under quite restricted assumptions such as
constant buffer compositions and/or constant feed compositions, and
so on. Because a small change in buffer may cause a large change
in the titration curve [Jutila and Orava, 1981; Jutila, 1983], nonlin-
ear model-based control techniques may not be successful in real

situations unless some provisions are furnished to relax such restric-
tive assumptions.

Due to the importance of the model for the model-based control,
many efforts have been exerted in the development of the model for
pH neutralization system. They can be grouped into two basic cat-
egories. The first approaches are based on the black-box model in-
cluding neural networks [Loh et al., 1995] or fuzzy logic [Cho et
al., 1999; Nie et al., 1996]. The other groups explicitly use the chem-
ical nature of pH processes. The latter approach based on physico-
chemical laws and provides more insights on physical parameters.
A general dynamic model of the pH neutralization process had been
discussed earlier by the one of the second groups, McAvoy et al.
[1972] They derived a mathematical model from the first princi-
ples, i.e., ionic balances and chemical equilibria. Jutila [1981] and
Jutila et al. [1981] developed their model for hypothetical species
along the lines of McAvoy. Then they used a Kalman filter to esti-
mate the concentrations and the parameters of titration curves are
identified. Later, Waller and Mäkilä [1981] proposed to use the con-
cept of reaction invariant in modeling and control of a pH neutraliza-
tion process. If the reaction invariants were used, the total amount
of the reaction invariant would not be influenced by the extent of
reaction and component balance with respect to reaction invariants
greatly could simplify the modeling procedure [Gustaffson and Wal-
ler, 1983, 1992; Gustaffson et al., 1995]. These reaction invariants
were estimated by a least-squares method. Instead of considering a
detailed component balance, Wright et al. [1991] proposed a sim-
plified model using the concept of the strong acid equivalent. The
strong acid equivalent is a formula to account for the total contri-
bution of the acidic ions to pH. They developed an on-line identifi-
cation technique for the parameters valid over an arbitrary pH range
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and evaluated the performance in an experimental pH neutraliza-
tion apparatus [Wright and Kravaris, 1998, 2001].

Even though an accurate model is obtained, the time-varying na-
ture of the process has to be accounted for. For example, the con-
centration of the buffer stream causes drastic changes in titration
curve as mentioned above. Also, the inaccuracy of the estimate of
the unmeasured states can affect the performance of the identifica-
tion and control scheme. To overcome the problems caused by the
inaccuracy of the model or changes of operating conditions, the pro-
cess model has to be updated with appropriate parameter identifi-
cation techniques [Lee et al., 1999, 2001; Yoon et al., 1999]. Thus,
many different model-based control methods have been proposed
under different problem settings. Generally, the control strategies
using this modeling technique are classified into non-adaptive lin-
ear, adaptive linear, non-adaptive non-linear, and adaptive non-linear
controls. Among them, the non-adaptive linear control methods are
adequate for processes insensitive to operating condition changes
and the linear adaptive controllers perform well only if titration curve
shows that the process dynamic properties are fixed [Henson and
Seborg, 1997]. Gustafsson and Waller [1992] designed an adaptive
nonlinear controller for buffered pH neutralization processes. Their
experiment demonstrated that the proposed adaptive nonlinear con-
troller outperforms the conventional PID and linear adaptive con-
trollers. Henson and Seborg [1997] proposed an indirect adaptive
controller based on a filtered regressor identifier for linearly param-
eterized non-linear system. This indirect adaptive controller esti-
mates the time-varying parameters of the model on the basis of ob-
served data and error signals. They show that their model-based
nonlinear controller has a good performance through simulations.
In the study of Wright and Kravaris [2001], they identified crucial
parameters to account for the nonlinearity and then designed a con-
trol algorithm in terms of the Strong Acid Equivalent, and they tested
the proposed algorithm to an industrial pH neutralization.

As described above, in many control techniques, a good model
is imperative for implementing an effective control. In the light of
control view points, the dynamic models for various model-based
controllers involve state variables. However, in most cases, the full
states are not available on-line for the state feedback control. If the
states for the state feedback control are not available, then they should
resort to state estimators. This study is concerned with designing
an on-line identification method for the system of which nonlinearity
is unknown and time-varying. In buffered process, the titration curve
can be changed significantly by the changes in buffer concentration,
and this leads to the time-varying nonlinearity. Once these changes
can be estimated, the reaction invariant model can effectively rep-
resent the pH process. The extended Kalman filter (EKF) is one of
the well-known nonlinear identification methods [Kalman, 1960;
Ljung, 1979]. The EKF can estimate the states and the unknown
parameters in stochastic dynamic systems where the process noise
characteristics are known in advance [Jazwinski, 1970]. However,
one can hardly find the experimental results of simultaneous state
and parameter estimation via EKF for the pH neutralization pro-
cesses. Thus, in this study, the EKF has been experimentally applied
to the simultaneous estimation of states and process parameters of
pH neutralization process, which can provide the reliable state and
parameter measurements for nonlinear model-based controls. Using
the reaction invariant model, the reaction invariants of the influent

and effluent streams are chosen as the parameters and states. The
performance of the on-line EKF has been evaluated experimentally
and compared to the simulation results.

EXPERIMENTAL APPARATUS
FOR pH NEUTRALIZATION

An experimental apparatus is used to examine the performance
of the EKF for simultaneous identification of states and parameters.
The schematic diagram of pH neutralization experimental apparatus
is given in Fig. 1 and the nominal operating conditions are shown in
Table 1. The reactor type is a continuous stirred tank reactor (CSTR)
and its volume is 2.5l and baffles are installed to reduce swirling.
The exit flow rate is decided by the amount of the overflow through
a partition so that the perfect level control can be assumed. The inlet
streams consist of a strong acid stream (q1: feed solution), a weak
acid stream (q2: buffer solution) and a strong base stream (q3: ti-
trating solution). The acid feed stream is composed of HNO3 and
NaHCO3, the buffer stream contains NaHCO3, and the titrating stream
is composed of NaOH and NaHCO3. Each stream is supplied by a
peristaltic pump and mixed in the reactor. Both the feed flow rate
and the buffer flow rate are adjusted manually. Hence, their flow rate
changes are considered to be measurable. The effluent pH is mea-
sured by pH electrode and the signal is sent to a computer through
ADC. The computer controls the flow rate of the titrating (base)

Fig. 1. The experimental apparatus for pH neutralization.

Table 1. Nominal operating conditions and parameters

Symbols Values Symbols Values

V 2,500 [ml] q3 8.5 [ml/s]
Ka1 4.47×10−7 pH4 7.00
Ka2 5.62×10−11 Wa1 2.95×10−3 [M]
[q1] 0.003 [M] HNO3 Wb1 5.00×10−5 [M]

5.0×10−5 [M] H2CO3 Wa2 −0.01 [M]
[q2] 0.01 [M] NaHCO3 Wb2 0.01 [M]
[q3] 0.003 [M] NaOH Wa3 −3.05×10−3 [M]

5.0×10−5 [M] NaHCO3 Wb3 5.00×10−5 [M]
q1 9.0 [ml/s] Wa4 −4.50×10−4 [M]
q2 0.6 [ml/s] Wb4 5.50×10−4 [M]
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stream through DAC. The experiments are assumed to be carried
out under the assumptions of a perfect mixing, a constant tempera-
ture (at room temperature 25oC) and complete solubility of the ions
involved. The sampling period for pH measurement and control is
3 sec, and dynamics of pumps and sensor are assumed to be neg-
ligible.

MODEL OF pH NEUTRALIZATION PROCESS

The general mathematical model for pH neutralization process
with reaction invariants is presented in this section. A schematic
diagram of the experimental apparatus is shown in Fig. 1. The pro-
cess flows consist of an acid stream (q1), a buffer stream (q2), a base
stream (q3) and an effluent stream (q4). For this process, the chemi-
cal reactions in the reactor are assumed as equilibrium reactions
with only weak acid solutions because the strong acid and base solu-
tions are completely ionized. The chemical reactions occurred in
the system are as follows.

H2CO3éHCO3
−+H+

HCO3
−
éCO3

2−+H+

H2OéOH−+H+ (1)

The equilibrium constants for these reactions are

(2)

The chemical equilibria are modeled using the concept of reac-
tion invariant [Gustafsson and Waller, 1983]. For this system, two
reaction invariants are involved for each stream (i=1−4).

(3)

The invariant term Wa is a charge-related quantity and Wb is the
concentration of the carbonate ion. These invariants are indepen-
dent of the extent of the reaction. A relation between a hydrogen
ion concentration and reaction invariants can be rewritten with Eqs.
(2) and (3).

(4)

Actually, the pH value is not defined as a hydrogen ion concentra-
tion but as ion activity. However, it can be assumed that the ion ac-
tivity is same as the ion concentration for the infinitely diluted solu-
tion. Hence, the pH value can be determined using the above equa-
tions and the negative logarithm of the hydrogen ion concentration
if Wai and Wbi are known.

pH=− log([H+]) (5)

A dynamic process model for the pH neutralization process can be
derived from the component material balance for the reaction in-
variants.

(6)

In the above model, it can be reasonably assumed that all the flow
rates of the streams and the concentrations of the base stream are
known because the flow rates of streams are controlled by pumps
and the titrating stream is prepared as needed. The reaction invari-
ants of the effluent stream are chosen as states and then the remain-
ing unknowns are concentrations for the feed and buffer streams.
For the sake of investigation, we chose two disturbance variables.
They are the charge-related reaction invariant in feed stream (Wa1)
and the carbonate ion-related reaction invariant (Wb2). Then, the
concerned pH process model can be rewritten in the following non-
linear state space model.

(7)

where

In the above, θ contains the unknown parameters chosen. The
reasoning behind this choice is as follows: Wa1 represents a charge
related quantity and gives the hydrogen ion related information of
the feed stream. In practical situations, major ionic species con-
tained in the feed stream are usually fixed but the composition of
each species may vary significantly. In our case, the feed consists
of a large amount of nitric acid and a very small amount of carbonic
acid. Hence, the Wb1 can be regarded as zero and the effect of car-
bonate ion on the resulting pH is lumped as Wb2. The Wb2 is the key
condition of the buffer stream. As is well known, the buffer stream
plays a very important role in deciding the characteristics of a neu-
tralization process. Unless a neutralization process involves only
strong acid and base, a buffer stream must be added to avoid an er-
ratic change in titration curve. Although the buffer stream is pre-
pared as prescribed, the Wb2 is treated as an unknown parameter
because the inaccuracy of the information on Wb2 can result in a sig-
nificant consequence in the characteristics of neutralization process.

EXTENDED KALMAN FILTER

The extended Kalman filter is a predictor-corrector type linear
estimator obtained by the linearization of a nonlinear model at each
time step. It is used to estimate the states and parameters of a non-
linear system through the measurements using a function of the lin-
earized model with additive Gaussian white noise [Grewal and And-
rews, 1993; Brown and Hwang, 1997]. The EKF procedure con-
sists of two steps: time update step and measurement update step.
The time update step projects forward the current state and error
covariance estimates to obtain the a priori estimates for the next

Ka1= 
HCO3

−[ ] H+[ ]
H2CO3[ ]

-----------------------------

Ka2= 
CO3

2−[ ] H+[ ]
HCO3

−[ ]
---------------------------

Kw = H+[ ] OH−[ ]

Wai = H+[ ]i  − OH−[ ]i  − HCO3
−[ ]i  − 2 CO3

2−[ ]i

Wbi = H2CO3[ ]i  + HCO3
−[ ]i  + CO3

2−[ ]i

Wbi
Ka1 H+[ ] + 2Ka1Ka2⁄ H+[ ]2⁄

1+ Ka1 H+[ ] + Ka1Ka2⁄ H+[ ]2⁄
--------------------------------------------------------------- + Wai + 

Kw

H+[ ]
---------- − H+[ ] = 0, 

i  = 1− 4( )

V
dWa4

dt
------------ = q1 Wa1− Wa4( ) + q2 Wa2 − Wa4( ) + q3 Wa3 − Wa4( )

V
dWb4

dt
------------ = q1 Wb1− Wb4( ) + q2 Wb2 − Wb4( ) + q3 Wb3 − Wb4( )

x· = f x t,( ) + g x t,( )u + Fθθ
c x y,( ) = 0

f x t,( ) = 
1
V
---- q2 Wa2 − x1( ) − q1x1

q1 Wb1 − x2( ) − q2x2

, g x t,( ) = 
1
V
---- Wa3 − x1

Wb3 − x2

Fθ = 
1
V
---- q1 0

0 q2

, θ = 
Wa1

Wb2

, x = 
Wa4

Wb4

u = q3, y = pH4, pK1= − Ka1log , pK2 = − logKa2

c x y,( ) = x1+ 10y − 14
 − 10

− y
 + x2

1+ 2 10y − pK2×
1+ 10pK1 − y

 + 10y − pK2

-------------------------------------------
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time step. The measurement update step incorporates a new mea-
surement into the a priori estimate to get an improved a posteriori
estimate. In other words, the time update step is a model prediction
and the measurement update step is a measurement correction.

The EKF can be used to find the unknown parameters θ by ex-
tending the state x to z that is augmented with the parameter vector
θ. This augmented states are defined as following form,

(8)

For discrete-time EKF design, a simple first-order Euler approxi-
mation is used over sampling period, ∆t. Then the discrete-time pro-
cess model can be obtained as follows:

(9)

where

Since the output equation in Eq. (7) is an implicit nonlinear func-
tion of output variable, this problem does not yield an analytical
solution in general. To solve the problem, the output equation is
linearized at xt and yt:

(10)

where

The system models in Eqs. (9) and (10) are redefined as stochastic
process model including gaussian white noise terms, wt and vt. Their
covariances are Q and R, respectively. Because the integrated white
noise model gives a better convergence of the parameter estima-
tion, although the model parameters are actually constant, the param-
eter values can be considered to be driven by a fictitious noise [Lee
and Ricker, 1994; Lee and Datta, 1994].

θt+1=θt+wt2 (11)

With the integrated white noise, the augmented state-space model
becomes

(12)

yt+1=yt+Ht+1(zt+1−zt)+vt

The EKF method uses linearized model along the trajectory that is
continually updated with the state estimates resulting from the mea-
surements. Thus, the nonlinear discrete process model should be
linearized with respect to the estimates zt=zt |t.

The extended Kalman filter algorithm can be summarized the fol-
lowing formulas.

(13)

where the superscript − represents the value without measurement
correction and the superscript + represents the corrected value with
measurement. In the above equations, the state error covariance up-
date P+t+1 should be checked for the symmetry and positive definite-
ness. In order to satisfy these conditions, another equivalent expres-
sion for P+

t+1 called the Joseph form is used [Grewal and Andrews,
1993].

(14)

EXPERIMENTAL AND SIMULATION
RESULTS WITH DISCUSSIONS

The laboratory scale plant of a nonlinear time-varying pH neu-
tralization process was built to test the performance of the simulta-
neous state and parameter estimation and the details of this system
was described previous section. The states to be estimated were the
reaction invariants of the effluent stream, which were Wa4 and Wb4.
If these states were determined, the output pH could be calculated
from the nonlinear output equation, Eq. (4). The unmeasured dis-
turbances, Wa1 which represented the acidity of the feed stream and
Wb2 which implied the concentration of carbonate ion in the buffer
stream, would be estimated as parameters. To describe the behavior
of the pH neutralization process, these values should be known as
exactly as possible. However, it was difficult to directly measure these
values with sensors. Therefore, the extended Kalman filter was used
to estimate these values.

In order to capture the characteristics of the pH neutralization
process, the titration curves were obtained experimentally and they
were shown in Fig. 2 together with the simulated titration curves.
Fig. 2 showed two pairs of titration curves at different buffer con-
centrations. Note that the process gain at a particular operating point
was the slope of the titration curve at that condition. For the nom-
inal buffer concentration ([NaHCO3]q2

=0.01 M), the process gain
varied severely over the region shown. Moreover, the titration curves
for [NaHCO3]q2

=0 M was dramatically different from the curve ob-
tained under nominal conditions. As shown in Fig. 2 the simula-
tion and experimental titration curves matched reasonably well and
it was evident that the model can describe the process correctly.

z· t( ) = 
x·

θ·
 = 

f x t,( ) + Fθθ
0

 + 
g x t,( )u

0

zt + 1= 
A B

O I
zt + D

A  = 

1− q1+ q2 + ut( )∆t
V
----- 0

0 1− q1+ q2 + ut( )∆t
V
-----

, B = 

q1
∆t
V
----- 0

0 q2
∆t
V
-----

I = 
1 0

0 1
, O= 

0 0

0 0
, D= q2Wa2+ uWa3( )∆t
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V
----- 0 0

T
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∂x
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The first experiment was conducted to test the performance of
the estimator under nominal operating condition. For this experi-
ment the flow rate of the base stream (q3) was manipulated to ex-
cite the process via a pseudo random binary sequence (PRBS) input
sequence. The size of PRBS was ±60 ml/min. Due to the process
nonlinearity, the pH changes showed highly asymmetric behavior.
Figs. 4 and 5 showed the performances of the on-line EKF in both
simulation and experiment. The initial guesses of the state and pa-
rameter were deviated from their true values by ±30%. Since the
concentration of feed and buffer streams were prepared in the lab-
oratory very carefully, the true values of parameters could be cal-
culated from the prepared concentrations by Eq. (3); θ1 was 0.00295
and θ2 was 0.01. The estimates of states and parameters closely fol-
lowed their true values after some initial transients. Also, the esti-
mated pH values of the effluent stream were almost exact to the
true values over the whole simulation and experiment time as ex-
pected. The estimated parameter values,  converged to the true
values faster than . This result implied that pH values were less

sensitive to the changes in the carbonate ion of the streams as one
could guess. It indicated that the parameter estimation of Wb from
the pH values of the effluent stream might be slow and difficult.

The next two experiments were performed to test the tracking
ability of the EKF for the time-varying parameter. The experiments
were conducted for the concentration changes of the feed and buf-
fer stream. These disturbance caused to shift the titration curve or
change its shape, which represented the process nature. In Figs. 6
and 7, the performance of the EKF for an abrupt change in θ1 of
feed had been shown in simulation and experiment. The value of
θ1 was decreased by 30% (0.003 M HNO3ç0.0021 M HNO3) at
15 min, which meant that the hydrogen ion in the feed stream was
abruptly decreased. The both simulation and experimental results il-
lustrated the sudden increase of pH in response to decrease in feed
concentration. They showed that the change of θ1 was well traced by
the estimator but the experimental estimation of θ2 resulted in a little

θ̂1

θ̂2

Fig. 2. Comparison of titration curves for two different buffer con-
centrations.

Fig. 3. Comparison of titration curves for four different buffer con-
centrations in simulation.

Fig. 4. Performance of estimator in simulation: the true values
(solid) and the estimates (dashed).

Fig. 5. Performance of estimator in experiment: the true values
(solid) and the estimates (dashed).
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biased value. Even though there were some error in θ2, still the esti-
mated pH values coincided with the measured values. Because there
was no significant difference in the titration curves for [NaHCO3]q2

=
0.01 M and 0.008 M over the operating range above pH 6 as shown
in Fig. 3, the 20% difference in concentration of buffer solution did
not significantly affect the characteristics of process at those condi-
tions.

Figs. 8 and 9 showed the results for a sudden change in θ2 which
caused a change in the concentration of carbonate ion in the reactor
(Fig. 3). To impalement the decrease in θ2 of the buffer stream, the
concentration of NaHCO3 was reduced to 0.003 M (70% decrease)
at 12 min. In this case, there were three notable differences in esti-
mation compared to the previous experiment. The first one was that,
from the composition of buffer stream and the definitions of reac-
tion invariants, the Wa2 should vary in the same manner as −Wb2

because NaHCO3 was dissociated into Na+ and HCO−
3 and HCO−

3

affected both reaction invariants as shown in Eq. (3). This fact had to
be incorporated in the design of estimator. The second one was that
the pH response of the effluent stream for the decreased buffer con-
centration was very slow because the flow rate of the buffer stream
was very small (36 ml/min). Finally, a change of the buffer con-
centration significantly altered the characteristics of pH neutraliza-
tion process because the shape of titration curve depended on the
buffer concentration. From Fig. 3, when the buffer stream concen-
tration decreased from the nominal operating condition to 70%, pro-
cess gain increased significantly. The second and third phenomena
were observed in the Figs. 8 and 9. At the moment when distur-
bance was imposed, the pH appeared not to change, however, the
output response increased as time past. This gain increase in pro-

Fig. 6. Performance of estimator in simulation corresponding to a
change in feed composition: the true values (solid) and the
estimates (dashed).

Fig. 7. Performance of estimator in experiment corresponding to
a change in feed composition: the true values (solid) and
the estimates (dashed).

Fig. 8. Performance of estimator in simulation corresponding to a
change in buffer composition: the true values (solid) and
the estimates (dashed).

Fig. 9. Performance of estimator in experiment corresponding to
a change in buffer composition: the true values (solid) and
the estimates (dashed).
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cess characteristics could also be noticed from the increased range of
the changes in the output pH value for the same size of PRBS inputs.
Though the tracking rate of the parameter was slow, the changes of
nonlinear properties were effectively estimated. Both the experimen-
tal and simulation results showed that the estimation of the changes
in the buffer stream concentration exhibited the similar behaviors
as predicted.

From the above experimental and simulation results, it could be
seen that the EKF could efficiently estimate the states and parame-
ters simultaneously so that the model identification for the nonlin-
ear model-based control and state estimation for state feedback were
feasible. The experimental application to control using this result
could be the next research topic.

CONCLUSIONS

The nature of the pH neutralization process is nonlinear and time-
varying. For the better control of this type of processes, the model-
based nonlinear state feedback control technique is often recom-
mended. However, the lack of state measurements and parameter
estimates for more accurate process model make this approach dif-
ficult. The time-varying nature of the pH neutralization process is
often caused by the change in buffering capacity which either comes
from the feed changes or buffer changes. It is known that the changes
in the process can be identified via the parameter estimation of cru-
cial process parameters. In this study, the simultaneous state and
parameter estimation by the EKF has been investigated both ex-
perimentally and in simulation. From the comparison of experiments
and simulations, it is found that the states and parameters can be
identified efficiently with EKF in cases of changes in feed compo-
sition and buffering change, and the possibility of state-feedback
model-based control using the obtained information has been veri-
fied.

NOMENCLATURE

Ka1 : equilibrium constant
Ka2 : equilibrium constant
Kw : equilibrium constant
pH : pH value for stream
q : flow rate [ml/s]
[q] : concentration of stream [mole]
V : reactor volume [ml]
W : reaction invariant

Subscripts
1 : feed stream
2 : buffer stream
3 : base stream
4 : effluent stream
a : hydrogen ion related reaction invariant
b : carbonic ion related reaction invariant
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