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Abstract−A family of an enzymatically catalyzed reaction network is studied, which involves the oxidation of
monophenols by tyrosinase with enzymatic-enzymatic-chemical model in an isothermal continuous flow stirred tank
reactor (CFSTR). This system consists of 11 coupled non-linear equations and is determined to have the capacity to
exhibit computational multiple steady states. A set of rate constants and two corresponding steady states are computed.
The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplic-
ity is extended to its family of reaction networks.
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INTRODUCTION

Exotic dynamic phenomena, such as unstable steady states, un-
damped oscillations, multiple steady states and chaos, can be pre-
dicted in non-isothermal chemical reaction systems involving sim-
ple reactions [Chang et al., 1989; Kim and Rhee, 1989; Kim et al.,
1989]. In isothermal chemical systems some nonlinear dynamics
have been shown experimentally [Epelboin et al., 1972; Geiseler
and Bar-Eli, 1981; Orbán and Epstein, 1985; Dutt and Müller, 1996].
This indicates that instabilities derive from the intricacy of chemis-
try itself, instead of from thermal effects for non-isothermal sys-
tems. It is important for the chemical engineer to be able to identify
chemical systems that have capacity to exhibit multiple steady states,
since such an identification helps design safer and more efficient
reactors.

Biochemical systems, which usually consist of many species and
reactions, can also give rise to those complex reaction behaviors
[Hatzimanikatis and Bailey, 1997; Bailey, 1998; Li, 1998; Hynne
et al., 2001]. Chemical reaction network theory studies connections
between reaction network structure and capacity of unstable behav-
ior generated by the corresponding isothermal differential equa-
tions. Reaction networks are classified by a non-negative integer
index called the deficiency, which is determined from the reaction
network structure [Feinberg, 1987] (The calculation of the deficiency
of a network is briefly mentioned in Appendix). The Deficiency
Zero Theorem, developed by Horn [1972], Horn and Jackson [1972],
and Feinberg [1972, 1977], indicates that all reaction networks of
deficiency zero, no matter how complex and no matter what val-
ues the rate constants take, admit at most one steady state, that steady
state is stable, and there does not exist any cyclic solution. How-
ever, networks of deficiency greater than zero have different pic-
tures. For example, deficiency one networks contain members that
have capacity to generate multiple steady states and still others that
do not. The Deficiency One Theorem [Feinberg, 1987] and the Defi-
ciency One Algorithm [Feinberg, 1988] provide means to distin-

guish between those two types of mechanisms.
To determine the possibility of multiple steady states in a com-

plex reaction network of high deficiency, one efficient method is to
study its subnetworks. A subnetwork of the reaction network under
study is just a network that consists of reactions belonging to the
original reaction network. High deficiency networks admitting mul-
tiple steady states often contain deficiency one subnetworks that
also exhibit multiple steady states [Li, 1992]. A modified Subnet-
work Analysis [Li, 1998] was proposed, which can be applied to
both forest-like and circular reaction networks for the determina-
tion of the capacity of multiple steady states, if one of its subnet-
works has steady state multiplicity.

Numerous reports on the tyrosinase (EC 1.14.18.1) action mech-
anism have appeared to explain the characteristics of enzyme activ-
ity, and in particular to clarify the presence of the lag period [Mason,
1956; Wilcox et al., 1985; Cabanes et al., 1987; Rodriguez-López
et al., 1992; Naish-Byfield et al., 1992]. However, the steady state
multiplicity of this system, consisting of 11 coupled non-linear equa-
tions, has not been studied so far. In the present work we determine
the capacity of computational multiple steady states in a family of
oxidation of monophenols by tyrosinase with enzymatic-enzymatic-
chemical model in an isothermal CFSTR by using the Deficiency
One Algorithm and the Subnetwork Analysis.

THEORETICAL BACKGROUND

1. Reaction Networks and Mass Action Differential Equations
It is well known that the copper-containing enzyme tyrosinase

catalyzes two different reactions: the hydroxylation of monophenols
to o-diphenols (cycle I in Fig. 1) and the oxidation of o-diphenols
to o-quinones (cycle II in Fig. 1). Cabanes et al. [1987] proposed a
mechanism (as shown in Fig. 1) involving the combination of these
two cycles and a chemical reaction step to explain the appearance
of a lag. This model was named an enzymatic-enzymatic-chemical
model with substrate regeneration (EZEZC-S.R.), by analogy with
the nomenclature used for electrochemical-chemical reactions. These
binuclear copper sites can be prepared in three enzymatic forms:
met, oxy and deoxy. In Fig. 1, the symbols Emet, Eoxy, Edeoxy, M, D,
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Q and Dc denote the metal form of the enzyme, the oxygen form
of the enzyme, the de-oxygen form of the enzyme, the monophe-
nols, the diphenols, the quinones and aminechrome, while EmetM,
EoxyM, EmetD and EoxyD denote catalyst occupied by species M and
D, respectively. In brief, during cycle II, o-diphenols bind both to
Emet and Eoxy, rendering EmetD and EoxyD intermediates, which give
rise to two o-quinones. During cycle I, the binding of monophenols
to oxy form renders EmetD. However, the binding of monophenols
to Emet (with no catalytic activity on monophenols) scavenges a por-
tion of tyrosinase from the catalytic turnover as a dead-end com-
plex.

The chemical recycling step (2Q D + D c + H +) follows these
two cycles to regenerate o-diphenols and aminechrome, which could
be back to the pools of these two cycles. According to Fig. 1, the
overall enzymatic-enzymatic-chemical reaction contains the fol-
lowing elementary steps:

Emet+M EmetM
Eoxy+M EoxyM
Emet+D EmetD Edeoxy+Q
Eoxy+D EoxyD Emet+Q
Eoxy Edeoxy

EoxyM EmetD
2D Q+Dc (1)

The assumptions used in this work are: 1. The reactions occur in
an isothermal CFSTR, 2. The reactor volume is constant, 3. The
copper-containing enzyme tyrosinase, both occupied and unoccu-
pied, are all retained in the reactor by using, for example, porous
membranes or screens to prevent escape of immobilized enzyme
pellets, 4. The concentrations of H2O, O2 and in Fig. 1 do not change
apparently with time and are viewed as a constant, 5. The elemen-
tary steps in Eq. (1) are all chemically reversible and the mass action
kinetics are followed. Thus, the oxidation of monophenols by tyro-
sinase in an isothermal CFSTR is represented by the reaction net-
work (2) and its corresponding dynamical ordinary differential equa-
tions are listed in Eq. (3).

A8 0 A9

A10�0�A11

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11 (2)
(A1: Emet, A2: Eoxy, A3: Edeoxy, A4: EmetM, A5: EoxyM, A6: EmetD, A7: EoxyD,

A8: M, A9: D, A10: Q, A11: Dc, and 0: zero complex)

(3)

where ci, i=1, 2, …, 11 denote the concentrations of species A1,
A2, …, A11 within the reactor and ki�j is a rate constant for reaction
i�j in network (2).

The last seven lines in Eq. (2) are the elementary steps in mech-
anism Eq. (1). The first two lines in Eq. (2) display the inflow of
reactants (M and D) and the outflow of remaining reactants (M and
D) and the product (Q and Dc). In reaction network terms [Fein-
berg, 1987], to account for the inflow of A8 and A9 in the feed stream,
the pseudo-reactions 0�A8 and 0�A9 are added to true chemis-
try Eq. (1) (The physical meaning of “0” (zero complex) repre-
sents the surroundings). Compared with the dynamical equations
in Eq. (3), the rate constants k0�A8 and k0�A9 are assigned, respec-
tively, to be equal to c f

8/θ and c f
9/θ. (cf

i denotes the feed concentra-
tion of species i (=8, 9) and θ denotes the residence time). Also to
account for the outflow of A8, A9, A10 and A11 in the effluent stream,
pseudo-reactions A8�0, A9�0, A10�0 and A11�0 are added
to true chemistry Eq. (1). The flow rates kA8�0, kA9�0, kA10�0 and
kA11�0 are all assigned to be equal to the reciprocal of residence time
1/θ. Thus, in reaction network terms, we consider the reactions given
in Eq. (1) operating in an open system to be modeled by reaction
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dc1

dt
------- = − kA1 + A8 A4→ c1c8 + kA4 A1 + A8→ c4

− kA1 + A9 A6→ c1c9 + kA6 A1 + A9→ c6 + kA7 A1 + A10→ c7  − kA1 + A10 A7→ c1c10

dc2

dt
------- = − kA2 + A8 A5→ c2c8 + kA5 A2 + A8→ c5

− kA2 A3→ c2  + kA3 A2→ c3 − kA2 + A9 A7→ c2c9 + kA7 A2 + A9→ c7

dc3

dt
------- = kA2 A3→ c2 − kA3 A2→ c3  + kA6 A3 + A10→ c6 − kA3 + A10 A6→ c3c10

dc4

dt
------- = kA1 + A8 A4→ c1c8  − kA4 A1 + A8→ c4

dc5

dt
------- = kA2 + A8 A5→ c2c8  − kA5 A2 + A8→ c5  − kA5 A6→ c5 + kA6 A5→ c6

dc6

dt
------- = kA5 A6→ c5 − kA6 A5→ c6  − kA6 A3 + A10→ c6

+ kA3 + A10 A6→ c3c10 + kA1 + A9 A6→ c1c9 − kA6 A1 + A9→ c6

dc7

dt
------- = kA2 + A9 A7→ c2c9  − kA7 A2 + A9→ c7 − kA7 A1 + A10→ c7 + kA1+ A10 A7→ c1c10

dc8

dt
------- = − kA1+ A8 A4→ c1c8 + kA4 A1+ A8→ c4 − kA2+ A8 A5→ c2c8

+ kA5 A2 + A8→ c5 − kA8 0→ c8 + k0 A8→

dc9

dt
------- = − kA2+ A9 A7→ c2c9 + kA7 A2+ A9→ c7 − kA1+ A9 A6→ c1c9

+ kA6 A1 + A9→ c6 − kA9 0→ c9 + k0 A9→  + k2A10 A9+ A11→ c10
2

 − kA9+ A11 2A10→ c9c11

dc10

dt
--------- = kA6 A3 + A10→ c6  − kA3+ A10 A6→ c3c10  + kA7 A1+ A10→ c7

− kA1+ A10 A7→ c1c10 − kA10 0→ c10  − 2k2A10 A9+ A11→ c10
2

 + 2kA9+ A11 A10→ c9c11

dc11

dt
--------- = k2A10 A9 + A11→ c10

2
 − kA9+ A11 2A10→ c9c11 − kA11 0→ c11

Fig. 1. Kinetic mechanisms for oxidation of monophenols by tyro-
sinase.



Determination of Multiple Steady States in Oxidation of Monophenols by Tyrosinase with Enzymatic-Enzymatic-Chemical Model 965

Korean J. Chem. Eng.(Vol. 21, No. 5)

network (2), instead of Eq. (1).
From Eq. (3), we find that a mass conservation condition must

be satisfied, i.e. the summation of concentrations of species A1, A2,
A3, A4, A5, A6 and A7 remains a constant. This means that the total
number of enzymes, both occupied and unoccupied, is a constant
and it must be satisfied by all the steady states. It is 

(4)

2. Deficiency One Algorithm and Subnetwork Analysis
At steady states, the compositions ci do not change with time.

Therefore, from Eq. (3) we have that dci/dt=0, for i=A1, A2, …,
A11. The question we are asking is this: Can there exist for network
(2) an assignment of residence time θ, rate constants ki�j and feed
concentrations cf

i such that its corresponding mass action differen-
tial Eq. (3) admit more than one steady state? When we say that a
reaction network has the capacity to admit multiple steady states,
we mean that there is at least one assignment of residence time θ,
rate constants ki�j and feed concentrations cf

i such that the corre-
sponding (mass action) equations admit at least two steady states.
Obviously, it would be difficult to answer this question if one does
not have a systematic way to analyze the reaction system (2).

In this paper the Deficiency One Algorithm [Feinberg, 1988] and
the Subnetwork Analysis [Li, 1998] are applied to determine the
multiplicity of steady states in network (2) and their parent net-
works. In reaction network terms, each network has a deficiency,
which is an integer equal to or greater than zero and can be calcu-
lated easily by the structure of a reaction network. The Deficiency
One Algorithm provides a necessary and sufficient condition for a
deficiency one network to admit multiple steady states. By the analy-
sis of this algorithm, the “signatures” of steady state multiplicity for
a deficiency one reaction network are represented by many sets of
linear inequality systems in terms of a vector µ. This vector µ cor-
relates two steady states, say c' and c'', corresponding to a set of rate
constants in the following way:

µ=[µ1, …, µN]

µ=[ln(c1'/c1''), …, ln(cN' /cN'')], N=number of species (5)

If there exists such a nonzero µ with the specified properties gen-
erated by the Deficiency One Algorithm, the deficiency one net-
work under study has the capacity to admit multiple steady states.
Otherwise, the network can admit at most one steady state.

The Deficiency One Algorithm is a powerful method to deter-
mine steady state multiplicity of a deficiency one reaction network.
However, there are some complex reaction networks lying outside
of the algorithm’s applicable range. Take reaction network (2) for
an example: it has a deficiency of three. Therefore, the Deficiency
One Algorithm cannot be applied. The Subnetwork Analysis extends
the applicable range of the algorithm by studying the subnetworks
of a network with higher deficiency than one. Li [1992] realized that
networks of deficiency greater than one that admit multiple steady
states often (not always) contain subnetworks that also have the ca-
pacity of exhibiting steady state multiplicity. An example has been
shown [Li, 1992] that a parent network cannot admit multiple steady
states, no matter what values the rate constants might have, although
one of its deficiency one subnetworks has the capacity to exhibit
steady state multiplicity. Thus, it is not trivial to ask the question: If

a network contains a subnetwork that admits multiple steady states,
under what conditions will the network also admit multiple steady
states? The Subnetwork Analysis provides sufficient conditions for
the capacity of multiple steady states in a network of deficiency great
than one if one of its subnetworks is admitting steady state multi-
plicity. The terminology of the Subnetwork Analysis and its imple-
mentation can be found in Li [1998].

RESULTS AND DISCUSSION

1. Multiple Steady States in a Deficiency One Subnetwork
The complex reaction network (2) has deficiency three. Accord-

ing to the deficiency oriented theory, a “minimal” network admit-
ting multiple steady states should have a deficiency of at least one.
According to the Subnetwork Analysis, the subnetworks with the
same rank as the parent network (2), which is 10 (see Appendix),
would meet one of the criteria for extending directly the steady-
state multiplicity to their family networks. Thus, we are interested
to know if there exists a deficiency one subnetwork of network (2)
with rank 10, which generates multiple steady states. By using the
Deficiency One Algorithm, such a deficiency one subnetwork exhib-
iting steady state multiplicity is determined. It is obtained by delet-
ing A10�0�A11 from network (2) and displayed below in Eq. (6).
Actually, we have found it is the only deficiency one subnetwork
with rank 10 admitting multiplicity.

A8 0 A9

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11 (6)

According to the algorithm, it has the capacity to admit multiple
steady states if the µ defined in Eq. (5) satisfies the set of linear in-
equalities Eq. (7a) generated by the algorithm. It is easy to see that
Eq. (7b) is a set of nonzero solutions to Eq. (7a). Eq. (7a) indicates
the relationships of the two steady states, which can be used to iden-
tify mechanism as the steady states of some species are measured
[Ellison and Feinberg, 2000]. The more the numbers of the ine-
qualities and the equations of Eq. (7a) are satisfied by the experi-
mental data, the more likely that mechanism (6) is followed. (The
reverse of all the inequalities in Eq. (7a) is also a signature of multiple
steady states, which is obtained by replacing c' and c'' in Eq. (5) by
each other).

µ1+µ9>µ6

µ6>µ5

µ2+µ8>µ9

µ9>0
0>µ8

µ5>µ2+µ8

µ2+µ9>µ7

µ2>µ3

µ7>µ1+µ10

µ3>µ9

d c1 + c2  + c3  + c4  + c5  + c6  + c7( )
dt

------------------------------------------------------------------- = 0.
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µ1+µ10>µ9

µ3+µ10>µ6

µ1+µ8=µ4

µ9+µ11=2µ10 (7a)

µ=[µ1, …, µ11]=[4, 7, 6, −1, 3, 4, 7, −5, 1, 0.5, 0] (7b)

By the µ given in Eq. (7b), a set of rate constants, displayed in
Eq. (8a), and its two corresponding steady states, c' and c'' in Eq.
(8b), are computed (The formulas for the computation of two steady
states and a set of rate constants can be found in Feinberg [1988]).

A8 0 A9

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11 (8a)

(8b)

Note that the mass balance condition in Eq. (4) is satisfied by

the Eq. (8b):

c1'+c2'+c3'+c4'+c5'+c6'+c7'=c1''+c2''+c3''+c4''+c5''+c6''+c7''≈4.792940. (9)

In Fig. 2, the steady states and bistability occurring in network
(8) are illustrated as hysteresis with variation of k0�A8. The steady
states c' (the upper points in Fig. 2) and c'' (the lower points in Fig.
2) in Eq. (8b) are stable and an unstable steady state (not shown in
Fig. 2) lies somewhere between c' and c''. The steady state c'' in Eq.
(8b) established at a higher k0�A8 (>22.61) is associated with a lower
concentrations c10. As k0�A8 is lower than 8.41, the steady state c'
associated with a higher concentration c10 is obtained. As k0�A8 is
in between, a hysteresis loop containing three steady states, two stable
ones and an unstable one, occurs and the steady state depends on
the initial concentrations.

Fig. 3 shows a two-parameter (kA5�A6, k0�A8) plane for different
values of the rate constant kA6�A3+A10 for network (8) (The dotted
line corresponds to 115.9955 and the solid line to 50, respectively).
Inside the cusp regions, there are three steady states, two stable ones
and an unstable one. They display the inside regions of a hysteresis
loop similar to Fig. 2. Right on the curves of the cusp, there are two
steady states, one stable and the other unstable. They represent the
two end points of a hysteresis loop. Only a single steady state exists
outside the cusp region in Fig. 3, which displays the outside region
of a hysteresis loop.
2. Multiple Steady States in Parent Networks

To extend the capacity of multiple steady states of a subnetwork
to its parent network, the Subnetwork Analysis provides some suf-
ficient conditions. Unfortunately, the µ vector in Eq. (7a) contains
an equality (the last line) such that the sufficient condition of the
analysis is not satisfied. By the addition of any one of the two deleted
irreversible reactions, A10�0 and A11�0, to the deficiency one
subnetwork (6), a deficiency two subnetwork is obtained. With this
deficiency two subnetwork, we are allowed to adjust more param-
eters than those for the deficiency one subnetwork (6) in the neces-
sary and sufficient condition [Li, 1999], which was used to prove
the Subnetwork Analysis and should be satisfied for the determi-
nation of multiple steady states in a reaction network of any defi-

�                    �
13.9267

9.01061
�                    �
2.05252

13.9267

�                    �
212.948

0.21071

�                    �
10699.6

17.4816

�                    �
196.794

164.461
�                    �
115.996

12.2454

�                    �
4364.62

3461.32
�                    �
186.199

21.5570

�                    �
1261.10

1268.06

�                    �
110.858

96.9312

�                    �
0.03435

3.43656
c'1 0.509329≈ c''1 0.009329≈
c'2 0.500456≈ c''2 0.000456≈
c'3 0.501242≈ c''3 0.001242≈
c'4 1.745930≈ c''4 4.745930≈
c'5 0.526198≈ c''5 0.026198≈
c'6 0.509329≈ c''6 0.009329≈
c'7 0.500456≈ c''7 0.000456≈
c'8 0.003392≈ c''8 0.503392≈
c'9 0.790988≈ c''9 0.290988≈
c'10 8.895229≈ c''10 5.395229≈
c'11 1.000000≈ c''11 1.000000≈

Fig. 2. The change of the steady state concentration c10 with the flow
rate k0�A8 for network (8).

Fig. 3. The locus of the multiple steady state bifurcation for net-
work (8) in the (kA5�A6, k0�A8) plane for different values of
the rate constant kA6�A3+A10.
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ciency. By the addition of the deleted reactions to the deficiency
one subnetwork (6) one by one and by adjusting the parameters and
the µ vector, the deficiency two subnetworks of the network (2) and
the deficiency three network (2) itself all have the capacity to admit
multiple steady states. A modified µ vector such that the network
(2) exhibits multiple steady states is shown in Eq. (10). It meets the
inequalities and equalities of Eq. (7a), except for the last equality.
The rate constants and corresponding two steady states are indi-
cated in Eqs. (11), computing according to the vector µ given in
Eq. (10) (The formulas for the computation of two steady states and
a set of rate constants can be found in the appendix of Li [1999]).

µ=[µ1, …, µ11]=[4, 7, 6, −1, 3, 4, 7, −5, 1, 0.49, 0] (10)

A8 0 A9

A10 0
A11 0

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11 (11a)

(11b)

Fig. 4 shows a two-parameter (kA3+A10�A6, kA5�A6) plane for differ-
ent values of the rate constant kA10�0 (=0.180662, 0.145 and 0.140)
of network (11). Inside the cusp regions, there are three steady states.
Right on the curves of the cusp, there are two steady states. Only a
single steady state exists outside the cusp region in Fig. 4. To main-
tain the existence of the steady state multiplicity under a fixed rate
constant kA10�0, the smaller the rate constant kA5�A6 is, the smaller
the rate constant kA3+A10�A6 is required and the narrower its range.
To maintain the existence of the steady state multiplicity under a
lower rate constant kA10�0, it is required to increase the rate con-
stant kA3+A10�A6.

The application of the Subnetwork Analysis can be used to extend
the steady-state multiplicity of network (2) to its parent networks
with higher deficiency based on the vector µ given in Eq. (10). Con-

sider a family member of network (2). The addition of a pair of the
reversible reaction A5 A3+A10 (EoxyM Edeoxy+Q) to network (2)
leads to the network (12a) of deficiency three with a circle (A5

A6 A3+A10 A5). Following the Subnetwork Analysis, the aug-
mented network (12a) also has the capacity to admit multiple steady
states. The rate constants and corresponding two steady states are
indicated in Eq. (12), computing by using the vector µ given in Eq.
(10).

A8 0 A9

A10 0
A11 0

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11

A5 A3+A10 (12a)
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0.21071
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185.792

143.132

�                    �
2.55287

822.306
�                    �
930.477

98.8949

�                    �
56.6191

17306.6
�                    �
920.427

104.966

�                    �
10119.8

10155.9

�                    �
731.430

660.531

�                    �
1.04193

0.04981
c'1 0.509329≈ c''1 0.009329≈
c'2 0.500456≈ c''2 0.000456≈
c'3 0.501242≈ c''3 0.001242≈
c'4 1.745930≈ c''4 4.745930≈
c'5 0.526198≈ c''5 0.026198≈
c'6 0.509329≈ c''6 0.009329≈
c'7 0.500456≈ c''7 0.000456≈
c'8 1.331079≈ c''8 197.5497≈
c'9 304.8764≈ c''9 112.1578≈
c'10 9.035205≈ c''10 5.535205≈
c'11 5.535205≈ c''11 5.535205≈
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815.752

88.6825

�                    �
56.6191

17306.6
�                    �
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c'1 0.509329≈ c''1 0.009329≈
c'2 0.500456≈ c''2 0.000456≈
c'3 0.501242≈ c''3 0.001242≈
c'4 1.745930≈ c''4 4.745930≈
c'5 0.526198≈ c''5 0.026198≈
c'6 0.509329≈ c''6 0.009329≈
c'7 0.500456≈ c''7 0.000456≈
c'8 1.331079≈ c''8 197.5497≈

Fig. 4. The locus of the multiple steady state bifurcation for ne-
work (11) in the (kA3+A10�A6

, kA5�A6
) plane for different val-

ues of rate constant kA10�0.
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(12b)

Fig. 5 shows a two-parameter (kA10�0, kA2+A8�A5
) plane for differ-

ent values of the rate constant kA5�A3+A10 (=38.6436 and 100) for
network (12a). The number of steady states is 3, 2 and 1 for the re-
gion inside the cusp, right on the cusp and outside of it, respectively.
Fig. 5 shows that, to maintain the existence of the steady state mul-
tiplicity under a fixed rate constant kA5�A3+A10, the smaller the rate
constant kA2+A8�A5 is, the smaller the rate constant kA10�0 is required
and the narrower its range. To maintain the existence of the steady
state multiplicity under a higher rate constant kA5�A3+A10, it is re-
quired to increase the rate kA10�0 and to decrease the rate constant
kA2+A8�A5.

Following the Subnetwork Analysis, the family members of net-
work (2) displayed in network (13) have the capacity to exhibit mul-
tiple steady states for the vector µ in Eq. (10). The first nine lines
of network (13) are just the deficiency three network (2). The last
line of reaction network (13) describes any of the reactions which
can be represented by a linear combination of those reactions on
the right-hand side of the equation. The parameters a, b, c, …, j in
the last line of network (13) are any real numbers. A negative pa-
rameter means the reverse of the reaction arrow. The network (13)
might have a high deficiency, such as circular network (12) of defi-
ciency three, and even other networks of high deficiency. 

A8 0 A9

A10�0�A11

A1+A8 A4

A2+A8 A5

A1+A9 A6 A3+A10

A2+A9 A7 A1+A10

A2 A3

A5 A6

2A10 A9+A11

yi�yj=a(A8�0)+b(A9�0)+c(A2+A8�A5)+d(A1+A9�A6)
yi�yj=+e(A2+A9�A7)+f(A2�A3)+g(A7�A1+A10)

yi�yj=+h(A6�A3+A10)+i(A5�A6)+j(2A10�A9+A11) (13)

CONCLUSION

Subnetwork Analysis is used to determine the capacity of com-
putational multiple steady states in a family of enzymatically cata-
lyzed reaction network (13). A minimal subnetwork of network (13),
which generates multiple steady states, is determined in network
(6). The bistability, hysteresis and bifurcation phenomena are dis-
cussed. The inequalities and equations listed in Eqs. (7a) might pro-
vide some information of reaction mechanism identification if steady
states of some species are measured. The results of this work might
help us to study the complex reaction networks in other enzymatically
catalyzed systems, such as the enzymatic production of L-DOPA
(dihydroxyphenylalanine). From a biochemical engineering point of
view, it can be also applied to biosensors for phenols, waste-water
treatment containing phenolic pollutants and depigmentation of mel-
anin in plants and animals, even if they have different stoichiometry.

APPENDIX THE CALCULATION OF DEFICIENCY

The calculation of the deficiency for a reaction network is intro-
duced briefly. The details can be found in Feinberg [1987]. The de-
ficiency δ for a network is computed by

δ=n−l−s (A.1)

where n, l and s denote, respectively, the number of complexes, the
number of linkage classes, and the rank of the network. Take net-
work (2) for an example. Its deficiency is three since δ=n−l−s=
19−6−10=3. For network (6), δ=n−l−s=17−6−10=1. For net-
work (12a), δ=n−l−s=19−6−10=3.

NOMENCLATURE

A1, A2, … : chemical species
c1, c2, … : molar concentrations for species A1, A2, … [mol/l]
c f

1, c
f
2, … : molar concentrations in the feed stream for species A1,

A2, … [mol/l]
c', c'' : composition vectors at steady states [mol/l]
ki�j : rate constant for reaction i�j [(mol/l)1-reaction order·s−1]
ki�0 : flow rate [s−1]
l : number of linkage classes
n : number of complexes
N : number of species in a reaction network
s : the rank of a network
t : time [s]

Greek Letters
δ : deficiency of a network
µ : variables defined in Eq. (5)
θ : reactor residence time [s]
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