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Abgtract—In this paper, a modified version of the Support Vector Machine (SVM) is proposed as an empirical model
for polymerization processes modding. Usually the exact principle models of polymerization processes are seldom
known; therefore, the relations between input and output variables have to be estimated by using an empirica inference
model. They can be used in process monitoring, optimization and quality control. The Support Vector Machine is a
good tool for modeling polymerization process because it can handle highly nonlinear systems successfully. The pro-
posed method is derived by modifying the risk function of the standard Support Vector Machine by using the con-
cept of Locally Weighted Regression. Based on the smoothness concept, it can handle the correlations among many
process variables and nonlinearities more effectively. Case studies show that the proposed method exhibits superior
performance as compared with the standard SVR, which is itself superior to the traditiona statistical learning machine
in the case of high dimensional, sparse and nonlinear data.
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INTRODUCTION

When monitoring and controlling of chemica plant processes
are conddered, there are some important quality variables that are
difficult to measure on-ling, due to the existence of certain limita
tions, such as cog, rdiability, and long dead time. These limitations
tend to cause problems in the processes themsaves. These prob-
lems can be solved by using the inference modd which dlows those
variables, which related to the qualities which we are interested in
measuring such as visoosity of a polyme, to be esimated onHline by
usng other available orHine measurements such as temperatures
and pressures. In developing the inference modd, the principle or
empirical mode can be used, but the latter is preferred because the
former is not sufficiently correct. Empirica models are usudly ob-
tained based on various modding techniques such as multivariate
datidicsand atificd neurd networks|Cherkassky and Mulier, 1993).

Recently, atistical learning methods have been gpplied to many
practicad problems in chemica enginesring such as edimaing dis-
tillation compaositions [Kresta et d., 1994; Liu et d., 2000], esimat-
ing polymer qudity variables[Skagerberg et d., 1992], and predicting
dynamic behaviour of reaction systems[Kim and Chang, 2000].

This paper propases anew nonlinear method which has been mo-
tivated by the Support Vector Machine (SYM) and Locdly Weghted
Regresson (LWR).

The foundations of the SYM have been developed by Vapnik,
and it has numerous dtractive features and promisng empirica per-
formance compared to the traditiond statistica approaches [Vap-
nik, 1998; Cleveland and Shawe-Taylor, 2001]. The formulation of
the SYM embodies the Structural Risk Minimization (SRM) prin-
ciple, which has been shown to be superior to the traditiona Em-
piricd Risk Minimization (ERM) principle, enployed in conven-
tional neurd networks [Gunn et d., 1997]. It is this difference that
eguips SVM with a greater ability to generdize, which is one of
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godsin detidtica learning.

LWR is motivated by the assumption that neighbouring values
of the predictor variables are the best indicators of the reponse var-
iableinthat range of predictor vaues Hence, LWR isaway of edli-
meating a regression surface through multivariate smoothing: the re-
goonse variadle is snoothed as a function of the predictor variables
in amoving fashion. LWR congists of developing a moving loca
modd to aset of nearest neighbours[Clevdand and McArthur, 1988].

To increase the ability of generdization and prediction, this pgper
proposes the Weighted Support Vector Machine (w-SVM) for eti-
mating the product qudities of polymerization processes with high
dimengondity, nonlinearity and spardty and these results in im+-
proved estimation accuracy for the polymerization process data

THEORETICAL BACKGROUND

1. Support Vector Machine for Regression

Suppoethereisasat of traning data{ (X, Yy), - - -, (X, Yo} OX 0,
where X denotes the space of the input patterns - for ingtance, O
SVM gpproximates the function with four digtinct concepts: (8) Im-
plementation of the SRM (Structurd Risk Minimization) inductive
principle, (b) Input samples mapped onto a very high-dimensiond
ace usng a st of nonlinear bads functions defined a priori, (c)
Linear functions with congraints on complexity used to approxi-
mate the input ssmplesin the high dimensiond space, (d) The du-
dlity theory of optimization used to edimate the modd parameters
in a high-dimensond feature gpace that is computationdly tracta:
ble. The use of kernd mapping enables the curse of dimensiondity
to be addressed. Fig. 1 conceptudly illustrates the Support Vector
Regresson procedure.

Hence, the s&t of hypotheses will be afunction of the type

f(xw) =3 wg(x) +b M)
where g(X) isthe paint in the festure space thet is nonlinearly mapped
from input space x. The god isto minimize the following risk func-
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Fig. 1. Kernd mapping and regresson (x: input space, z: feature
space, y output space).
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Fig. 2. The parameter used in support vector regression [Kecman,

2001].
tion:
minimize%l\wll2 +Cil(<ﬂ +&) @
Oy, ~wax;) ~b<e+&
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The parameters used in Support Vector Regression are shown in
Hg. 2.

The condant, C, determines the trade off between themodd com-
plexity of f and its accuracy on the training data. The formulation
above corresponds to dedling with aso cdled einsendtiveloss func-
tion ||, described by

D .
g, =00  ifldlse @
0&| —¢ otherwise

This congtrained optimization is solved by forming aprimd var-
idblesLagrangian, L(w, & &°):

Lo(w,b,&.8 01,00 B B)
=S +CS (& +8)
-3 (3 ~welx) - & +€)
—ilai(W(p(xi) +h-y, +e+E)
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LagrangianL(w, b, &, &, a;, af, B, B) must be minimized with
respect to the prima variables, w, b, & and &, and maximized with
respect to non-negative Lagrange multipliers a, o, Band 8. Again,
this problem can be solved either in prima space or in adud gace.
A solution in adud space is chasen. It follows the Karush-Khun-
Tucker (KKT) conditionsfor regresson.

0,L,=3 (d =) =0 ©)
AL, =W —_i(ai ~a))x, =0 @
0,0L,=C—a’ =" =0 )

and & the optima solution, the product between dud variables and
condgrants hasto vanish. Thismeans

(et —y twx) th) =0
a;(e+{ —y twax;) +b) =0

(C-a)Z =0
(C-a))g =0 ©
Subdtituting (6), (7), and (8) into (5) yiddsthe dud optimization

problem.

Thenthe dud variables Lagrangian L(a, o) are maximized;

Lo(a,a’) = —gi(a: +a) +i(af -a)y:

1n 0, \

‘éwzl(ai —a)(a; —a)K(x;, %) (10

subject to Zla? =Zlori (1)
0<a <C, i=1,...,n
0<a;<C, i=1...,n

where K (x;, x;) isthe kernd function thet istheinner product of poirt
%), ¢lx;) mapped into festure space. The use of kernels makes it
possible to mgp the data implicitly into afeature space and to train
alinear machine in such a space, potentidly side-stepping the com-
putational problems inherent in evauating the feature map. With
the solution of the optimization problem (11) and Eg. (9), the deci-
son function takesthe following form:

f(x, 0, ) =§1(o:i ~a)K(x,x) +b (1)
A lig of popular kerndsisshownin Table 1.
2. Locally Weighted Regression

Locdly Weighted Regression is a memory-based method which
isanon-parametric gpproach that explicitly retainsthe training deta,

Table 1. Different types of kernel functions

Name of kerndl Expression
Polynomial degree p K (%, X)=(0¢ %) +2)”

. _ Bi =X i
Gaussian RBF K (xi,X;) =expp; g O

Multilayer perceptron K(x;, x;)=tanh((x;x;)+ )
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and usss it each time a prediction needs to be made. It performsa
regression around a point of interest usng only training data thet
arelocd to that point. This meansthat it is a procedure for fitting a
regression surface to the data through multivariate smoothing.

To edimate g(x) of the regresson surface & any vdue of X in
the p-dimensiona space of the independent variables, the (1<g<n,
n: tota number of observations) observations, whose x; vaues ae
dosest to %, are used. That is, a neighbourhood in the space of the
independent variables is defined. Each point in the neighbourhood
isweighted according to its distance from x; points close to x have
alargeweight, and points far from x have asmal weight.

To carry out localy weighted regression, the distance function p
in the space of the independent variables must be determined. For
an independent variable, p, was taken to be the Euclidean distance.
For multiple-regression case it is sengble to take p to be Euclidean
digtance in gpplications where the independent varigbles are mea:
surements of podition in physicd space; for example, the indepen-
dent variables might be the geographica location and the dependent
variable might be the temperature. If the independent variables are
meesured on different scdes, then it istypically sensble to divide
esch variable by an esimate of scale before gpplying a standard
distance function.

Also, a weight function and a specification of neighbourhood
sze () must be decided on. The weight function commonly used
isthefollowing ‘tricubic’ function.

W(U) =(1-u)’ for 30SUST (12)
0o otherwise

Then the weight for the observation (y;, x) is
wWi=W(o(X, x)/d(x)) (13)

d(x): the digtance of the gth nearest x; to x
Anacther weight function isthe* Gaussan’ function.

W(u)=exp(-kur)

for EOSUS]. (14)

0o otherwise
k: smoothing parameter

Then theweight for the observation (y;, x) is
w=W(p(X, X)) (15)

Thus, wi(x), which being afunction of i, hesits maximum vaue
when x; isdosest to x, decresses as the x; increases in distance from
X, ahd becomes O for the gth nearest x; to x.

WEIGHTED SUPPORT VECTOR MACHINE

1. Formulation

As mentioned before, the congant C in Eq. (2) determines the
trade off between the complexity of modd, thet is, f and its accu-
racy on thetraining deta. When C is condant, it can be said that dl
training data contribute to the accuracy of the modd to the same
extent. However, the use of the congtant C is not reasonable when
the polymerization process is modded and the output result for a
certain input condition is estimated with sparse experimental data set.

Themodd should have higher model accuracy around the training
input data which are closer to the new input point for prediction. To
handle this various C, function of Eudlidean distance between input
data points, was used together with the concept of localy weight-
ed regression. With thisidea, the risk function can be formulated as
folows

Sl +5 C(& +8) 1@

C=wi(x)*xC (13)
where x, isinput of new prediction point and w;(x,) is the weight
function obtained from (12) or (14).

With the smilar procedure described in previous section replac-
ing congant C with Eq. (13), the god isto minimize the following
dud form function with changed condraints

Ld(a,g') = i(a: +ay) +21((,7ix -a)y,

12, . .
_szl(ai —an)(a; —a)K(x;,x)) (19
subject to ia{ =anai (15)
0<a;<C, i=1,...,n

O<ai<C, i=1,...,n

Thenthefind regression function isasfollows:
£ @) =3 (01 =a)K (x0%) +b (1

where x(i=1, 2, ..., n) istraining data, X, is new input poirnt to pre-
dict, and f(g) is corregponding prediction function.
2. Conceptual Interpretation

Asshownin Fg. 3, gandard SVR with congtant value C triesto
track dl training deta as possble as mode complexity is permitted
(dashed line). It means that the amount of the prediction errors (eg.
&, &) isnat so different. Weighted SVR gives a heavy pendty on
the errors around prediction point (x mark) o it tries to reduce the
errors. With this agpect, w-SVR can exhibit higher prediction per-
formance. As the shape of the weight function is sharper, the pre-
diction errors around new input data are decreased. But thereisthe
possibility to overfit. The weight function is chosen though the va-

A

y | f(x,w)
Point to predict

Weighted SVR /)
(Solid line)

(Dash line)

\\ \\ l/
N <.
SVR AN

v

Fig. 3. Concept of weighted SVR.
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idation procedure. When the location of prediction point moves, the
modd will be trained again but SVR will nat.

CASE STUDIES

Two cases deding with the gpplication of w-SVM to the poly-
merization process are presented: one with reatively less parse
training dataand the other with nonlinear and sparser data. Thesetwo
cases will be used to demondrate the performance of the proposed
method.

1. Polymer Pilot Plant Data
1-1. Data Set

This detais taken from a polymer test plant [Ungar®, 1992]. This
data has previoudy been used for testing the robustness of nonlin-
ear modding methods to irregularly spaced data [DeVeaux et d.,
1993)]. The data s&t condsts of 10 measurements of controlled var-
igblesin apolymer processing plant, such as temperature, feed rates
and 0 on, and 4 measurements of the output of the plant. This data
st was used judt for robustness test of the proposed method so the
attribute of each variable was nat of concern.

1-2. Parameters

To use the weighted SVM, Eudidean digtances from the input
test detato each training point were cdculated, and then the weight-
ing function was caculated. Assigning a different weight pendizes
each training dataindividualy.

The ‘tricubic’ function was used as the weghting function, the
two degree polynomia function as the kernd and the vaues of the
parameterswere chosen asfollows C=5,000 and &=0.

1-3. Edtimation and Comparison of the Results

The method was tested by using seven test data with respect to
esch four quaity varigbles.

The root mean square errors (RM SE) for the test set and the rdl-
aive errors (RE) are shown in Table2. The RE is defined as fol-
lows:

_(RMSEqy ~RMSE, snf7]
O  RMSEg, O

Table2 ligs the RMSE of w-SVM and RE between SVM and
w-SVM. According to the relaive errors, the w-SVM method re-
ducesthe prediction error of SVM by about 20%.

These results show that the w-SVM method is a robugt nonlin-
ear modding method for irregularly Spaced dataand gives superior
egtimation performance as compared with the gandard SVM method.
2. PVB Experiment Data
2-1. Preliminary Process Undersanding

The dataistaken from the PVB (Polyvinyl Butyrate) process The
main ue of PVB isin sdfety glass laminates, paticularly in auto-

RE(%)

x100 (16)

Table 2. Comparison of modified SYM with gandard SVM using
polymer test plant data

yl y2 y3 y4
RMSE,sn  0.0226 0.0188 0.0269 0.0224
RE (%) 499 3.09 8.19 15.6

motive, aerogpace and architectura glass Its adhesion is o strong
that no glass splinters fly away when the glass laminate is broken
in accidents. PVB isa polyacetd produced by the condensation of
PVA (Polyvinyl Alcohal) with n-butyraldehyde in the presence of
an acid catdys [Seymour et d., 1988]. The condensation reaction
produces 1,3-dioxane rings, but it is not taken to completion, leav-
ing some unreacted hydroxyl groups which promote good adhe-
son to the glass subgrate on lamination. Since polyvinyl acohal is
produced from the hydrolyss of polyvinyl acetate, thereare alimited
number of acetate groups aso present. The find Structure can be
conddered to be a random per-polymer of vinyl butyrd, vinyl d-
cohol and vinyl acetate. Variaions in chemica compostion can
occur depending on the reaction conditions. Therefore, the reaction
conditions are normaly controlled S0 asto impart the desired usage
properties. But the principal modd of the process was built with
many assumptions, so predicting the qudity of produced polymer
with the principa modd is quite different. The objective of this case
sudy is to esimate the rdaionship between the control varigbles
and the product properties using experimenta data and inference
models.

2-2. Data St

This data condggts of 12 measurements of controlled variables
(eg., viscosty and concentration of PVA, amount of firg and sec-
ond catayd, reection time, temperature etc.) and one measurement
of the product property variable, thet is, viscosity. The number of
data setsis 120, but the data is sparse due to the high dimension of
the input variables and the limited number of experiments. 80 out
of the 120 data sts were chosen asthetraining s, 30 data ssts were
used for validation and 7 deta sets were sHlected asthe tet st
2-3. Paameters

In order to use Euclidean distance from input test data to each
training point effectively, dl of theinput test data were normalized.
The neighbourhood sze (q) was st to 80 and a ‘tricubic’ function
was used as aweighting function.

In order to make the vdidation error smdler, the radid basisfunc-
tion was used as the kerndl and the vaues of the parameters were
chosen asfallows: C=1,000 and e=0.001.

2-4. Edimation and Comparison of Results

The reaults of the proposed w-SVM method were compared with
those of other methods, i.e, the conventiond feed forward back-
propagation network (FFBPN) and the gandard SVM. In the case
of FFBPN, the Levenberg-Marquardt backpropagation method with
tangent Sgmoid trandfer function and three hidden layers was used.
In the case of gandard SVM, the same parameters and kernd func-
tion as were used with w-SVM were chosen.

Table 3. Comparison of three different methodsin the prediction
performance of PVB process data

yl
RM SE 500 139.9667
RMSE, 36.7946
RMSE,.sm 23.7239
RE? 83.1
RE,° 355

“The data and related documents are available at ftp://ftp.cis.upenn.edu/
pub/ungar/chemdata
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2Therelative error between FFBPN and w-SVM.
"The rel ative error between SVM and w-SVM.
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Fig. 4. Predicted and measured valuesin case study 2.

The RMSE for the test st and RE are shownin Table 3.

The rdaive error between FFBPN and w-SVM (RE) is 83.1%
and thet between gandard SYM and w-SVM (RE,) is35.5%. The
edimation resultsare shown in FHg. 4.

CONCLUSION

In this paper, we proposed a new verson of the Support Vector
Machine, which can be used to estimate the product properties of
polymerization processes that have a highly nonlinear, high dimen-
sond and sparse data st To ded successfully with the nonlinegrity,
dimendondity and arcity, we used the conoept of Locdly Weight-
ed Regression. When it comes to minimize the error, the risk func-
tion of sandard SVM attributes the same leve of importanceto dl
of the training data, but this may cauise poor prediction ability when
the training deta st is irregularly spaced. This is the reason why
we modified the dandard SVM with Localy Weighted Regression.
At firg, the proposed method was gpplied to awell known data set
which isfrequently used for testing the robustness of nonlinear mod-
eling methods, and then to a PolyVinyl Butyrate process data .
The result shows theimproved performance of the proposed meth-
od for edimating the polymerization product properties with irreg-
ularly spaced nonlinear process data And this modd can be gp-
plied to process monitoring and optimization.
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