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Abstract−In this paper, a modified version of the Support Vector Machine (SVM) is proposed as an empirical model
for polymerization processes modeling. Usually the exact principle models of polymerization processes are seldom
known; therefore, the relations between input and output variables have to be estimated by using an empirical inference
model. They can be used in process monitoring, optimization and quality control. The Support Vector Machine is a
good tool for modeling polymerization process because it can handle highly nonlinear systems successfully. The pro-
posed method is derived by modifying the risk function of the standard Support Vector Machine by using the con-
cept of Locally Weighted Regression. Based on the smoothness concept, it can handle the correlations among many
process variables and nonlinearities more effectively. Case studies show that the proposed method exhibits superior
performance as compared with the standard SVR, which is itself superior to the traditional statistical learning machine
in the case of high dimensional, sparse and nonlinear data.
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INTRODUCTION

When monitoring and controlling of chemical plant processes
are considered, there are some important quality variables that are
difficult to measure on-line, due to the existence of certain limita-
tions, such as cost, reliability, and long dead time. These limitations
tend to cause problems in the processes themselves. These prob-
lems can be solved by using the inference model which allows those
variables, which related to the qualities which we are interested in
measuring such as viscosity of a polymer, to be estimated on-line by
using other available on-line measurements such as temperatures
and pressures. In developing the inference model, the principle or
empirical model can be used, but the latter is preferred because the
former is not sufficiently correct. Empirical models are usually ob-
tained based on various modeling techniques such as multivariate
statistics and artificial neural networks [Cherkassky and Mulier, 1998].

Recently, statistical learning methods have been applied to many
practical problems in chemical engineering such as estimating dis-
tillation compositions [Kresta et al., 1994; Liu et al., 2000], estimat-
ing polymer quality variables [Skagerberg et al., 1992], and predicting
dynamic behaviour of reaction systems [Kim and Chang, 2000].

This paper proposes a new nonlinear method which has been mo-
tivated by the Support Vector Machine (SVM) and Locally Weighted
Regression (LWR).

The foundations of the SVM have been developed by Vapnik,
and it has numerous attractive features and promising empirical per-
formance compared to the traditional statistical approaches [Vap-
nik, 1998; Cleveland and Shawe-Taylor, 2001]. The formulation of
the SVM embodies the Structural Risk Minimization (SRM) prin-
ciple, which has been shown to be superior to the traditional Em-
pirical Risk Minimization (ERM) principle, employed in conven-
tional neural networks [Gunn et al., 1997]. It is this difference that
equips SVM with a greater ability to generalize, which is one of

goals in statistical learning.
LWR is motivated by the assumption that neighbouring values

of the predictor variables are the best indicators of the response var-
iable in that range of predictor values. Hence, LWR is a way of esti-
mating a regression surface through multivariate smoothing: the re-
sponse variable is smoothed as a function of the predictor variables
in a moving fashion. LWR consists of developing a moving local
model to a set of nearest neighbours [Cleveland and McArthur, 1988].

To increase the ability of generalization and prediction, this paper
proposes the Weighted Support Vector Machine (w-SVM) for esti-
mating the product qualities of polymerization processes with high
dimensionality, nonlinearity and sparsity and these results in im-
proved estimation accuracy for the polymerization process data.

THEORETICAL BACKGROUND

1. Support Vector Machine for Regression
Suppose there is a set of training data {(x1, y1), …, (xn, yn)}⊂ X×ℜ ,

where X denotes the space of the input patterns - for instance, ℜ d.
SVM approximates the function with four distinct concepts: (a) Im-
plementation of the SRM (Structural Risk Minimization) inductive
principle, (b) Input samples mapped onto a very high-dimensional
space using a set of nonlinear basis functions defined a priori, (c)
Linear functions with constraints on complexity used to approxi-
mate the input samples in the high dimensional space, (d) The du-
ality theory of optimization used to estimate the model parameters
in a high-dimensional feature space that is computationally tracta-
ble. The use of kernel mapping enables the curse of dimensionality
to be addressed. Fig. 1 conceptually illustrates the Support Vector
Regression procedure.

Hence, the set of hypotheses will be a function of the type

(1)

where φi(x) is the point in the feature space that is nonlinearly mapped
from input space x. The goal is to minimize the following risk func-

f x w,( ) = wiφi x( ) + b
i = 1

n

∑
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tion:

(2)

(3)

The parameters used in Support Vector Regression are shown in
Fig. 2.

The constant, C, determines the trade off between the model com-
plexity of f and its accuracy on the training data. The formulation
above corresponds to dealing with a so called ε-insensitive loss func-
tion |ξ |ε described by

(4)

This constrained optimization is solved by forming a primal var-
iables Lagrangian, Lp(w, ξ, ξ *):

(5)

Lagrangian Lp(w, b, ξ, ξ *, αi, αi
*, βi, βi

*) must be minimized with
respect to the primal variables, w, b, ξ and ξ *, and maximized with
respect to non-negative Lagrange multipliers α, α*, β and β*. Again,
this problem can be solved either in primal space or in a dual space.
A solution in a dual space is chosen. It follows the Karush-Khun-
Tucker (KKT) conditions for regression.

(6)

(7)

(8)

and at the optimal solution, the product between dual variables and
constraints has to vanish. This means

(9)

Substituting (6), (7), and (8) into (5) yields the dual optimization
problem.

Then the dual variables Lagrangian Ld(α, α*) are maximized;

(10)

(11)

i=1, …, n
i=1, …, n

where K(xi, xj) is the kernel function that is the inner product of point
φ(xi), φ(xj) mapped into feature space. The use of kernels makes it
possible to map the data implicitly into a feature space and to train
a linear machine in such a space, potentially side-stepping the com-
putational problems inherent in evaluating the feature map. With
the solution of the optimization problem (11) and Eq. (9), the deci-
sion function takes the following form:

(11)

A list of popular kernels is shown in Table 1.
2. Locally Weighted Regression

Locally Weighted Regression is a memory-based method which
is a non-parametric approach that explicitly retains the training data,

minimize
1
2
--- w 2

 + C ξ i + ξ i
*( )

i = 1

n

∑

subject to

yi − wφ xi( ) − bi ε + ξ i≤
wφ xi( ) + bi − yi ε + ξ i

*≤
ξ i ξ i

*, 0≥



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ξ   − ε otherwise


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Fig. 1. Kernel mapping and regression (x: input space, z: feature
space, y output space).

Fig. 2. The parameter used in support vector regression [Kecman,
2001].

Table 1. Different types of kernel functions

Name of kernel Expression

Polynomial degree p K(xi, xj)=((xi ·xj)+1)
p

Gaussian RBF

Multilayer perceptron K(xi, xj)=tanh((xixj)+b)

K xi xj,( )  = 

xi − xj
2

− 2σ2
----------------- 

 exp
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and uses it each time a prediction needs to be made. It performs a
regression around a point of interest using only training data that
are local to that point. This means that it is a procedure for fitting a
regression surface to the data through multivariate smoothing.

To estimate g(x) of the regression surface at any value of x in
the p-dimensional space of the independent variables, the (1≤q≤n,
n: total number of observations) observations, whose xi values are
closest to x, are used. That is, a neighbourhood in the space of the
independent variables is defined. Each point in the neighbourhood
is weighted according to its distance from x; points close to x have
a large weight, and points far from x have a small weight.

To carry out locally weighted regression, the distance function ρ
in the space of the independent variables must be determined. For
an independent variable, ρ, was taken to be the Euclidean distance.
For multiple-regression case it is sensible to take ρ to be Euclidean
distance in applications where the independent variables are mea-
surements of position in physical space; for example, the indepen-
dent variables might be the geographical location and the dependent
variable might be the temperature. If the independent variables are
measured on different scales, then it is typically sensible to divide
each variable by an estimate of scale before applying a standard
distance function.

Also, a weight function and a specification of neighbourhood
size (q) must be decided on. The weight function commonly used
is the following ‘tricubic’ function.

(12)

Then the weight for the observation (yi, xi) is

wi=W(ρ(x, xi)/d(x)) (13)

d(x): the distance of the qth nearest xi to x
Another weight function is the ‘Gaussian’ function.

W(u)=exp(−ku2)

(14)

k: smoothing parameter

Then the weight for the observation (yi, xi) is

wi=W(ρ(x, xi)) (15)

Thus, wi(x), which being a function of i, has its maximum value
when xi is closest to x, decreases as the xi increases in distance from
x, and becomes 0 for the qth nearest xi to x.

WEIGHTED SUPPORT VECTOR MACHINE

1. Formulation
As mentioned before, the constant C in Eq. (2) determines the

trade off between the complexity of model, that is, f and its accu-
racy on the training data. When C is constant, it can be said that all
training data contribute to the accuracy of the model to the same
extent. However, the use of the constant C is not reasonable when
the polymerization process is modeled and the output result for a
certain input condition is estimated with sparse experimental data set.

The model should have higher model accuracy around the training
input data which are closer to the new input point for prediction. To
handle this, various C, function of Euclidean distance between input
data points, was used together with the concept of locally weight-
ed regression. With this idea, the risk function can be formulated as
follows:

(12)

Ci=wi(xk)×C (13)

where xk is input of new prediction point and wi(xk) is the weight
function obtained from (12) or (14).

With the similar procedure described in previous section replac-
ing constant C with Eq. (13), the goal is to minimize the following
dual form function with changed constraints:

(14)

(15)

i=1, …, n
i=1, …, n

Then the final regression function is as follows:

(16)

where xi(i=1, 2, …, n) is training data, xk is new input point to pre-
dict, and fk(g) is corresponding prediction function.
2. Conceptual Interpretation

As shown in Fig. 3, standard SVR with constant value C tries to
track all training data as possible as model complexity is permitted
(dashed line). It means that the amount of the prediction errors (e.g.
ξi, ξi

*) is not so different. Weighted SVR gives a heavy penalty on
the errors around prediction point (x mark) so it tries to reduce the
errors. With this aspect, w-SVR can exhibit higher prediction per-
formance. As the shape of the weight function is sharper, the pre-
diction errors around new input data are decreased. But there is the
possibility to overfit. The weight function is chosen though the val-
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0        otherwise



for 0 u 1≤ ≤
0        otherwise


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∑

Fig. 3. Concept of weighted SVR.
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idation procedure. When the location of prediction point moves, the
model will be trained again but SVR will not.

CASE STUDIES

Two cases dealing with the application of w-SVM to the poly-
merization process are presented: one with relatively less sparse
training data and the other with nonlinear and sparser data. These two
cases will be used to demonstrate the performance of the proposed
method.
1. Polymer Pilot Plant Data
1-1. Data Set

This data is taken from a polymer test plant [Ungar1), 1992]. This
data has previously been used for testing the robustness of nonlin-
ear modeling methods to irregularly spaced data [DeVeaux et al.,
1993]. The data set consists of 10 measurements of controlled var-
iables in a polymer processing plant, such as temperature, feed rates
and so on, and 4 measurements of the output of the plant. This data
set was used just for robustness test of the proposed method so the
attribute of each variable was not of concern.
1-2. Parameters

To use the weighted SVM, Euclidean distances from the input
test data to each training point were calculated, and then the weight-
ing function was calculated. Assigning a different weight penalizes
each training data individually.

The ‘tricubic’ function was used as the weighting function, the
two degree polynomial function as the kernel and the values of the
parameters were chosen as follows: C=5,000 and ε=0.
1-3. Estimation and Comparison of the Results

The method was tested by using seven test data with respect to
each four quality variables.

The root mean square errors (RMSE) for the test set and the rel-
ative errors (RE) are shown in Table 2. The RE is defined as fol-
lows:

(16)

Table 2 lists the RMSE of w-SVM and RE between SVM and
w-SVM. According to the relative errors, the w-SVM method re-
duces the prediction error of SVM by about 20%.

These results show that the w-SVM method is a robust nonlin-
ear modeling method for irregularly spaced data and gives superior
estimation performance as compared with the standard SVM method.
2. PVB Experiment Data
2-1. Preliminary Process Understanding

The data is taken from the PVB (Polyvinyl Butyrate) process. The
main use of PVB is in safety glass laminates, particularly in auto-

motive, aerospace and architectural glass. Its adhesion is so strong
that no glass splinters fly away when the glass laminate is broken
in accidents. PVB is a polyacetal produced by the condensation of
PVA (Polyvinyl Alcohol) with n-butyraldehyde in the presence of
an acid catalyst [Seymour et al., 1988]. The condensation reaction
produces 1,3-dioxane rings, but it is not taken to completion, leav-
ing some unreacted hydroxyl groups which promote good adhe-
sion to the glass substrate on lamination. Since polyvinyl alcohol is
produced from the hydrolysis of polyvinyl acetate, there are a limited
number of acetate groups also present. The final structure can be
considered to be a random per-polymer of vinyl butyral, vinyl al-
cohol and vinyl acetate. Variations in chemical composition can
occur depending on the reaction conditions. Therefore, the reaction
conditions are normally controlled so as to impart the desired usage
properties. But the principal model of the process was built with
many assumptions, so predicting the quality of produced polymer
with the principal model is quite different. The objective of this case
study is to estimate the relationship between the control variables
and the product properties using experimental data and inference
models.
2-2. Data Set

This data consists of 12 measurements of controlled variables
(e.g., viscosity and concentration of PVA, amount of first and sec-
ond catalyst, reaction time, temperature etc.) and one measurement
of the product property variable, that is, viscosity. The number of
data sets is 120, but the data is sparse due to the high dimension of
the input variables and the limited number of experiments. 80 out
of the 120 data sets were chosen as the training set, 30 data sets were
used for validation and 7 data sets were selected as the test set.
2-3. Parameters

In order to use Euclidean distance from input test data to each
training point effectively, all of the input test data were normalized.
The neighbourhood size (q) was set to 80 and a ‘tricubic’ function
was used as a weighting function.

In order to make the validation error smaller, the radial basis func-
tion was used as the kernel and the values of the parameters were
chosen as follows: C=1,000 and ε=0.001.
2-4. Estimation and Comparison of Results

The results of the proposed w-SVM method were compared with
those of other methods, i.e., the conventional feed forward back-
propagation network (FFBPN) and the standard SVM. In the case
of FFBPN, the Levenberg-Marquardt backpropagation method with
tangent sigmoid transfer function and three hidden layers was used.
In the case of standard SVM, the same parameters and kernel func-
tion as were used with w-SVM were chosen.

RE %( ) = 
RMSESVM − RMSEw-SVM

RMSESVM

------------------------------------------------------- 
  100×

1)The data and related documents are available at ftp://ftp.cis.upenn.edu/
pub/ungar/chemdata

Table 2. Comparison of modified SVM with standard SVM using
polymer test plant data

y1 y2 y3 y4

RMSEw-SVM 0.0226 0.0188 0.0269 0.0224
RE (%) 49.9 3.09 8.19 15.6

Table 3. Comparison of three different methods in the prediction
performance of PVB process data

y1

RMSEFFBPN 139.9667
RMSESVM 036.7946
RMSEw-SVM 023.7239
REI

a 83.100
REII

b 35.500
aThe relative error between FFBPN and w-SVM.
bThe relative error between SVM and w-SVM.
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The RMSE for the test set and RE are shown in Table 3.
The relative error between FFBPN and w-SVM (REI) is 83.1%

and that between standard SVM and w-SVM (REII) is 35.5%. The
estimation results are shown in Fig. 4.

CONCLUSION

In this paper, we proposed a new version of the Support Vector
Machine, which can be used to estimate the product properties of
polymerization processes that have a highly nonlinear, high dimen-
sional and sparse data set. To deal successfully with the nonlinearity,
dimensionality and sparcity, we used the concept of Locally Weight-
ed Regression. When it comes to minimize the error, the risk func-
tion of standard SVM attributes the same level of importance to all
of the training data, but this may cause poor prediction ability when
the training data set is irregularly spaced. This is the reason why
we modified the standard SVM with Locally Weighted Regression.
At first, the proposed method was applied to a well known data set
which is frequently used for testing the robustness of nonlinear mod-
eling methods, and then to a PolyVinyl Butyrate process data set.
The result shows the improved performance of the proposed meth-
od for estimating the polymerization product properties with irreg-
ularly spaced nonlinear process data. And this model can be ap-
plied to process monitoring and optimization.
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