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Abstract−Recently, in our laboratory a closed form expression for the correlation function of the hard-sphere dimer
fluid obtained from Wertheims multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approxi-
mation was presented by Kim et al. [2001]. However, it is difficult to apply its expression to perturbation theory and
vapor-liquid equilibria calculations, since it is of very complex form. In this work, we present a simplified expression
for the first shell of the radial distribution function (RDF) of the hard-sphere dimer fluid using a series expansion of
the analytical expression. The expansion is carried out in terms of both the packing fraction and the radial distance.
Expressions are also obtained for the coordination number and its first and second derivatives as functions of radial
distance and packing fraction. These expressions, which are useful in perturbation theory, are simpler to use than those
obtained from the starting equation, while giving good agreement with the original expression results. Then we present
an simplified equation of state for the square-well dimer fluid of variable well width (λ) based on Barker-Henderson
perturbation theory using its expression for the radial distribution function of the hard-sphere dimer fluid, and test its
expression with NVT and Gibbs ensemble Monte Carlo simulation data [Kim et al., 2001].
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INTRODUCTION

In the last few decades, fluids consisting of hard-body fluids have
been the subject of a great deal of research, both in theory as well
as in computer simulations. One of the reasons is that such fluids
have many properties in common with fluids having more realistic
intermolecular potentials. Moreover, once the properties of a hard-
body fluid have been obtained, those of a more realistic fluid with
a similar shape can be obtained through a perturbation theory that
uses the hard-body fluid as the reference fluid.

The Ornstein-Zernike (OZ) integral equation theory with the Per-
cus-Yevick (PY) closure approximation is of significant interest be-
cause it provides an analytical solution for the radial distribution
function (RDF) [Wertheim, 1963; Thiele, 1964; Throop et al., 1965;
Baxter, 1968; Smith et al., 1970; Chang et al., 1994], which makes
it possible for the equation of state to be formulated in a closed form
through perturbation theory [Chang et al., 1994; Tang et al., 1993,
1994].

Hard-sphere chain fluids have been studied extensively by com-
puter simulation and integral equation theories such as the poly-
mer-reference interaction site model theory [Yethiraj et al., 1990,
1992], Chiew’s PY theory [Chiew, 1990, 1991] and the multidensity
Ornstein-Zernike integral equation theory [Wertheim, 1984, 1986;
Kalyuzhnyi et al., 1997; Chang et al., 1995a, b, 1999]. Also, chain
fluids with other potentials have been studied [Chang et al., 1998;
Yeom et al., 2000]. Chiew’s PY theory is an extension of Baxter’s
spherically associating fluid theory [Baxter, 1968] to fluids con-
taining linear chains with special bond connectivity constraints. Re-
cently an approximate analytical solution of the PY theory for the
intermolecular RDF was developed by Tang and Lu [Tang et al.,

1996].
Since Wertheim formulated the multidensity Ornstein-Zernike

(MOZ) integral equation theory for anisotropic associating fluids
[Wertheim, 1984, 1986], several studies have been done to apply
the MOZ theory to hard-sphere chains. Using the polymer Percus-
Yevick closure and the ideal-chain approximation, Chang and San-
dler [Chang et al., 1995a, b] calculated inter- and intramolecular
RDFs for hard-sphere chains, and later Chang and Kim [Chang et
al., 1999] obtained analytical expressions for these RDFs. On the
other hand, Kim et al. [2001] obtained an analytical expression for the
RDF using the MOZ theory for hard sphere dimer (HSD) fluids.

Although much effort has been aimed at obtaining more man-
ageable expressions of the RDF derived by the PY theory, these
expressions have limitations in practical application. Even analytical
solutions are often too complicated, especially for use in perturba-
tion theories such as those of Barker-Henderson or Weeks-Chandler-
Andersen. To derive the equation of state, these theories require in-
tegrations and derivations of functions that depend on the RDF and
the inter-molecular potential. The resulting pressure expressions for
the first and second order perturbation term are always complicated
and generally nonanalytical.

Thus, it would be desirable to obtain simpler expressions which
have the same results with original analytic solution and have a sim-
ple form of pressure equation in perturbation treatment for a more
realistic fluid. The aim of this paper is to derive a simple form that
allows considerable simplicity in the expression of the first coordi-
nation shell of the RDF and that can be used easily in perturbation,
While retaining good agreement with results obtained from RDF
derived by Kim et al. first of all, the correlation function of the hard-
sphere dimer fluid presented by Kim et al. is summarized. We will
present a simplified expression for the first shell of the radial dis-
tribution function (RDF) of the hard-sphere dimer fluid using a series
expansion of the analytical expression in terms of radial distance and
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packing fraction. And then we will derive perturbation expression
using it.

ANALYTICAL SOULTION AND INTEGRATION 
FORM OF THE HARD-DIMER RDF

Kim et al. [2001a, b] presented a closed form expression for the
correlation function of a hard-sphere dimer fluid obtained from Wer-
theim’s multidensity Ornstein-Zernike integral equation theory with
Percus-Yevick approximation.

The RDF of hard-sphere dimer fluids in the first shell is given by

(1)

where

N2(s)=2(1+2η)+(6+15η)s+8(1+2η)s2+4(1+2η)s3 (2)

M(s)=−48η(1+2η)−24η(2+7η)s+144η2s2+48η(1−η)s3+8(1−η)2s4 (3)

and M1(s)=∂M/∂s. The quantities si are zeros of M(s).
They utilized Tang and Lu’s Hilbert transform result for the inte-

gral of the RDF

(4)

where  is the Laplace transform of rg(r),

(5)

and Res represents the summation of residues produced by all singu-
larities in function . Substituting Eq. (5) into Eq. (4) and noting
that

(6)

yields

(7)

A SIMPLIFIED EXPRESSION FOR THE FIRST 
COORDINATION SHELL OF THE HARD-DIMER RDF

To simplify the expression for the first coordination shell of the
RDF, we might think of expanding it in power series of the radial
distance x around x=1. However, this expansion converges rather
slowly and as many as 15 terms are needed to achieve good accu-
racy with the analytical solution. This is due to the fact that the PY
solution of the RDF has a peak at a reduced distance x<1. It seems
more advisable to expand g(x) around x=1.5, which corresponds
to the middle of the first shell and is particularly convenient when
the resulting expression of the RDF is to be used in a perturbation
theory for the square-well fluid with range λ=1.5. In this case, the
number of terms of the expansion is reduced.

Instead of expanding RDF itself, we expanded the integral of RDF

(8)

as follows

(9)

which plays an important role in perturbation theories for the square-
well fluid.

At m=8 and n=8, AAD% of I(λ, η) is 9.632×10−3

The expansion on I(λ, η) instead of the expansion on g(x) itself
is because the expansion on I(λ, η) is more useful and convenient
than the expansion on g(x) itself in the perturbation theory. In order
to reduce the low rate of convergence, we define the denominator
form of I(λ, η) expansion as the above form.

From Eq. (9), the RDF is readily obtained in the form

(10)

Inm is the correlation parameter, given by Table 1.

APPLICATION TO PERTURBATION THEORIES OF 
SQUARE-WELL FLUIDS OF VARIABLE WIDTH

In perturbation theory the Helmholtz free energy of the system
is expanded in the inverse temperature around that of a reference
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Table 1. Parameters Inm involved in Eq. (9) up to n=8, m=8

n
m

0 1 2 3 4 5 6 7 8

0 −0.50151 −0.84636 −0.96198 −0.46857 −13.6613 −46.4631 −98.7908 −111.451 −45.4170
1 −1.64849 −0.02511 −7.45037 −0.85329 −6.85938 −12.1549 −41.1000 −113.130 −98.7401
2 −1.60498 −3.93626 −5.62713 −4.34775 −157.401 −550.036 −1149.83 −1351.87 −628.560
3 −0.68559 −3.08019 −0.93061 −62.1987 −270.001 −805.062 −1579.18 −1569.11 −578.236
4 −0.12554 −0.58117 −4.77797 −6.07342 −15.3681 −34.3968 −173.848 −448.769 −322.394
5 −0.01064 −0.10059 −4.18765 −47.9975 −237.273 −766.056 −1548.57 −1650.11 −691.227
6 −0.00319 0.34058− −5.11619 −41.0545 −209.873 −651.797 −1124.95 −972.125 −324.113
7 −0.00082 −0.03047 −0.66734 −6.41021 −31.1024 −69.1859 −50.3279 −29.0152 −39.2324
8 −0.00085 −0.05197 −1.02276 −9.44811 −49.3776 −153.710 −275.959 −259.597 −98.3267
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system whose thermodynamic structural properties are known. The
second-order expansion of the Helmholtz free energy is of the form

(11)

where Aex is the Helmholtz free energy in excess of that of an ideal
gas at the same temperature and number density and A0

ex is the ex-
cess Helmholtz free energy of the reference system. A1 and A2 are
the first- and the second-order perturbation terms for the Helmholtz
free energy, respectively. N is the number of molecules, kB is the
Boltzmann constant, T is temperature, and T* is the reduced tem-
perature (T*=kBT/ε). A1 and A2 are derived from knowledge of the
equation of state and the RDF of the reference fluid.

For the reference equation of state we employ TPT, given by

(12)

where the superscript HSD denotes the hard-sphere dimer fluid and
gHS(σ+) is the contact value of RDF of the hard sphere fluid. If the
Carnahan-Starling equation of state is used for hard-sphere excess
Helmholtz free energy and for the contact value of the RDF, the
compressibility factor is given by

(13)

The first-order perturbation term for square-well dimer fluid around
the reference hard-sphere dimer fluid is given by

(14)

(15)

In the previous section we obtained a simplified expression for
the IHSD of hard-sphere dimer fluids.

The second-order perturbation term can be formed from the Bar-
ker-Henderson perturbation theory as

(16)

The compressibility factors are obtained by differentiating the
corresponding Helmholtz free energy term with respect to η,

(17)

(18)

(19)

(20)

(21)

The excess chemical potential can be obtained in an analytic form
from the usual thermodynamic relations.

(22)

CONCLUSION
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Fig. 1. Compressibility factors of square-well dimer fluids (λ=1.3).
The symbols are simulation data [Kim et al., 2001].

Fig. 2. Compressibility factors of square-well dimer fluids (λ=1.5).
The symbols are simulation data [Kim et al., 2001].
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We presented a simple form for the first shell of the hard sphere
dimer radial distribution function and for the integral IHSD, which
plays an important role in perturbation theory. The integral IHSD is
fitted with the eighth order of radial distance and packing fraction,
respectively, which gives good agreement with the results obtained
by original analytic RDF derived by Kim et al. in 1≤λ≤2. First and
second derivative of the IHSD also give good agreement with origi-
nal expression results. By using the integral IHSD and perturbation
theory, we obtained the Helmholtz free energy and compressibility
factor for the square-well dimer in the simple form. Fig. 1, Fig. 2
and Fig. 3 show the compressibility factor for the square-well dimer

that is compared with simulation data [Kim et al., 2001]. Fig. 4 shows
the vapor-liquid coexisting curves of square-well dimer fluid.

From these facts we can conclude that by using such a simple
expression, complicated and tedious time-consuming calculation can
be reduced, while retaining good agreement with the exact expres-
sion results.
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NOMENCLATURE

A : Helmholtz free energy
Aex : excess Helmholtz free energy
ADIM : Helmholtz free energy of dimer fluid
A0, A1, A2 : zero-, first-, second-order contributions to the free en-

ergy in perturbation theory
gHS : radial distribution function of hard sphere
gHSD : radial distribution function of hard sphere dimer
IHSD : integral of hard sphere dimer
Inm : parameters in the expansion of I in power series of the radial

distance and packing
kB : Boltzmann constant
N : number of particles
pHSD : pressure of hard sphere dimer
Res : summation of residue
s : zero of M(s)
T : temperature [K]
T* : reduced temperature [kT/ε]
V : volume
Z : compressibility factor
ZHSD : compressibility factor of hard sphere dimer
Z1, Z2: first-, second-order contributions to the compressibility fac-

tor in perturbation theory
ZSWD : compressibility factor of square well dimer
ZDIM : compressibility factor of dimer fluid

Greek Letters
ε : depth of the potential well
µex : excess chemical potential
η : packing fraction
λ : radial distance or range of the potential in units of s
σ : diameter of a hard sphere
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