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Abstract—The ambiguity and non-uniqueness of splitting fluxes and forces from the entropy generation equation
raise confusion in nonequilibrium thermodynamics and misunderstanding of the Onsager reciproca relaionships. How-
ever, they provide an opportunity to sdlect different sets of fluxes and forces that represent a given nonequilibrium pro-
cess. By symmetrization of the phenomenologica coefficient matrix, one can aways find a proper set of fluxes and
forces. This paper shows how the implementation of the transformation theory can produce severa different sets of
fluxes and forces through many engineering examples such asideal gas permestion through a membrane, reverse osmo-
ss, nanofiltration, ultrafiltration, and simultaneous heat and mass transfer. Also, guidance is presented on how to study
nonequilibrium thermodynamics for a given irreversible process together with a short summary of the principles of
nonequilibrium thermodynamics. These contain the entropy generation equetion, linear relaions of fluxes and dl gener-
aized forces including the Curie theorem, and the Onsager reciprocal relationships.
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INTRODUCTION

The linear theory of nonequilibrium thermodynamics (NT) has
been very sucoessful in explaining various coupling phenomena and
generdizing the flux equaionsin teems of dl available driving forces
in many fidds The basic principles of NT were origindly pro-
posed by Onsager [1931a, b] and later reformulated by Prigogine
[1947, 1967], de Groot [1961], de Groot and Mazur [1962], Fitts
[1962], Baranowski [1991], and Kondepudi and Prigogine [1998].
Katchdsky and Curran [1975] successfully gpplied the NT analy-
dsfor reverse oamoss and ultrafiltration processes, and Narebska
and Kujawski [1994] dso demondrated theat their experimentd data
fit the theory in dialys's processes. Kedem [1989] emphasized the
role of coupling phenomenon in the application of NT to pervapo-
ration of acohol and water. Many other transport phenomena are
discussed by de Groot [1961], de Groot and Mazur [1962], Fitts
[1962], and Kondepudi and Prigogine [1998], but are omitted here
for the sake of brevity. Rizvi and Zaidi [1986] reported NT of dec-
trokinetic effects acrass mixed-lipid membranes Narebska et d.
[1985, 19873, b, 1994, 1997, 19953, b, 1997] Sudied trangport through
charged membranes.

The entropy production rate can be caculated from the entropy
baance equation together with other baance equations of physica
entitiesin quetion, such as mass, enargy, dectric charge, and momen-
tum, as demondrated in the books by de Groot and Mazur [1962],
Htts [1962], and Kondepudi and Prigogine [1998]. According to
Prigogine [1947, 1967] and de Groot and Mazur [1962], the totdl
entropy change condgts of externd and internd contributions. In
the discussion of NT, only theinternd change due to irreversibility
is rlevant. The qolit of fluxes and forces, however, is not dways
obvious or trivid; usudly there can be many different sets of fluxes
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and forces representing equally wel the system under study. It is
aso important to note that any arbitrary choices of fluxes and forces
may not satisfy the Onsager rdlations, especidly when a magnetic
fidd is present. Thus care mugt be exercised as discussad by de Groot
and Mazur [1962] and Fitts[1962]. This aspect is beyond the scope
of the present paper, and therefore it is not covered here.

The ambiguity and non-uniqueness of Splitting fluxes and forces
from the entropy generation eguation may gopear to be shortcom-
ings of NT. However, we can take advantage of this agpect and use
it more profitably by transforming a given st of fluxes and forces
into another set that could produce more useful forms in explain-
ing laboratory data. Therefore, it is the main god of this paper to
illustrate how one can accomplish such atask by taking a number
of examples occurring in engineering.

PRINCIPLES OF NONEQUILIBRIUM
THERMODYNAMICS

There are only afew prindples or hypotheses thet are the funda
mentd basis of NT. The phenomenologica theory of NT concerns
physicochemical changes taking place a the mecrosoopic leve under
a seady state near equilibrium. The approach of dassicd equilib-
rium thermodynamicsisto caculate the changesin thermodynamic
functions between two eguilibrium gates In NT, these changes are
directly dedt with in terms of fluxes and generdized forces The
development of NT formaisms by Onsager [19313, b isgenerdly
accepted asthe linear theory of NT.

1. Local Equilibrium

Although the system considered in this paper is undergoing non-
equilibrium processes overdl, every smdl volume demant inthesys:
tem is assumed to have every thermodynamic Sate variable (equi-
librium property), such as temperature, pressure, interna energy,
entropy, etc.

2. Entropy Generation
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According to the second law of thermodynamics, any nonequi-
librium process must accompany an entropy generetion. In NT, the
rate of entropy generation is a scaar (inner or dot) product of dl
fluxes (deady sate) and dl forces In the andysis of NT, this hy-
pothesisis usudly the starting point. The entropy generation for a
given process can be obtained from the balance equations of dl trans-
port entities such as mass, momentum, energy, eectric charge, and
entropy of the system as shown by de Groot and Mazur [1962], Fitts
[1962], and Kondepudi and Prigogine [1998]. It is Smple and de-
gant to use the agebraic notation, but the same content can be ex-
pressed by using index notation if one prefers.

To=J"X &)
o To=YJX

Here, oisthe rate of entropy generation per unit volume, T isthe
sydem temperature, J represents dl fluxes and X represents dl gen-
erdized forces. The superscript T indicates trangposed quantity. The
fluxes and forces may be tensorid entities of any rank in generd.
For example, chemicd reactions are scdars, heat and mass trans-
fers are vectors, and second rank tensors represent the momentum
tranders, etc. However, the entropy generation rate must dways be
ascdar quantity for dl processes. In the present paper, the product
notation without any symbol between J™ and X in the above equa-
tion means a scdar (inner or dot) product between dl conjugated
fluxesand forces Sncethe entropy generation rate o'in Eq. (1) must
be positive definite, the scalar product between fluxes and forces
for any irrevergble process must be dso podtive definite. If it be-
comes zexo, the process must be reversible according to the second
law of thermodynamics.
3. Linear Relations between Fluxes and Forces

The next hypothesis in NT is that dl fluxes are linearly related
to dl forces in the near-equilibrium lineer regime. This podulateis
avery powerful one, because it dlows the posshility of coupling
phenomenawhen multiple fluxes and forces are involved.

J=L X @
or Ji :ZL”XJ‘
]

where L is a phenomenologica coefficient tensor. There are some
restrictions on this hypothess for isotropic systems, which will be
discussed in the following section on Curi€'stheorem.
4. Curie's Theorem

Some authors (de Groot and Mazur [1962], Kondepudi and Pi-
gogine [1998]) cdl this the Curie symmetry principle. The mogt
generd form of this theorem dtates “fluxes and forces of different
tensorid character do not couple for an isotropic system.” Some
examples of different tensorid characters arethefollowing: scaars,
polar (true) vectors, axid vectors (anti-symmetric tensors), isotropic
tensors, and deviatoric (polar) tensors that are symmetric tensors
with zero trace. The proof is omitted here asit is rather Smple and
can befound in de Groot and Mazur [1962)].
5. Onsager Reciprocal Relations and Coupling

The lagt hypothesis in NT is that the phenomenologica coeffi-
cents that appeer in flux eguations are symmetric, as proposed by
Onsager [19314, b.

L=L" ©)
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orL=L,

A dight modification of Eq. (3) is needed when thereisamagnetic
fidd present as described by Fitts [1962] and de Groot and Mazur
[1962]. This principle plays the centra role in NT. The off-diago-
na components represent various coupling phenomena. Because
of the reciproca relaions, there is a tremendous economy in the
number of experimenta messurements. At the macroscopic leve,
this principle of symmetry (reciproca relations) is generdly treated
asapodulate, whilein gatigtica thermodynamicsit can be derived
basad on the microsoopic reversihility, as originaly shown by Onsger
[1931a b]. Snceit is podulated, it hesto be experimentdly verified
for a given irreversible process whenever anew set of fluxes and
forces are employed. However, it is not necessary to do so if one
can find a transformation from a set of fluxes and forces stisfying
the Onsager reciproca relationsto another st that stidfies dl three
postulates as discussed below.

In summary, the only hypotheses needed in NT are the assump-
tions of locd equilibrium and Egs. (1), (2), and (3). Furthermore, it
should be emphasized here thet the choice of fluxes and forces is
not unique, and there are many other useful choices that are more
convenient for agiven irreversible process as discussed below.

TRANSFORMATION OF FLUXES AND FORCES

1. Symmetrization of the Phenomenological Coefficient Matrix

Suppose we have a st of fluxes and forces expressng the irre-
veasble sysem a hand that satisfies Egs. (1) and (2), but not (3). In
other words, when the Onsager reciprocd relaions are not satisfied
for achosen set of fluxes and forces, we can transform this set into
aproper st of fluxes and forces that will satisfy dl three postulates
(Eas. (1), (2), and (3)) by defining the new phenomenologica coef-
fidentsasfollows

L'=Y(L+LD)=(LY @
If the old forces are kept unchanged, the new fluxes will become:

J=L'X ®)
The scdar (inner) product between fluxes and forces will then be:

@) X=X"(LYX =YX (LHL)X =4I X+XI=To (6)

Thus this transformation gives anew set of fluxes J' and forces X'=
X, which stidfiesdl three equetions of NT.

Anocther way of looking & this problem isinitidly to assume a
nornsymmetric phenomenological coefficient for a chosen st of
fluxes and forces. If the coefficient is decomposed into two parts—
one for symmetric and another for anti-symmetric components--the
flux equation would then be:

J=LX=H4(L +L X +¥4(L—L X @)

If the above Fplit is used to make a scalar (inner) product between
the fluxes and forces,

IX=X"(L+L X +¥XT(L-L X

=X I+ I X+YXTI- I X =T o ©)
Itisdear that the anti-symmetric part can be described as
YXT(L-LX=%4X"I-%4J"X=0 )
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Therefore we see from Egs. (8) and (9) that the contribution of the
anti-symmetric part (the second haf of the flux in Eg. (8)) to the
entropy generation term is zero. This means that the second part of
the flux (with the anti-symmetric phenomenologicd coefficient) can
happen only for a reversble process. For any irreversible process,
the scdar product between fluxes and forces must be postive de-
finite according to the second law of thermodynamics. Thisfact sug-
geststhat we can condruct a proper set of fluxesand forces by trans:
forming the initia fluxesinto a new st of fluxes with only sym-
metric phenomendlogica coefficients and by kegping the old forces.
Thereby, anew s of fluxes and forces can be made that stidfies
al three principles of NT and upholds the Onsager reciprocd rdla
tionships. However, this is not automatically guaranteed when the
initid st of fluxes and forcesis chosen arbitrarily.
2. Invariant Transformation

Condder alinear transformation from a proper st of fluxes and
forcesinto another set through atransformation matrix T as shown
below:

J=TJ (10

X'=(T')"X (11)
The scdar product between the new fluxes and forces becomes:

@)X'=(TIH (T X=IT(TY X=I'X=To (12)

This leaves the entropy generation term unchanged. Subdtituting
Eq. (2) into Eqg. (10), we obtain;

J=TLX)=TLT' (T *X=L'X' (13)
whereL'=TLT'=(L") (149

Thus, we know that this particular trandformation satisfies the for-
mat of Egs (1), (2), and (3). It should be noted that Eq. (12) leaves
the entropy generation term intact without changing its vaue, while
Egs (13) and (14) maintain only the formdity. Therefore, the new
expressons by a st of new fluxes J' and forces X' with a newly
defined phenomenolagical coefficient L till describe the same phys:
icd system. Thismeansthereisagreat ded of flexibility in the se-
lection of transformation metrix T that will produce a new proper
<t of fluxes and forces. Many examples of thistype of lineer trans-
formationin NT are given by de Groot [1961] and Fitts[1962].
3. Symmetry of Fluxes and Forces

An even more outrageous view (or interpretation) of symmetry
invalves switching of the fluxes and forces while il stisfying Eqs
(1), (2), and (3). Trangposing Eq. (1), we obtain:

To=("X)'=X"J (15)

This equetion is exactly the same form as Eq. (1), with the inter-
pretation of “flux” X and “force’ J. From Eq. (2), we obtain:

X=L"J (16)

This shows that the new fluxes are alinear combination of the new
forces with the phenomenological coefficient matrix L™ (in a vari-
ant form of Eq. (2)). When Eq,. (3) isinverted, the following equa-
tionisobtained:

L=y ==Y @
This proves that the new phenomenologica coefficients stisfy the

Onsager reciprocd relaionship.
4. Ambiguity and Non-uniqueness

When we gart with the entropy generation expression, Eq. (2),
and split the fluxes and forces to write Eq. (2), there are no guide-
lines provided by NT theory. This ambiguity and non-uniqueness
of fluxes and forces for a given irreversible process can cause con-
Sderable confuson for a beginner. However, this is the beauty of
the symmetry of NT. Thisadso meansthereis the freedom of choice
and flexibility in expresson of the phenomenawhen using NT for-
mdism. As shown in the symmetrization transformation, we can
aways choose a proper st of fluxes and forces. We can later find
ather sts of fluxes and forces thet might better describe the sysem or
be gppropriate for corrdation of experimentd measurementsthrough
the invariant transformetion.

EXAMPLES

1. Ideal Gas Permeation through Membrane

When agas mixture permegtes through amembrane under asteady
date, therate of lost work dueto theirrevershility isthe rate of logt
free energy as shown by Hwang [2004]:

Here, N, isthe malar flux of speciesi, du; isthe chemica potentid
difference for speciesi acrass an infinitesma membrane dement,
R isthe gas condant, and f; isthe fugacity of peciesi. We can cor+
fine our discussion to a binary system and use the differentid driv-

ing force without the loss of its generdity. For an ided binary gas
mixture, the above equation can be expressed as.

To=—N,RTd(InP,) —N,RTd(InP) (19)

We have replaced the fugadities with partial pressures P,, P, for an
ided gas The flux equations may be written as.

N;=L 4 (—RTdInP,) +L ,(—RTdInP,) (20
N,=Ln(—RTdInP,) +L,,(—RTdInP,) 1)
Therefore the following identifications result:

J=N, (7
=N, )
X,=—RTdInP, (4
X,=—RTdInP, 25

Now we can transform these fluxes and forcesinto anew set of
fluxes and forces using the transformation matrix T according to
Egs (210) and (11) asfollows

T =[ Y2 _Y1J (26)
1 1

I=T3=| Y2 ™1 Ny | [ yaNi—yiNe || 3 @7)
1 1 AN, N;+N, N
wherey, and y, are the mole fractions of species 1 and 2. The lagt

expression utilizes the relationships N=N,+N, and N,=J+y;N &
Korean J. Chem. Eng.(Val. 22, No. 1)
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defined by Bird et a. [2002].

X =Ty :[ 1 —1I—RTd|nP1]
Y1 Y2 A =RTdInP,

:[ ~RTdInP,+RTdInP, J )
—-y,RTdInP,—y,RTdInP,
Srmr)lzwla-]dr)zzl:yb
” :( —RTdIn(yl/yz)] 29)
—RTdInP
The new phenomenologica coefficientsare:
L'=TLT =| Y2 Y1 Ly L vy 1 (30)
1 1 La LA -y 1
The newly transformed fluxes and forces are rdated by:
J=L'X' (3D

The subdtitution of Egs. (27) and (29) into Eq. (31) resultsin:

J |- Lu L | —RTdIn(yyy,) (3

N) (Lx Lx A\ —RTdInP
Thisis exactly the same expression obtained previoudy by Hwang
[2004].
2. Reverse Ogmass (RO), Nandfiltration (NF), and Ultrafil-
tration (UF)

For liquid phase membrane transport, we sart with the same en-

tropy generation expresson asin the gas phase trangport according
to Eq. (18) as shown by Hwang [2004].

To=-YNdu [€)
Wewill use an example for abinary sysem again, where subscripts

sand w represent solute (salt) and solvent (water), repectively. The
fluxes and forces are identified:

J=N, 3
J=N, (39
X, =—dut, (36)
Xo=—dus (37)
Theflux equationsare:
i)
No ) \La Lp A —du

Next we transform the above set of fluxes and forces into a new
<t of fluxes and forces by atransformation matrix T:
Vo Vs
T = _i 1 (39)
Cu G
where V,, and V, arethe partid molar volumes and ¢, and ¢, are
January, 2005

the molar concentration of solvent and solute, respectively. The new
flux expression becomes

Vo Ve VN, +V.N,

J=TJ= "= (40)
LN NN
Cu G C G

If the well-recognized tota volumetric flux, J, and the diffuson
flux J, as described by Katchasky and Curran [1975)],

3, =VuN, +VN, (41)
Ne N,
by g @

areused, Eq. (40) can bere-expressed as

J':(‘]VJ 43
b

The method outlined above can then be used to find the new forces
with the transformation matrix T. However, it is much Smpler to
use an goproximate T without compromising the accuracy in cog
nizance of the usua gpproximation for adilute solution:;

VN, 3> VN0, Clwng, 3,=VN, )
Then the gpproximated T becomes
V. 0
T= 11 (495)
Cu Cs

If this gpproximate tranformation metrix is gpplied, the following

equation reaults:
VN T H “)
= NS — WS JD

1
Cu G G G

We can transform the forces using this gpproximate matrix:

v, L
T'= G @)
o 1
Cs
1
a*=| v, © 9
0 c

1 _duy
X =T x=| 7, & ‘?f‘wJ: v, oo =[‘3PJ (49)
0 c ) M —cdu g

Katchdsky and Curran [1975] derived the well-known identitiesin
the lagt gep of the above eguation.
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du,, =V.,(dP—dm) (50)

dus:d—7r

. (51)

The new phenomenologica coefficients can be found by using:
\7w 0 \7w -
L':TLTT: 1 :[ L11 L12 ](-:w (52)

The new flux expressonsare;

e
N Lor Lo A —d7

The above equations are well etablished in the RO, NF, and UF
fields as shown in Katchasky and Curran [1975]. The entropy ger+
eration expression remainsinvariant:
To=—N,du,~Ndu,
= JdP-Jdr (54)
The Onsager reciprocd relationship dso remains vaid in the new

=t of fluxes and forces.
Here is another trandformation from the above transformed <.

Condder atrandformation matrix S.
s:[l °] (59
rl
where the conventiond definition of reflection coefficient is used:
__Leo__Loe
=L L, (56)

The second part in the above equation is due to the Onsager recipro-
cd rdationship. The reflection coefficient is an excdlent example
of the coupling phenomenon. The coupling between the camoatic
pressure and the hydraulic pressure isamgjor phenomenon in RO,
NF, and UF, unlikein many other cases where the conjugated terms
dominate and the coupling (cross) terms are quite smdl. The trans-
formed new fluxes become:

) e
r il rd +Jb

Thetransposed inverse of Sisfound by using

T\ -1 1 -r
S) = 58
{1 7) -
and the new forces are:
0 1 \-dr —-dr

The transformed phenomenological coefficient matrix is:

1 0 L) {Le O
Less o ) Lo Leo | 1 72| 2
——FP 1 Lop Lo 0 Lo—ﬂ
Le 0 1 Le

The lagt expression of the above equation showsthet it isadiagond
form of amatrix. Thusit can be said that formaly the fluxes and
forces have been diagondized without any coupling effects. A gmi-
lar diagondization was achieved by de Groot [1961]. The new fluxes
and forces are related asfollows

Lo O

NV , | —dP+rdr
(+h) | 0 Ly-S2 | —dn
—Lp(dP—rdrm)

= LgD (61)
_L ——
(D Lo )"

The new st of fluxes and forcesis aestheticdly pleasing, but adight
rearrangement yields amore practicd flux equation for the second
component;

rd, +J =—g-)d7r (62)
LZ

where w=(LD—L—"D ! 63)
[

The above guantity w isknown as “solute permeghility.” Using Eq.
(46), the fdllowing expresson is obtained:

v Ns Ny

3% =N+ )

Ne_ 1 3@

=5 =13 Csdn: (64)
From the last expression in the above equiation, the solute flux equa:
tion is obtained:

N=(1-r)ed,~ wdr (65
This equation, together with the totd volume flux,
J,=—L(dP-rdn) (66)

describes the same system just as well as the previous flux equa
tions. All three sts of fluxes and forces are discussed by Katchd-
sky and Curran [1975]. However, for the firgt time it is shown in
the current work that those sets of fluxes and forces can be inter-
converted by using the transformation theory. There are three pa-
rameters asociated with these equations that characterize a given
pressure-driven process (RO, NF, or UF): the hydraulic permeghil-
ity L, the solute permeghility through membrane e, and the reflec-
tion coefficient r. This new description is widdy employed in the
RO, NF, and UF fidds, and these three parameter values are mea
sured experimentdly. As dated before, the importance of the cou-
pling term in this case (the second term in Eq. (66)) is SO greet that
it may become the focd point of sudy, unlike the other irreversible
processes where the coupling terms are usudly very smdl in com-
parison to the conjugated terms.

As we have seen in the above examples, the Folit of fluxes and
forces from the entropy generation expression is not unique and
there can be many equivaent sats of fluxes and forces that satify
al three NT principles (Egs. (1), (2), and (3)). It is therefore up to
the individud investigetor to choose which st of fluxes and forces
are quitable and most convenient. We can thus date thet NT is not
only useful, but dso very indructiond. It provides ameansthet can

Korean J. Chem. Eng.(Val. 22, No. 1)
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lead to apracticd et of fluxes and forcesif the origina sat wasnot
very helpful in the laboratory.
3. Smultaneous Heat and Mass Transfer

Fitts [1962] and de Groot [1961] cdculated the logt energy due
to entropy generation for a system where heat conduction and dif-
fuson take place smultaneoudy:

T0'=—(q +ZNH)dInT —ZN.Td(%) ©7)

whereqis heat flux and H; ispatid molar enthapy of spediesi. Thus
the fluxes and forces are:

—J
N,
=[N, C3)
N,
where J=q+Y NH; (9

This represents the energy flux for this sysem asasum of heet flux
by conduction and the energy carried by mass fluxes.

dinT
o4

x=| 1) (70)

o)
The flux equetion is J=L X, which can be written with its compo-
nents as

1) —LOZTd(HTZ) . —Loan(%_ﬂ)
1)— leTd(%z) —Lde(%“)

1)— LZZTd(HT-Z) —LGTd(HTf)

N, =L dInT— Land(%L%)— anTd(%L:z) —Lde(%LP)

—[=

~J=LodInT —Lde(

=

N,=L ,dInT— Lqu(
(1)

= -

N2=L20dInT—L21Td(

whereL=L" is phenomenological coefficient matrix.

There are many other equaly good choices of fluxes and forces
available to describe this sysem. Congider alinear transformation
by atransformation matrix T:

1w po iy
0100

T={0o 0 10 (72
0 0 1

20 that the new fluxes J' become:

Lo o | | [ D
01 0-0]|N, J

J=TJ=[0 0 10| N, [7| & )
0 0 - 1\ N, J

where Jy=—3 + SNy =-q-EN(H—u) =—(a +INTS ) (74

and J=N; for dll i, 1<i<n (75)

where S isthe partiadd molar entropy for speciesi.
Now wefind (T')™

~; 1 00
-1
M7= 1, 0 10 (76)

—Hn O e 1
0 that we can transform the forces by X'=(T")™X as shown below.

dinT
T4l
Td(_l_)

o)

—Uy O oo 1 '
_Tdf o
Td(_l_)
dinT
—uldlnT—Td(%l) dinT
—dw
= —uzdlnT—Td(HTZ) = —du, @)
—du,

_ _Tgf Yo
udinT Td(_l_)
The new flux equation J'=L "X’ becomes:

J ] (Lt Lo L = Lon | dInT
3'1 Lllo L'11 L'12 "'I—'ln —du,
J [T| Lo Lo Ly - L —du, (78)

g L'no L'nl L:12 Lo —du,

with the definitions of fluxes given by Egs. (73) and (74). All off-
diagond componertts represant coupling between heet flow and mass
flow, such asthermal diffusion (Soret effect) and the Dufour effect.
The entropy generation term can be rewritten as To=J'X=J"X'
using Egs. (74), (75), (77), and (78):

TG:—(q +ZN.T§)dInT ~Y N 79)
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The physicd significance of this expression is that when heat and
mass trandfer take place under temperature and chemicd potentia
gradients the tota energy flux is the sum of hesat flux (due to pure
conduction) and the energy dissipation by the entropy flux carried
by mass fluxes. This makes sense because thetotd entropy genera-
tion condgts of energy dissipations due to heat conduction and mass
trandfer, and the entropy flux carried by massfluxes.

Now condder the second transformation effected by matrix S

ontheorigind st of fluxesand forces
1 H; HH,
01 00
S={0 0 10 (80)
0 0 = 1
1 H HpHo | —J| | Jo
01 0-0{fN; Ji
J'=81=l0 0 10N |7 L (8D)
0 0 ...... 1 Nn Jn
where Jo=-J +>NH =—q (82
and J'=N;; for adl i, 1<i<n (83)
Now wefind (S) ™
1 00
-H, 1 00
SH'=| A, 0 10 ()
“H, 0 - 1

0 that we can transform the forces by X"'=(S') "X as shown below.

dinT
o) (1 00 —Td(HTi)
Xy | |-A. 100
X"=l x, |=| -, 0 10 —Td(%z) )
X, -H, 0 - 1 :u
—Td(?)
where Xp=dInT (86)

and X' =——HdinT —Td(’%) =(u,—FydInT —dg,

=—TSdInT —du, =—d; forali, 1<i<n (87)
In the last expression in the above equiation, d.u; representsthe iso-
therma change of the chemica potentid. A Smilar notation was
employed by Fitts [1962]. The newly transformed fluxes are lin-
ealy related to these forcesby J"'=L"X" asfdllows

139
—q| (L% Lo Lo Lo | dInT
N, L% L% LY L | —di
No || L% Lo L% - Lo | —Orite CS)
N, L L L - L A —Crtts

The entropy generation term can be rewritten as To=J'X=J""X"
by using Egs (82), (83), (86), and (87):

To=—qdInT =Y N;dry; 89

It should be emphasized here that dl three entropy generation
expressons, Egs (67), (79), and (89), give not only the same for-
mdism (scdar product of fluxesand forces), but dso the samevdue
All three sets of fluxes and forces stiffy dl three fundamentd prin-
dplesdf NT, Egs (1), (2), ad (3). They equdly represent the irre-
vershle process under consideration. The ambiguity of splitting the
entropy generation term or the non-uniqueness of choosing fluxes
and forces offers great ded of freedom in describing a given NT
sysem. Therefore, we may take advantage of this uncertainty or
nornFuniqueness to our benefits by using NT.

4. Sress Tensor for Newtonian Fluid (Example of Curi€s The-
orem)

The momentum trangport eguations involve second rank ten-
sors. Our illugtration will be confined to only isotropic Newtonian
fluids. The viscous disspation that represents the internd entropy
generation due to momentum transport is—7: Vv as discussed by
de Groot and Mazur [1962], Fitts [1962], and Bird et d. [2002].
Here tisthe sresstensor and Vv is the vl ocity gradient. Both of
them are second rank tensors. The double dot indicates a scdar prod-
uct between them. Thusthe entropy generation equation is

To=—1:Vv (90)

According to the Curie theorem, different tensoria characters can-
not couple, and thereforeit is helpful to decompose each tensor into
its components (isotropic, deviatoric, and anti-symmetric parts):

T=A4TH R+ T+ T~ A Tr(D ]+ 77 1)
Vv=Y4TH (VW) +A4[Vv+(VV) =TV +AVv— (V)] (92

In the above equetions, Tr denotes the trace and | represents the
unit tensor or identity matrix. When a scalar product is formed be-
tween the above two tensors for the entropy generation term, only
the products between the same tensorid characters survive, that is,
between isotropic tensors, between deviatoric tensors, and between
anti-symmetric tensors. Therefore, the linear flux eguetions are es
follows

VTr(®) = LJ3Tr (VW) = LJ3(Vev) (93

Y+ T —24TH (DI | ==L VV+H(VV) = Y4(VeW)] (99)

V-1 =YL [Vv—(VV)'] (%)
HereL,, L, and L, are phenomenologicd coefficients. The follow-
ing viscodity coefficients are defined:

k=L/3: bulk viscosity (%)

U=Ly/2: shear viscosity 97
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v=L/2: rotationd viscosty (98)

When Egs. (93), (94), and (95) are added up; we can recongtruct
the dresstensor as:

=23~ (V) = VV+HVY) T-UVv-(VV)'] (%9

For anirrotationd fluid, the anti-symmetric part will drop out. There-
fore, the stress tensor for aNewtonian fluid issmplified as

T=(2U/3- (VN —[Vv+(VV)'] (100)

This equation is known as the conditutive equation for Newtonian
fluids in continuum mechanics. It is widely used in the chemica
engineering textbooks by Bird e d. [2002], Denn [198()], Fitts[1962],
and Whitaker [1968]. Owing to the Curie theorem, dl coupling terms
have perished; the fina eguation would otherwise have been quite
complicated.

This example dealy illugrates the ussfulness of the Curies theo-
rem and the wide applicability of NT.

PROCEDURE OF NONEQUILIBRIUM
THERMODYNAMIC STUDY

It would be he pful to summarize how one can gpproach the NT
sysematicaly to sudy agiven transport problem. Firgt, one should
get dl trangport equations for the system, such as equation of con-
tinuity, and baance equations for momentum trandfer, energy trans:
fer, mass trander, dectricad charge trander, and entropy trandfer.
For entropy trander, the balance equation for entropy (entropy trans-
port) is used, just like any of the other baance equations men-
tioned above, rather than the entropy generation equation (Eg. (1)).

Second, dl necessary governing eguations are combined to ob-
tain the net interna entropy generation expression To. Thisgepis
well explained by de Groot and Mazur [1962] and Fitts [1962] for
many trangport systems

Third, this entropy generation term, which isa scdar product, is
split into the gppropriate fluxes and forces. At this poirt, it is un-
known if the initia choice of fluxes and forces would guarantee
the reciprocd relations. Only the parts of the fluxes with symmet-
ric phenomenologica coefficients and the same forces should be
used. The mathematica entities of the fluxes and forces may be
scaars, vectors, or tensors. The Curie theorem is gpplied, if appro-
pricte, to smplify the equetions.

Fourth, the linear equetions that relate the fluxes and forces are
written down.

Hfth, the Onsager reciprocd relations are used to study the cou-
pling phenomena

Sixth, the flux equations are ingpected to see whether any new
coupling termsmay offer new physca phenomena (or predict one).

Saventh, the fluxes and forces are transformed to better describe
the system or for more convenient use in interpreting laboratory
data

CONCLUSON

Nonequilibrium thermodynamics can be quite ussful in Sudying
many complex enginesring problems. Representation by a proper
st of fluxes and forces for a given system is not only important
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but dso very practicd in andyzing experimenta measurements.
This paper demondrates how a variety of sets of fluxes and forces
may be obtained through transformation. The selection of an gppro-
priate set of fluxes and forces can provide a better understanding of
irreversble phenomenaand ameans of andyssfor laboratory deta
The generd formaism may frequently come in an aodtract form
when the entropy production rate is derived. However, by transfor-
mation of variables one can select more practica sets of fluxes and
forces Examples of ided gas permestion through membrane, pres-
sure-driven membrane processes, and Smultaneous heat and mass
trandfer dearly demondrate thisflexihbility.

Treditionaly, the Onsager reciproca relationships are assumed
to be vdid for linear flux equations and are dways subject to ex-
perimenta vaidation. The theoreticd judtification is based on ga
tistica mechanics asfirg shown by Onsager [19314a, b, which dedt
with microscopic revershility. On a macroscopic level, aswe have
seen with Eq. (9), the anti-symmetric parts of the phenomenologi-
cd coefficients produce fluxes that will cause zero entropy genera-
tion. Therefore, we can conclude that the symmetric part of the phe-
nomenologica coeffident matrix is sufficient for giving a complete
description of any irreversble processes, which meansthat the Onsa:
ger reciproca relaionships should be vdid for dl irreversible pro-
0eS¥ES

Findly, sdlection of an gppropriate st of fluxes and forces can
focus the coupling phenomena as demondrated in the case of RO,
NF, and UF. The sudy of coupling is the centrd issue of NT. As
many new goplications of coupling effects become practicd, the
importance of underganding the basic principles and inter-rdaion-
ships increases, and more useful gpplications of NT for many engi-
negring problems are possible.

NOMENCLATURE

: concentration

: fugacity

: enthalpy

: pecies

: identity tensor

: generalized flux

: diffusion flux

: phenomenological coefficient matrix
: molar mass flux with respect to stationary coordinates
: pressure

: partia pressure

: heat flux

: gas congtant

: reflection coefficient

: entropy

: transformation matrix

: absolute temperature

: transformation matrix

: trace of asecond rank tensor or matrix
: partial molar volume

: velocity vector

: generalized driving force

: molefraction

: molefraction in gas phase

<KX X< D440 n =" DL yoZr 9« — 7T ™0
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V  :nabla(gradient)

Greek Letters

: activity coefficient

- bulk viscosity

: shear viscosity

: rotational viscosity

: chemical potential of i

: osmotic pressure

: rate of entropy generation
: stresstensor

N9 AE<E AR

Subscripts

: anti-symmetric
: diffusiona

: deviatoric

: energy

: isotropic

: Species

: number of species
. pressure driven
: symmetric

: solute (salt)

: isothermal

> volumetric

: solvent (water)

S<HV®»LTVUS T TMago

Superscripts

* : diffusion

S : saturated vapour

T :trangposed

linverse

' : transformed quantity
" : transformed quantity

: partia molar property
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