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Abstract−The ambiguity and non-uniqueness of splitting fluxes and forces from the entropy generation equation
raise confusion in nonequilibrium thermodynamics and misunderstanding of the Onsager reciprocal relationships. How-
ever, they provide an opportunity to select different sets of fluxes and forces that represent a given nonequilibrium pro-
cess. By symmetrization of the phenomenological coefficient matrix, one can always find a proper set of fluxes and
forces. This paper shows how the implementation of the transformation theory can produce several different sets of
fluxes and forces through many engineering examples such as ideal gas permeation through a membrane, reverse osmo-
sis, nanofiltration, ultrafiltration, and simultaneous heat and mass transfer. Also, guidance is presented on how to study
nonequilibrium thermodynamics for a given irreversible process together with a short summary of the principles of
nonequilibrium thermodynamics. These contain the entropy generation equation, linear relations of fluxes and all gener-
alized forces including the Curie theorem, and the Onsager reciprocal relationships.

Key words: Nonequilibrium Thermodynamics, Reciprocal Relations, Transformation of Fluxes and Forces, Membrane Trans-
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INTRODUCTION

The linear theory of nonequilibrium thermodynamics (NT) has
been very successful in explaining various coupling phenomena and
generalizing the flux equations in terms of all available driving forces
in many fields. The basic principles of NT were originally pro-
posed by Onsager [1931a, b] and later reformulated by Prigogine
[1947, 1967], de Groot [1961], de Groot and Mazur [1962], Fitts
[1962], Baranowski [1991], and Kondepudi and Prigogine [1998].
Katchalsky and Curran [1975] successfully applied the NT analy-
sis for reverse osmosis and ultrafiltration processes, and Narebska
and Kujawski [1994] also demonstrated that their experimental data
fit the theory in dialysis processes. Kedem [1989] emphasized the
role of coupling phenomenon in the application of NT to pervapo-
ration of alcohol and water. Many other transport phenomena are
discussed by de Groot [1961], de Groot and Mazur [1962], Fitts
[1962], and Kondepudi and Prigogine [1998], but are omitted here
for the sake of brevity. Rizvi and Zaidi [1986] reported NT of elec-
trokinetic effects across mixed-lipid membranes. Narebska et al.
[1985, 1987a, b, 1994, 1997, 1995a, b, 1997] studied transport through
charged membranes.

The entropy production rate can be calculated from the entropy
balance equation together with other balance equations of physical
entities in question, such as mass, energy, electric charge, and momen-
tum, as demonstrated in the books by de Groot and Mazur [1962],
Fitts [1962], and Kondepudi and Prigogine [1998]. According to
Prigogine [1947, 1967] and de Groot and Mazur [1962], the total
entropy change consists of external and internal contributions. In
the discussion of NT, only the internal change due to irreversibility
is relevant. The split of fluxes and forces, however, is not always
obvious or trivial; usually there can be many different sets of fluxes

and forces representing equally well the system under study. It is
also important to note that any arbitrary choices of fluxes and forces
may not satisfy the Onsager relations, especially when a magnetic
field is present. Thus care must be exercised as discussed by de Groot
and Mazur [1962] and Fitts [1962]. This aspect is beyond the scope
of the present paper, and therefore it is not covered here.

The ambiguity and non-uniqueness of splitting fluxes and forces
from the entropy generation equation may appear to be shortcom-
ings of NT. However, we can take advantage of this aspect and use
it more profitably by transforming a given set of fluxes and forces
into another set that could produce more useful forms in explain-
ing laboratory data. Therefore, it is the main goal of this paper to
illustrate how one can accomplish such a task by taking a number
of examples occurring in engineering.

PRINCIPLES OF NONEQUILIBRIUM
THERMODYNAMICS

There are only a few principles or hypotheses that are the funda-
mental basis of NT. The phenomenological theory of NT concerns
physicochemical changes taking place at the macroscopic level under
a steady state near equilibrium. The approach of classical equilib-
rium thermodynamics is to calculate the changes in thermodynamic
functions between two equilibrium states. In NT, these changes are
directly dealt with in terms of fluxes and generalized forces. The
development of NT formalisms by Onsager [1931a, b] is generally
accepted as the linear theory of NT.
1. Local Equilibrium

Although the system considered in this paper is undergoing non-
equilibrium processes overall, every small volume element in the sys-
tem is assumed to have every thermodynamic state variable (equi-
librium property), such as temperature, pressure, internal energy,
entropy, etc.
2. Entropy Generation
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According to the second law of thermodynamics, any nonequi-
librium process must accompany an entropy generation. In NT, the
rate of entropy generation is a scalar (inner or dot) product of all
fluxes (steady state) and all forces. In the analysis of NT, this hy-
pothesis is usually the starting point. The entropy generation for a
given process can be obtained from the balance equations of all trans-
port entities such as mass, momentum, energy, electric charge, and
entropy of the system as shown by de Groot and Mazur [1962], Fitts
[1962], and Kondepudi and Prigogine [1998]. It is simple and ele-
gant to use the algebraic notation, but the same content can be ex-
pressed by using index notation if one prefers.

Tσ =JT X (1)

or 

Here, σ is the rate of entropy generation per unit volume, T is the
system temperature, J represents all fluxes, and X represents all gen-
eralized forces. The superscript T indicates transposed quantity. The
fluxes and forces may be tensorial entities of any rank in general.
For example, chemical reactions are scalars, heat and mass trans-
fers are vectors, and second rank tensors represent the momentum
transfers, etc. However, the entropy generation rate must always be
a scalar quantity for all processes. In the present paper, the product
notation without any symbol between JT

 and X in the above equa-
tion means a scalar (inner or dot) product between all conjugated
fluxes and forces. Since the entropy generation rate σ in Eq. (1) must
be positive definite, the scalar product between fluxes and forces
for any irreversible process must be also positive definite. If it be-
comes zero, the process must be reversible according to the second
law of thermodynamics.
3. Linear Relations between Fluxes and Forces

The next hypothesis in NT is that all fluxes are linearly related
to all forces in the near-equilibrium linear regime. This postulate is
a very powerful one, because it allows the possibility of coupling
phenomena when multiple fluxes and forces are involved.

J=L X (2)

or 

where L is a phenomenological coefficient tensor. There are some
restrictions on this hypothesis for isotropic systems, which will be
discussed in the following section on Curie’s theorem.
4. Curie’s Theorem

Some authors (de Groot and Mazur [1962], Kondepudi and Pri-
gogine [1998]) call this the Curie symmetry principle. The most
general form of this theorem states “fluxes and forces of different
tensorial character do not couple for an isotropic system.” Some
examples of different tensorial characters are the following: scalars,
polar (true) vectors, axial vectors (anti-symmetric tensors), isotropic
tensors, and deviatoric (polar) tensors that are symmetric tensors
with zero trace. The proof is omitted here as it is rather simple and
can be found in de Groot and Mazur [1962].
5. Onsager Reciprocal Relations and Coupling

The last hypothesis in NT is that the phenomenological coeffi-
cients that appear in flux equations are symmetric, as proposed by
Onsager [1931a, b].

L=LT (3)

or Lij=Lji

A slight modification of Eq. (3) is needed when there is a magnetic
field present as described by Fitts [1962] and de Groot and Mazur
[1962]. This principle plays the central role in NT. The off-diago-
nal components represent various coupling phenomena. Because
of the reciprocal relations, there is a tremendous economy in the
number of experimental measurements. At the macroscopic level,
this principle of symmetry (reciprocal relations) is generally treated
as a postulate, while in statistical thermodynamics it can be derived
based on the microscopic reversibility, as originally shown by Onsager
[1931a, b]. Since it is postulated, it has to be experimentally verified
for a given irreversible process whenever a new set of fluxes and
forces are employed. However, it is not necessary to do so if one
can find a transformation from a set of fluxes and forces satisfying
the Onsager reciprocal relations to another set that satisfies all three
postulates as discussed below.

In summary, the only hypotheses needed in NT are the assump-
tions of local equilibrium and Eqs. (1), (2), and (3). Furthermore, it
should be emphasized here that the choice of fluxes and forces is
not unique, and there are many other useful choices that are more
convenient for a given irreversible process as discussed below.

TRANSFORMATION OF FLUXES AND FORCES

1. Symmetrization of the Phenomenological Coefficient Matrix
Suppose we have a set of fluxes and forces expressing the irre-

versible system at hand that satisfies Eqs. (1) and (2), but not (3). In
other words, when the Onsager reciprocal relations are not satisfied
for a chosen set of fluxes and forces, we can transform this set into
a proper set of fluxes and forces that will satisfy all three postulates
(Eqs. (1), (2), and (3)) by defining the new phenomenological coef-
ficients as follows:

L'=1 ⁄2(L+LT
)=(L')T (4)

If the old forces are kept unchanged, the new fluxes will become:

J'=L' X (5)

The scalar (inner) product between fluxes and forces will then be:

(J')TX=XT(L')TX=1 ⁄2XT(LT+L)X=1 ⁄2JTX+1 ⁄2XTJ=Tσ (6)

Thus this transformation gives a new set of fluxes J' and forces X'=
X, which satisfies all three equations of NT.

Another way of looking at this problem is initially to assume a
non-symmetric phenomenological coefficient for a chosen set of
fluxes and forces. If the coefficient is decomposed into two parts--
one for symmetric and another for anti-symmetric components--the
flux equation would then be:

J=LX=1 ⁄2(L+LT)X+1 ⁄2(L−LT)X (7)

If the above split is used to make a scalar (inner) product between
the fluxes and forces,

JTX=1 ⁄2XT(L+LT)X+1 ⁄2XT(L−LT)X
JTX=1 ⁄2XTJ+1 ⁄2JTX+1 ⁄2XTJ− 1 ⁄2JTX=Tσ (8)

It is clear that the anti-symmetric part can be described as:

1 ⁄2XT(L−LT)X=1 ⁄2XTJ− 1 ⁄2JTX=0 (9)

Tσ = JiXi
i

∑

Ji = LijXj
j

∑
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Therefore we see from Eqs. (8) and (9) that the contribution of the
anti-symmetric part (the second half of the flux in Eq. (8)) to the
entropy generation term is zero. This means that the second part of
the flux (with the anti-symmetric phenomenological coefficient) can
happen only for a reversible process. For any irreversible process,
the scalar product between fluxes and forces must be positive de-
finite according to the second law of thermodynamics. This fact sug-
gests that we can construct a proper set of fluxes and forces by trans-
forming the initial fluxes into a new set of fluxes with only sym-
metric phenomenological coefficients and by keeping the old forces.
Thereby, a new set of fluxes and forces can be made that satisfies
all three principles of NT and upholds the Onsager reciprocal rela-
tionships. However, this is not automatically guaranteed when the
initial set of fluxes and forces is chosen arbitrarily.
2. Invariant Transformation

Consider a linear transformation from a proper set of fluxes and
forces into another set through a transformation matrix T as shown
below:

J'=TJ (10)

X'=(TT)
−1X (11)

The scalar product between the new fluxes and forces becomes:

(J')
TX'=(TJ)

T
(TT

)
−1X=JTTT

(TT
)

−1X=JTX=Tσ (12)

This leaves the entropy generation term unchanged. Substituting
Eq. (2) into Eq. (10), we obtain:

J'=T(LX)=TLTT(TT)−1X=L'X' (13)

where L'=TLTT=(L')T (14)

Thus, we know that this particular transformation satisfies the for-
mat of Eqs. (1), (2), and (3). It should be noted that Eq. (12) leaves
the entropy generation term intact without changing its value, while
Eqs. (13) and (14) maintain only the formality. Therefore, the new
expressions by a set of new fluxes J' and forces X' with a newly
defined phenomenological coefficient L' still describe the same phys-
ical system. This means there is a great deal of flexibility in the se-
lection of transformation matrix T that will produce a new proper
set of fluxes and forces. Many examples of this type of linear trans-
formation in NT are given by de Groot [1961] and Fitts [1962].
3. Symmetry of Fluxes and Forces

An even more outrageous view (or interpretation) of symmetry
involves switching of the fluxes and forces while still satisfying Eqs.
(1), (2), and (3). Transposing Eq. (1), we obtain:

Tσ =(JTX)T=XTJ (15)

This equation is exactly the same form as Eq. (1), with the inter-
pretation of “flux” X and “force” J. From Eq. (2), we obtain:

X=L−1J (16)

This shows that the new fluxes are a linear combination of the new
forces with the phenomenological coefficient matrix L−1

 (in a vari-
ant form of Eq. (2)). When Eq. (3) is inverted, the following equa-
tion is obtained:

(L)−1=(LT)−1=L−1=(L−1)T (17)

This proves that the new phenomenological coefficients satisfy the

Onsager reciprocal relationship.
4. Ambiguity and Non-uniqueness

When we start with the entropy generation expression, Eq. (1),
and split the fluxes and forces to write Eq. (2), there are no guide-
lines provided by NT theory. This ambiguity and non-uniqueness
of fluxes and forces for a given irreversible process can cause con-
siderable confusion for a beginner. However, this is the beauty of
the symmetry of NT. This also means there is the freedom of choice
and flexibility in expression of the phenomena when using NT for-
malism. As shown in the symmetrization transformation, we can
always choose a proper set of fluxes and forces. We can later find
other sets of fluxes and forces that might better describe the system or
be appropriate for correlation of experimental measurements through
the invariant transformation.

EXAMPLES

1. Ideal Gas Permeation through Membrane
When a gas mixture permeates through a membrane under a steady

state, the rate of lost work due to the irreversibility is the rate of lost
free energy as shown by Hwang [2004]:

(18)

Here, Ni is the molar flux of species i, dµi is the chemical potential
difference for species i across an infinitesimal membrane element,
R is the gas constant, and fi is the fugacity of species i. We can con-
fine our discussion to a binary system and use the differential driv-
ing force without the loss of its generality. For an ideal binary gas
mixture, the above equation can be expressed as:

(19)

We have replaced the fugacities with partial pressures  for an
ideal gas. The flux equations may be written as:

(20)

(21)

Therefore the following identifications result:

J1=N1 (22)

J2=N2 (23)

(24)

(25)

Now we can transform these fluxes and forces into a new set of
fluxes and forces using the transformation matrix T according to
Eqs. (10) and (11) as follows:

(26)

(27)

where y1 and y2 are the mole fractions of species 1 and 2. The last
expression utilizes the relationships N=N1+N2 and N1=J1

*+y1N as

Tσ = − Nidµi = − NiRTd filn( )
i

∑
i

∑

Tσ = − N1RTd P1ln( ) − N2RTd P2ln( )

P1 P2,

N1 = L11 − RTd P1ln( ) + L12 − RTd P2ln( )

N2 = L21 − RTd P1ln( ) + L22 − RTd P2ln( )

X1 = − RTd P1ln

X2 = − RTd P2ln

T = 
y2 − y1

1 1 
 
 

J' = TJ = 
y2 − y1

1 1 
 
  N1

N2 
 
 

 = 
y2N1 − y1N2

N1 + N2 
 
 

 = 
J1

*

N 
 
 
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defined by Bird et al. [2002].

(28)

Since =Py1 and =Py2,

(29)

The new phenomenological coefficients are:

(30)

The newly transformed fluxes and forces are related by:

J'=L'X' (31)

The substitution of Eqs. (27) and (29) into Eq. (31) results in:

(32)

This is exactly the same expression obtained previously by Hwang
[2004].
2. Reverse Osmosis (RO), Nanofiltration (NF), and Ultrafil-
tration (UF)

For liquid phase membrane transport, we start with the same en-
tropy generation expression as in the gas phase transport according
to Eq. (18) as shown by Hwang [2004].

(33)

We will use an example for a binary system again, where subscripts
s and w represent solute (salt) and solvent (water), respectively. The
fluxes and forces are identified:

J1=Nw (34)

J2=Ns (35)

X1=−dµw (36)

X2=−dµs (37)

The flux equations are:

(38)

Next we transform the above set of fluxes and forces into a new
set of fluxes and forces by a transformation matrix T:

(39)

where  and  are the partial molar volumes and cw and cs are

the molar concentration of solvent and solute, respectively. The new
flux expression becomes:

(40)

If the well-recognized total volumetric flux, JV, and the diffusion
flux JD as described by Katchalsky and Curran [1975],

(41)

(42)

are used, Eq. (40) can be re-expressed as:

(43)

The method outlined above can then be used to find the new forces
with the transformation matrix T. However, it is much simpler to
use an approximate T without compromising the accuracy in cog-
nizance of the usual approximation for a dilute solution:

(44)

Then the approximated T becomes:

(45)

If this approximate transformation matrix is applied, the following
equation results:

(46)

We can transform the forces using this approximate matrix:

(47)

(48)

(49)

Katchalsky and Curran [1975] derived the well-known identities in
the last step of the above equation.

X' = TT( ) − 1
X = 

1  − 1

y1  y2 
 
  − RTd P1ln

− RTd P2ln 
 
 

= 
− RTd P1 + RTd P2lnln

− y1RTd P1 − y2RTd P2lnln 
 
 

P1 P2

X' = 
− RTd y1 y2⁄( )ln

− RTd Pln 
 
 

L' = TLTT
 = 

y2  − y1

1  1 
 
  L11  L12

L21  L22 
 
  y2  1

− y1  1 
 
 

J1
*

N 
 
 

 = 
L'11 L'12

L'21 L'22 
 
  − RTd y1 y2⁄( )ln

− RTd Pln 
 
 

Tσ = − Nidµi
i

∑

J = LX = 
Nw

Ns 
 
 

 = 
L11  L12

L21  L22 
 
  − dµw

− dµs 
 
 

T = 

Vw  Vs

− 
1
cw

----  
1
cs

----
 
 
 
 
 

Vw Vs

J' = TJ = 

Vw  Vs

− 
1
cw

----  
1
cs

----
 
 
 
 
 

Nw

Ns 
 
 

 = 

VwNw + VsNs

− 
Nw

cw

------ + 
Ns

cs

-----
 
 
 
 
 

JV = VwNw + VsNs

JD = 
Ns

cs

----- − 
Nw

cw

------

J' = 
JV

JD 
 
 

VwNw >> VsNs 0,
1
cw

---- Vw≅ , JV VwNw≅≅

T = 

Vw  0

− 
1
cw

----  
1
cs

----
 
 
 
 
 

J' = TJ = 

Vw  0

− 
1
cw

----  
1
cs

----
 
 
 
 
 

Nw

Ns 
 
 

 = 

VwNw

− 
Nw

cw

------ + 
Ns

cs

-----
 
 
 
 
 

 = 
JV

JD 
 
 

TT
 = 

Vw  − 
1
cw

----

0  
1
cs

----
 
 
 
 
 
 

TT( ) − 1
 = 

1
Vw

------  cs

0  cs 
 
 
 
 

X' = TT( )− 1X = 

1
Vw

------  cs

0  cs 
 
 
 
 

− dµw

− dµs 
 
 

 = 
− 

dµw

Vw

-------- − csdµs

− csdµs 
 
 
 
 

 = 
− dP
− dπ 

 
 
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(50)

(51)

The new phenomenological coefficients can be found by using:

(52)

The new flux expressions are:

(53)

The above equations are well established in the RO, NF, and UF
fields, as shown in Katchalsky and Curran [1975]. The entropy gen-
eration expression remains invariant:

Tσ =−Nwdµw−Nsdµs

Tσ=−JVdP−JDdπ (54)

The Onsager reciprocal relationship also remains valid in the new
set of fluxes and forces.

Here is another transformation from the above transformed set.
Consider a transformation matrix S:

(55)

where the conventional definition of reflection coefficient is used:

(56)

The second part in the above equation is due to the Onsager recipro-
cal relationship. The reflection coefficient is an excellent example
of the coupling phenomenon. The coupling between the osmotic
pressure and the hydraulic pressure is a major phenomenon in RO,
NF, and UF, unlike in many other cases where the conjugated terms
dominate and the coupling (cross) terms are quite small. The trans-
formed new fluxes become:

(57)

The transposed inverse of S is found by using

(58)

and the new forces are:

(59)

The transformed phenomenological coefficient matrix is:

(60)

The last expression of the above equation shows that it is a diagonal
form of a matrix. Thus it can be said that formally the fluxes and
forces have been diagonalized without any coupling effects. A simi-
lar diagonalization was achieved by de Groot [1961]. The new fluxes
and forces are related as follows:

(61)

The new set of fluxes and forces is aesthetically pleasing, but a slight
rearrangement yields a more practical flux equation for the second
component:

(62)

where (63)

The above quantity ω is known as “solute permeability.” Using Eq.
(46), the following expression is obtained:

(64)

From the last expression in the above equation, the solute flux equa-
tion is obtained:

Ns=(1−r)csJV−ωdπ (65)

This equation, together with the total volume flux,

JV=−LP(dP−rdπ) (66)

describes the same system just as well as the previous flux equa-
tions. All three sets of fluxes and forces are discussed by Katchal-
sky and Curran [1975]. However, for the first time it is shown in
the current work that those sets of fluxes and forces can be inter-
converted by using the transformation theory. There are three pa-
rameters associated with these equations that characterize a given
pressure-driven process (RO, NF, or UF): the hydraulic permeabil-
ity LP, the solute permeability through membrane ω, and the reflec-
tion coefficient r. This new description is widely employed in the
RO, NF, and UF fields, and these three parameter values are mea-
sured experimentally. As stated before, the importance of the cou-
pling term in this case (the second term in Eq. (66)) is so great that
it may become the focal point of study, unlike the other irreversible
processes where the coupling terms are usually very small in com-
parison to the conjugated terms.

As we have seen in the above examples, the split of fluxes and
forces from the entropy generation expression is not unique and
there can be many equivalent sets of fluxes and forces that satisfy
all three NT principles (Eqs. (1), (2), and (3)). It is therefore up to
the individual investigator to choose which set of fluxes and forces
are suitable and most convenient. We can thus state that NT is not
only useful, but also very instructional. It provides a means that can

dµw = Vw dP  − dπ( )

dµs = 
dπ
cs

------

L' = TLTT
 = 

Vw  0

− 
1
cw

----  
1
cs

----
 
 
 
 
 

 = 
L11  L12

L21  L22 
 
  Vw  − 

1
cw

----

0  
1
cs

----
 
 
 
 
 
 

JV

JD 
 
 

 = 
LP  LPD

LDP  LD 
 
  − dP

− dπ 
 
 

S  = 
1  0

r  1 
 
 

r = − 
LPD

LP

-------- = − 
LDP

LP

--------

J'' = SJ' = 
1  0

r  1 
 
  JV

JD 
 
 

 = 
JV

rJV + JD 
 
 

ST( ) − 1
 = 

1  − r

0  1 
 
 

X'' = ST( ) − 1X' = 
1  − r

0  1 
 
  − dP

− dπ 
 
 

 = 
− dP  + rdπ

− dπ 
 
 

L'' = SL'ST
 = 

1  0

− 
LPD

LP
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lead to a practical set of fluxes and forces if the original set was not
very helpful in the laboratory.
3. Simultaneous Heat and Mass Transfer

Fitts [1962] and de Groot [1961] calculated the lost energy due
to entropy generation for a system where heat conduction and dif-
fusion take place simultaneously:

(67)

where q is heat flux and  is partial molar enthalpy of species i. Thus
the fluxes and forces are:

(68)

where (69)

This represents the energy flux for this system as a sum of heat flux
by conduction and the energy carried by mass fluxes.

(70)

The flux equation is J=LX, which can be written with its compo-
nents as:

(71)

where L=LT is phenomenological coefficient matrix.
There are many other equally good choices of fluxes and forces

available to describe this system. Consider a linear transformation
by a transformation matrix T:

(72)

so that the new fluxes J' become:

(73)

where (74)

and J'i=Ni; for all i, 1≤i≤n (75)

where  is the partial molar entropy for species i.
Now we find (TT)−1

(76)

so that we can transform the forces by X'=(TT)−1
X as shown below.

(77)

The new flux equation J'=L'X' becomes:

(78)

with the definitions of fluxes given by Eqs. (73) and (74). All off-
diagonal components represent coupling between heat flow and mass
flow, such as thermal diffusion (Soret effect) and the Dufour effect.
The entropy generation term can be rewritten as Tσ =JTX=J'TX'
using Eqs. (74), (75), (77), and (78):

(79)
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The physical significance of this expression is that when heat and
mass transfer take place under temperature and chemical potential
gradients, the total energy flux is the sum of heat flux (due to pure
conduction) and the energy dissipation by the entropy flux carried
by mass fluxes. This makes sense because the total entropy genera-
tion consists of energy dissipations due to heat conduction and mass
transfer, and the entropy flux carried by mass fluxes.

Now consider the second transformation effected by matrix S
on the original set of fluxes and forces:

(80)

(81)

where (82)

and Ji''=Ni; for all i, 1≤i≤n (83)

Now we find (ST)−1
:

(84)

so that we can transform the forces by X''=(ST)−1
X as shown below.

(85)

where X0''=dlnT (86)

and 

for all i, 1≤i≤n (87)

In the last expression in the above equation, dTµi represents the iso-
thermal change of the chemical potential. A similar notation was
employed by Fitts [1962]. The newly transformed fluxes are lin-
early related to these forces by J''=L''X'' as follows:

(88)

The entropy generation term can be rewritten as Tσ =JTX=J''TX''
by using Eqs. (82), (83), (86), and (87):

(89)

It should be emphasized here that all three entropy generation
expressions, Eqs. (67), (79), and (89), give not only the same for-
malism (scalar product of fluxes and forces), but also the same value.
All three sets of fluxes and forces satisfy all three fundamental prin-
ciples of NT, Eqs. (1), (2), and (3). They equally represent the irre-
versible process under consideration. The ambiguity of splitting the
entropy generation term or the non-uniqueness of choosing fluxes
and forces offers great deal of freedom in describing a given NT
system. Therefore, we may take advantage of this uncertainty or
non-uniqueness to our benefits by using NT.
4. Stress Tensor for Newtonian Fluid (Example of Curie’s The-
orem)

The momentum transport equations involve second rank ten-
sors. Our illustration will be confined to only isotropic Newtonian
fluids. The viscous dissipation that represents the internal entropy
generation due to momentum transport is −τ : ∇ν as discussed by
de Groot and Mazur [1962], Fitts [1962], and Bird et al. [2002].
Here τ is the stress tensor and ∇ν is the velocity gradient. Both of
them are second rank tensors. The double dot indicates a scalar prod-
uct between them. Thus the entropy generation equation is:

Tσ =−τ : ∇ν (90)

According to the Curie theorem, different tensorial characters can-
not couple, and therefore it is helpful to decompose each tensor into
its components (isotropic, deviatoric, and anti-symmetric parts):

τ =1 ⁄3Tr(τ)I+1 ⁄2[τ+τT− 2 ⁄3Tr(τ)I]+1 ⁄2[τ−τT] (91)

∇ν =1 ⁄3Tr(∇ν)I+1 ⁄2[∇ν +(∇ν)T− 2 ⁄3Tr(∇ν)I]+1 ⁄2[∇ν−(∇ν)T] (92)

In the above equations, Tr denotes the trace and I represents the
unit tensor or identity matrix. When a scalar product is formed be-
tween the above two tensors for the entropy generation term, only
the products between the same tensorial characters survive, that is,
between isotropic tensors, between deviatoric tensors, and between
anti-symmetric tensors. Therefore, the linear flux equations are as
follows:

1 ⁄3Tr(τ)I=−Ls/3Tr(∇ν)I=−Ls/3(∇•ν)I (93)

1 ⁄2[τ+τT−2 ⁄3Tr(τ)I]=−1 ⁄3Ld[∇ν+(∇ν)T− 1 ⁄3(∇•ν)I] (94)

1 ⁄2[τ−τT]=− 1 ⁄3La[∇ν−(∇ν)T] (95)

Here Ls, Ld, and La are phenomenological coefficients. The follow-
ing viscosity coefficients are defined:

κ=Ls/3: bulk viscosity (96)

µ=Ld/2: shear viscosity (97)
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ν=La/2: rotational viscosity (98)

When Eqs. (93), (94), and (95) are added up; we can reconstruct
the stress tensor as:

τ=(2µ/3−κ)(∇•ν)I−µ[∇ν+(∇ν)T]−ν[∇ν−(∇ν)T] (99)

For an irrotational fluid, the anti-symmetric part will drop out. There-
fore, the stress tensor for a Newtonian fluid is simplified as:

τ=(2µ/3−κ)(∇•ν)I−µ[∇ν+(∇ν)
T
] (100)

This equation is known as the constitutive equation for Newtonian
fluids in continuum mechanics. It is widely used in the chemical
engineering textbooks by Bird et al. [2002], Denn [1980], Fitts [1962],
and Whitaker [1968]. Owing to the Curie theorem, all coupling terms
have perished; the final equation would otherwise have been quite
complicated.

This example clearly illustrates the usefulness of the Curies theo-
rem and the wide applicability of NT.

PROCEDURE OF NONEQUILIBRIUM
THERMODYNAMIC STUDY

It would be helpful to summarize how one can approach the NT
systematically to study a given transport problem. First, one should
get all transport equations for the system, such as equation of con-
tinuity, and balance equations for momentum transfer, energy trans-
fer, mass transfer, electrical charge transfer, and entropy transfer.
For entropy transfer, the balance equation for entropy (entropy trans-
port) is used, just like any of the other balance equations men-
tioned above, rather than the entropy generation equation (Eq. (1)).

Second, all necessary governing equations are combined to ob-
tain the net internal entropy generation expression Tσ. This step is
well explained by de Groot and Mazur [1962] and Fitts [1962] for
many transport systems.

Third, this entropy generation term, which is a scalar product, is
split into the appropriate fluxes and forces. At this point, it is un-
known if the initial choice of fluxes and forces would guarantee
the reciprocal relations. Only the parts of the fluxes with symmet-
ric phenomenological coefficients and the same forces should be
used. The mathematical entities of the fluxes and forces may be
scalars, vectors, or tensors. The Curie theorem is applied, if appro-
priate, to simplify the equations.

Fourth, the linear equations that relate the fluxes and forces are
written down.

Fifth, the Onsager reciprocal relations are used to study the cou-
pling phenomena.

Sixth, the flux equations are inspected to see whether any new
coupling terms may offer new physical phenomena (or predict one).

Seventh, the fluxes and forces are transformed to better describe
the system or for more convenient use in interpreting laboratory
data.

CONCLUSION

Nonequilibrium thermodynamics can be quite useful in studying
many complex engineering problems. Representation by a proper
set of fluxes and forces for a given system is not only important

but also very practical in analyzing experimental measurements.
This paper demonstrates how a variety of sets of fluxes and forces
may be obtained through transformation. The selection of an appro-
priate set of fluxes and forces can provide a better understanding of
irreversible phenomena and a means of analysis for laboratory data.
The general formalism may frequently come in an abstract form
when the entropy production rate is derived. However, by transfor-
mation of variables one can select more practical sets of fluxes and
forces. Examples of ideal gas permeation through membrane, pres-
sure-driven membrane processes, and simultaneous heat and mass
transfer clearly demonstrate this flexibility.

Traditionally, the Onsager reciprocal relationships are assumed
to be valid for linear flux equations and are always subject to ex-
perimental validation. The theoretical justification is based on sta-
tistical mechanics as first shown by Onsager [1931a, b], which dealt
with microscopic reversibility. On a macroscopic level, as we have
seen with Eq. (9), the anti-symmetric parts of the phenomenologi-
cal coefficients produce fluxes that will cause zero entropy genera-
tion. Therefore, we can conclude that the symmetric part of the phe-
nomenological coefficient matrix is sufficient for giving a complete
description of any irreversible processes, which means that the Onsa-
ger reciprocal relationships should be valid for all irreversible pro-
cesses.

Finally, selection of an appropriate set of fluxes and forces can
focus the coupling phenomena as demonstrated in the case of RO,
NF, and UF. The study of coupling is the central issue of NT. As
many new applications of coupling effects become practical, the
importance of understanding the basic principles and inter-relation-
ships increases, and more useful applications of NT for many engi-
neering problems are possible.

NOMENCLATURE

c : concentration
f : fugacity
H : enthalpy
i : species
I : identity tensor
J : generalized flux
J* : diffusion flux
L : phenomenological coefficient matrix
N : molar mass flux with respect to stationary coordinates
P : pressure

: partial pressure
q : heat flux
R : gas constant
r : reflection coefficient
S : entropy
S : transformation matrix
T : absolute temperature
T : transformation matrix
Tr : trace of a second rank tensor or matrix

: partial molar volume
v : velocity vector
X : generalized driving force
x : mole fraction
y : mole fraction in gas phase

P

V
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∇ : nabla (gradient)

Greek Letters
γ : activity coefficient
κ : bulk viscosity
µ : shear viscosity
ν : rotational viscosity
µi : chemical potential of i
π : osmotic pressure
σ : rate of entropy generation
τ : stress tensor

Subscripts
a : anti-symmetric
D : diffusional
d : deviatoric
E : energy
i : isotropic
i : species
n : number of species
P : pressure driven
s : symmetric
s : solute (salt)
T : isothermal
V : volumetric
w : solvent (water)

Superscripts
* : diffusion 
s : saturated vapour
T : transposed
−1 : inverse
' : transformed quantity
'' : transformed quantity
| : partial molar property
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