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Abstract—This study was performed to develop a Real-Time Risk Monitoring System which helps to do fault detection
using the information from plant information systemsin a chemical process. In this study, to do fault detection, principa
component analysis (PCA) methods of multivariate statistical analysis were used. The fundamental notions are a set
of variable combinations, thet is, detection of principal components which indicate the tendency of variables and operat-
ing data. Besides classical statistic process control, PCA can reduce the dimension of variables with monitoring process.
Therefore, they are known as suitable methods to treat enormous data composed of many dimensions. The developed
Redl-Time Risk Monitoring System can anadyze and manage the plant information on-line, diagnose causes of abnor-
mality and so prevent major accidents. It's useful for operators to treat numerous process faults efficiently.
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INTRODUCTION

Chemicd plants are composed of many units and various kinds
of complex processes in order to produce a large amount of prod-
uct. Because of recyde flow, reaction and vgpor-liquid equilibrium,
chemica processes show nonlinearity and complexity. The neces:
Sty of saving energy and materidsis foraing the operating conditions
to severe limits like high pressure, high temperature or extremdy
low pressure, temperature: In addition, usudly the materidsin chem-
icd plants are toxic, flammable, explosive and dangerous, o oper-
ating chemica plant safely and keeping it under contral is one of
the most important issuesin the chemical industry.

Two main gpproaches to kegp chemica processes within the sefe
and economic conditions are offline methods and online monitor-
ing. Offline methods indude process modification, changing operdt-
ing conditions etc. Red time process monitoring, control and vari-
ables etimation play an important role dso. But it's not easy to megt
these godls because of many obstadesin chemicd processesinclud-
ing correlation between varigbles, nonlinearity, uncertainty and mea:
Lrement delay.

Red-time risk monitoring sysem and hezard andlys's have been
developed separately, because their gpplication levels are different,
in the aspect of theoretica research and actud gpplication. The rea
on why theyre different is that the former has been developed by
design engineers and safety engineers focused on experience, while
the latter has been deve oped by experience and technology of oper-
ators a the factory in operaion. Currently, these two sysems are
implemented as automated systems, displaying the information of
their target process with amodd. Since these two sysems use dif-
ferent methods, they use different process modds to be implemented
as the automated system; thus it's very hard to maintain compati-
bility between sysems, implement user-friendly systems, cregte
process modds for system implementation, creste/maintain data-
bases and maintain consstency of each modd. However, in fact,
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they're basad on common, basic knowledge - they share the infor-
metion of behavior, Structure, and materid for process equipment.
Therefore, we can get the benefits of diminating unnecessary dupli-
cated work, minimizing maintenance regpong bility, effective infor-
mation management and exchange, and user-friendliness through
an integrated sysem. Thisintegration has the same tendency asre-
cent integration of the chemicd factory across every fidd such as
design, congtruction, and operation.

Correlaion between varigblesis one of the mast common prob-
lemsin achemicd process Sometimes different variables have the
same meening, because varigblesin achemical process have strong
corrdation. For example, didtillation column temperature e differ-
ent trays shows the same behavior when there is a feed change or
deam change. This variable corrdation causes big problems dur-
ing system identification or control mode buildup.

To perform modd identification or controller buildup, we usu-
dly solvealinear least square problem.

Y=XB+E
B=(X"X)"X"Y )

When there is strong correlation between variables, XX doesn't
have full rank. Namely, XX becomes singular and the model pa-
rameter matrix, B, does not exist because thereis no inverse matrix
of X"X. If the varigbles do not have so strong a correlation, X'X
becomes a bad condition and the modd based on B loses robudt-
ness, because aamall change of X like noise of measurement error
causes big change of Y. To solve this problem, variable selection or
other methods are needed.

Inthis paper, PCA (principa component andyds) isused to over-
come variable correaion and to build arobust modd againgt noise
or measurement error that isvery popular in chemica processes.

THEORY
1. Principal Component Analysis (PCA)

PCA was developed by Pearson in 1901 and used to andyze the
relationship between varigbles by Hatdling. PCA is one of the multi-
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Fig. 2. Algebraic interpretation of PCA.

variate datigical andys's methods that can be used for feature ex-
traction. All multivariate Satidticd andyss results are based on data,
0 the quality of datais very important. Fig. 1 shows a data matrix,
where n rows mean obsarvations or samples and the data meatrix
hasmvariables

PCA can be understood at two different aspects, geometricd and
dgebraic.

Geometricaly, PCA defines anew axis in data space and newly
Oefined axisis cdled the principa component. PCA produces amap-
ping of the data set onto anew axis, defined by the span of achosen
ubset of eigenvectors or loading vector, of the variance-covariance
matrix of the data. Each new eigenvector captures the maximum
amount of variability in the datalin an ordered fashion. Thefirdt prin-
cipa component explains the grestest amount of variation, the sec-
ond, the next largest amount after remova of the firgt, and so on.
PC's are orthogond each other. The corresponding eigenvaue is
asxciated with each eigenvector. Eigenvector A rdates the amount
of variance explained by that eigenvector. PCA isa specid case of
sngular vaue decompostion. The projections onto the loading vec-
tor generate a set of scoresthat are linearly independent.

Algebraicaly, PCA represents matrix X with m rank as a lineer
combination of m metrix that has only onerank.

X=tpi+tp+---- HPHE @

t,=score vectors (mx1)
p=loading vectors (nx 1)
E=resdua matrix (mxn)

A subset of the firgt few scores provides information in a lower
dimensiond gpace, the score gpace, of the behavior of the process
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Fig. 3. SCREE plot.

during the period in which the measurements were made. This st
of soores and the PCA |oadings can be used to determineif the pres-
ent process operation has changed its behavior rdative to the data
that were used to define the scores and loadings.

Thegpplication of PCA usudly involvesaprior gep, which means
centering scaling of the data Mean centering implies thet the aver-
age vduefor eech variadle is aubtracted from the corresponding mea:
surement. Scaling or normdization is necessary to avoid problems
associated with some measurements having large vaues and oth-
erswithamdl ones

Number of PC; A scree plot isamethod to identify how many
PCsto be computed. It is ussful in determining the gppropriate num-
ber of componentsto interpret. The scree plot is agraph of the dgen
values (representing the amount of variance explained) versus the
number of factors. So as more factors are added, more of the var-
iance is accounted for. After a certain number of factors, though,
the curve flatens which indicates that it is pointless to add more
factors snce not much more of the variance is being explained (see
Fg. 3).

2. Statigics

There are severd ways of interpreting the PCA reaults: the Q-
datigic, amessure of the modd mismatch; the Hotdling T>-gatis-
tic, a measure of the fit of new observations to the modd space;
variance plots, amessure of the samples variahility; and score plots
a quditative representation of the process performance, reldive to
the cdibration modd in the mode gpace defined by the cdlibration
modd. The one used hereis T2 Satigtic.

T2 datigic; The T>-gtatistic measures unusud variability within
the cdibration modd space. That is, if the cdibration modd data
represent a process operdion a one operding condition, and the
process has shifted to a different one, then the T-statistic will show
that deta a this operating condition cannot be classfied with the
cdibration data. The T>gaidtic is proportiond to the sum of the
squares of the scores on each of the principa components

Using Eq. (3), the covariance matrix is caculated, where nisthe
number of observationsand X is mean vector.

S=n-1)"Ex R% )’ B
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T? gatitic for new observation x is given by Eq. (4)
T’ =(x-7)'S 7 (x-7) @

where, Tistarget vdue
The confidence limits for the T>gdigtic can be cdculated by
means of the F-digtribution

T2UCL =%1—3Fa(a,n -a) ©)

Contribution plot: T* satidtic is used for fault detection and con-
tribution plot can be used to identify the variables that cause apro-
cess fault. Contribution plots decompose the scores into their sum-
mation operands and graph them versus the contributing varigble.
The summation operands are the products of the loadings of vari-
able j and the corresponding value of varidble j. A large product
asdiated with a particular variableimplies a correspondingly large
contribution.

By comparing the contribution plot of a sample taken from the
cdibration sat with one that is outside the confidence limits, differ-
encesin the expected variables magnitude may provide an indica-
tion of which variables have exceeded their expected limits.

3. Quantitative Risk Assessment

Through quantitative risk assessment, a potentia process hazard
isidentified and evauated in quantitative va ue.

Fg. 4 showsthe procedure of quantitetive risk assessment. Frg,
fault detection is performed to identify hazardsin a certain process.
Thisisfollowed by conssquence andyss. In the consequence andy-
ssgep, adischarge modd, digperson modd, fire & explosion modd
and effect modd are used.

In this study, PCA is used to detect fault in process and risk as-
sssment follows.

RISK ASSESSMENT SYSTEM

1. System Overview

The system developed in this study is composad of plant infor-
mation system (P1S), data preprocessing system, process monitor-
ing & diagnosis system and quantitative risk assessment system.
The whole gructure of the developed sysem is shown in Fg. 5.
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Fig. 4. Logic diagram for consequence analysis of rdease of haz-
ard materials.
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Fig. 5. Whole system structure.

Process datais gathered from PI™ of OSI. PI™ and linked with de-
veloped system by using AP technique and ActiveX.
2. System Building

Thefallowing isthe sysem development platform.

Visua Badic (Version 6.0)- Microsoft

NAG Library (Mark 18) - NAG

Firg Impression (Verson 5.0) - Visud Components
Formula One (Verson 5.0) - Visud Components

3. Principal Component Analysis (PCA)

Fig. 6. shows the PCA screen and Fig. 7 is the PCA dgorithm.
Process risk assessment is performed by using quantitative methods.
The proposed system in this Sudy takes process and fault rdlated
information from the database. Quantitative risk assessment then
follows.

CASE STUDY

Methylamine is one of the mog important meterids thet is used
as arav maerid of an organic compound. Methylamine is pro-
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L
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Fig. 6. Principal component analysis screen.
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Fig. 8. Screen capture of risk assessment tool.

duced under 350-300°C and 15-30 bar through the reaction of meth-
anol and ammonia
1. Methylamine Process and Process Data

Ammonia and methylamine related products separation is per-
formed in this process. Process datais composed of 20 processvar-
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Table 1. Processinput data (measurement data)

No Description No Description
1 Vaporized NH, flowrate 11 Temperature 5 of converter
2 Leve of gas separator 12 Reaction temperature of
converter
3 CH,OH feed to converter 13 Reaction temperature of
converter (set point)
4 Recycleliquidflowrate 14 De P of NH, column
5 Pressureof gasseparator 15 Bottom flow ratein NH,
column
6 Temperature 1 of converter 16 Steam flow rate at heat
exchanger 8
7 Temperature 2 of converter 17 Water feed to NH; column
8 Temperature 3 of converter 18 NH, Feed to NH, column
9 Temperature 4 of converter 19 Pressure of NH, column
10 Temperature5 of converter 20 Level of NH, column

Table2. Modd overview for MA plant

No. of ) Percentage  Average  Standard
PC Eigenvalues variation value deviation
1 6.41 60.66 5898.42  234.79
2 292 27.68 15979.77  659.32
3 0.90 855 377187 153.61
4 0.09 0.84 741405  307.67

isblesand each variable has 575 observations. Every varidbleis pre-
processd like outlier remova. The process variables are liged in
Teblel.

2. Data Analysis and Modd Building

Process data have 20 variables and 575 observations. Through
principa component andysis we found that only 3 principa com-
ponents among 20 varigbles contain dmast 95% information about
the MA process, 30 we decided to use 3 principd components. Teble
2 shows the number of principad components and percentage varia
tion of each PC. In order to do process monitoring, a time series
plat, chart and contribution plot are used.

3. Fault Detection and Risk Assessment

After principa component analys's, we check whether the vaue
excesds the upper cortral limit using T2 plot. In this study, 99% and
99.9% UCL areused.

In Fig. 9(b), first and 286" obhsarvations show a processfault. The
cause of the process fault is NH3 feed to NH3 column and water
feed to NH3 column. Fig. 10 shows the contribution plot of the first
and 286" obsarvation.

Quantitative risk assessment is performed under the scenario that
guesses ammonia discharge from an ammonia column. The tem-
perature and pressure of the ammoniafeed is 20 and 20 bar, repec-
tively. Totd discharge amount is400 kg.

Table 3 showsthe risk assessment result.

CONCLUSIONS

Inthis study, fault detection is performed by using principa com-
ponent analyss followed by risk assessment. Principa component
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(b) Abnormal operation

Fig. 9. T?plot of MA plant.
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(a) Contribution plot of the 1st observation
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(b) Contribution plot of the 286th observation
Fig. 10. Contribution plot of MA plant.
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Table 3. Effect distance for wind speed and weather stability
Wind speed (m/sec) & stability  Effect distance for /2 LFL

15/F 133
15D 14.4
5/D 26.0

andydsisausful data andysis method when there is srong cor-
relaion between variables. The methylamine process is chosen as
acae sudy process.

Because PCA is basad on process deta, the quiity of process data
isvery important. So, first, data preprocessing, like outlier removd,
is performed before principa component andysis. After data pre-
processng, norma process datais used to caculate loading vector
and score vector. Offline modd building, monitoring and fault detec-
tion isthe base of online implementation.

The number of PCsis determined based on a scree plot. T? gta
tigic and contribution plot are used to detect process faults and to
isolate fault varidbles. The quantitative risk assessment sep isfol-
lowed by fault detection. Discharge, digoersion, fire & exploson
modules areincluded in the risk assessment system.

As the system developed through this study was gpplied to the
methylamine plant, there was a significant decresse of ammonia
and water injection volume in the ammonia column for abnormal
operation, showing ingability; thus AP of the ammonia column be-
came abnormd. And we performed quantitative risk analyd's assum-
ing the decrease of ammonia fead flow rate as leskage, to find the
length from aminimum 13 metersto maximum 26 metersisin the
range of influence for 1/2 LFL. Therefore, it is necessary to con-
Sder gppropriate safety actionsfor potentia hazards

From now on, the fallowing research mugt proceed <o the sys
tem developed through this research can be utilized for gpplication
to an operator training system and ameans of case sudy for design
and equipment change. Asthe effort to integrate and automete var-
iousfields of chemica process systemsisin progress now, we aso
have to proceed with other ressarch to support this effort. Espe-
cidly, adose connection with ssfety and process design fidd isre-
quired.
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NOMENCLATURE

B :mode parameter matrix [mxn]

E  :resdua matrix [mxn]

F, :Fdigribution

p. :loading vectors[nx1]

S :samplecovariance matrix

tc  :scorevectors[mx1]

T2 :T>gatistic

TZc : upper control limit of the T>statistic
X, :row vector including i event
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X  :meanvector of x's
X process variables matrix
Y  :regponses matrix

Greek Letters
A :elgenvector
T targetvaue
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