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Abstract−This study was performed to develop a Real-Time Risk Monitoring System which helps to do fault detection
using the information from plant information systems in a chemical process. In this study, to do fault detection, principal
component analysis (PCA) methods of multivariate statistical analysis were used. The fundamental notions are a set
of variable combinations, that is, detection of principal components which indicate the tendency of variables and operat-
ing data. Besides classical statistic process control, PCA can reduce the dimension of variables with monitoring process.
Therefore, they are known as suitable methods to treat enormous data composed of many dimensions. The developed
Real-Time Risk Monitoring System can analyze and manage the plant information on-line, diagnose causes of abnor-
mality and so prevent major accidents. It’s useful for operators to treat numerous process faults efficiently.
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INTRODUCTION

Chemical plants are composed of many units and various kinds
of complex processes in order to produce a large amount of prod-
uct. Because of recycle flow, reaction and vapor-liquid equilibrium,
chemical processes show nonlinearity and complexity. The neces-
sity of saving energy and materials is forcing the operating conditions
to severe limits like high pressure, high temperature or extremely
low pressure, temperature. In addition, usually the materials in chem-
ical plants are toxic, flammable, explosive and dangerous, so oper-
ating chemical plant safely and keeping it under control is one of
the most important issues in the chemical industry.

Two main approaches to keep chemical processes within the safe
and economic conditions are offline methods and online monitor-
ing. Offline methods include process modification, changing operat-
ing conditions etc. Real time process monitoring, control and vari-
ables estimation play an important role also. But it’s not easy to meet
these goals because of many obstacles in chemical processes includ-
ing correlation between variables, nonlinearity, uncertainty and mea-
surement delay.

Real-time risk monitoring system and hazard analysis have been
developed separately, because their application levels are different,
in the aspect of theoretical research and actual application. The rea-
son why theyre different is that the former has been developed by
design engineers and safety engineers focused on experience, while
the latter has been developed by experience and technology of oper-
ators at the factory in operation. Currently, these two systems are
implemented as automated systems, displaying the information of
their target process with a model. Since these two systems use dif-
ferent methods, they use different process models to be implemented
as the automated system; thus it’s very hard to maintain compati-
bility between systems, implement user-friendly systems, create
process models for system implementation, create/maintain data-
bases, and maintain consistency of each model. However, in fact,

they’re based on common, basic knowledge - they share the infor-
mation of behavior, structure, and material for process equipment.
Therefore, we can get the benefits of eliminating unnecessary dupli-
cated work, minimizing maintenance responsibility, effective infor-
mation management and exchange, and user-friendliness through
an integrated system. This integration has the same tendency as re-
cent integration of the chemical factory across every field such as
design, construction, and operation.

Correlation between variables is one of the most common prob-
lems in a chemical process. Sometimes different variables have the
same meaning, because variables in a chemical process have strong
correlation. For example, distillation column temperature at differ-
ent trays shows the same behavior when there is a feed change or
steam change. This variable correlation causes big problems dur-
ing system identification or control model buildup.

To perform model identification or controller buildup, we usu-
ally solve a linear least square problem.

Y=XB+E

B=(X
T
X)−1

X
T
Y (1)

When there is strong correlation between variables, XTX doesn’t
have full rank. Namely, XTX becomes singular and the model pa-
rameter matrix, B, does not exist because there is no inverse matrix
of XTX. If the variables do not have so strong a correlation, XTX
becomes a bad condition and the model based on B loses robust-
ness, because a small change of X like noise of measurement error
causes big change of Y. To solve this problem, variable selection or
other methods are needed.

In this paper, PCA (principal component analysis) is used to over-
come variable correlation and to build a robust model against noise
or measurement error that is very popular in chemical processes.

THEORY

1. Principal Component Analysis (PCA)
PCA was developed by Pearson in 1901 and used to analyze the

relationship between variables by Hotelling. PCA is one of the multi-
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variate statistical analysis methods that can be used for feature ex-
traction. All multivariate statistical analysis results are based on data,
so the quality of data is very important. Fig. 1 shows a data matrix,
where n rows mean observations or samples and the data matrix
has m variables.

PCA can be understood at two different aspects, geometrical and
algebraic.

Geometrically, PCA defines a new axis in data space and newly
defined axis is called the principal component. PCA produces a map-
ping of the data set onto a new axis, defined by the span of a chosen
subset of eigenvectors or loading vector, of the variance-covariance
matrix of the data. Each new eigenvector captures the maximum
amount of variability in the data in an ordered fashion. The first prin-
cipal component explains the greatest amount of variation, the sec-
ond, the next largest amount after removal of the first, and so on.
PC’s are orthogonal each other. The corresponding eigenvalue is
associated with each eigenvector. Eigenvector λ relates the amount
of variance explained by that eigenvector. PCA is a special case of
singular value decomposition. The projections onto the loading vec-
tor generate a set of scores that are linearly independent.

Algebraically, PCA represents matrix X with m rank as a linear
combination of m matrix that has only one rank.

X=t1p1
T+t2p2

T+……+tkpk
T+E (2)

tk=score vectors (m×1)
pk=loading vectors (n×1)
E=residual matrix (m×n)

A subset of the first few scores provides information in a lower
dimensional space, the score space, of the behavior of the process

during the period in which the measurements were made. This set
of scores and the PCA loadings can be used to determine if the pres-
ent process operation has changed its behavior relative to the data
that were used to define the scores and loadings.

The application of PCA usually involves a prior step, which means
centering scaling of the data. Mean centering implies that the aver-
age value for each variable is subtracted from the corresponding mea-
surement. Scaling or normalization is necessary to avoid problems
associated with some measurements having large values and oth-
ers with small ones.

Number of PC; A scree plot is a method to identify how many
PCs to be computed. It is useful in determining the appropriate num-
ber of components to interpret. The scree plot is a graph of the eigen-
values (representing the amount of variance explained) versus the
number of factors. So as more factors are added, more of the var-
iance is accounted for. After a certain number of factors, though,
the curve flattens, which indicates that it is pointless to add more
factors since not much more of the variance is being explained (see
Fig. 3).
2. Statistics

There are several ways of interpreting the PCA results: the Q-
statistic, a measure of the model mismatch; the Hotelling T2-statis-
tic, a measure of the fit of new observations to the model space;
variance plots, a measure of the samples’ variability; and score plots,
a qualitative representation of the process performance, relative to
the calibration model in the model space defined by the calibration
model. The one used here is T2 statistic.

The T2-statistic measures unusual variability within
the calibration model space. That is, if the calibration model data
represent a process operation at one operating condition, and the
process has shifted to a different one, then the T2-statistic will show
that data at this operating condition cannot be classified with the
calibration data. The T2-statistic is proportional to the sum of the
squares of the scores on each of the principal components.

Using Eq. (3), the covariance matrix is calculated, where n is the
number of observations and  is mean vector.

(3)

 T2 statistic;

x

S  = n − 1( )− 1 xi − x( ) xi − x( )T

i = 1

n

∑

A  = 

a11  a12
... a1m

a21  a22
... a2m

...  ...

an1  an2
... anm

Fig. 1. Data matrix.

Fig. 2. Algebraic interpretation of PCA.

Fig. 3. SCREE plot.
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T2 statistic for new observation x is given by Eq. (4)

(4)

where, τ is target value.
The confidence limits for the T2-statistic can be calculated by

means of the F-distribution

(5)

Contribution plot; T2 statistic is used for fault detection and con-
tribution plot can be used to identify the variables that cause a pro-
cess fault. Contribution plots decompose the scores into their sum-
mation operands and graph them versus the contributing variable.
The summation operands are the products of the loadings of vari-
able j and the corresponding value of variable j. A large product
associated with a particular variable implies a correspondingly large
contribution.

By comparing the contribution plot of a sample taken from the
calibration set with one that is outside the confidence limits, differ-
ences in the expected variables’ magnitude may provide an indica-
tion of which variables have exceeded their expected limits.
3. Quantitative Risk Assessment

Through quantitative risk assessment, a potential process hazard
is identified and evaluated in quantitative value.

Fig. 4 shows the procedure of quantitative risk assessment. First,
fault detection is performed to identify hazards in a certain process.
This is followed by consequence analysis. In the consequence analy-
sis step, a discharge model, dispersion model, fire & explosion model
and effect model are used.

In this study, PCA is used to detect fault in process and risk as-
sessment follows.

RISK ASSESSMENT SYSTEM

1. System Overview
The system developed in this study is composed of plant infor-

mation system (PIS), data preprocessing system, process monitor-
ing & diagnosis system and quantitative risk assessment system.
The whole structure of the developed system is shown in Fig. 5.

Process data is gathered from PITM of OSI. PITM and linked with de-
veloped system by using API technique and ActiveX.
2. System Building

The following is the system development platform.

Visual Basic (Version 6.0)- Microsoft
NAG Library (Mark 18) - NAG
First Impression (Version 5.0) - Visual Components
Formula One (Version 5.0) - Visual Components

3. Principal Component Analysis (PCA)
Fig. 6. shows the PCA screen and Fig. 7 is the PCA algorithm.

Process risk assessment is performed by using quantitative methods.
The proposed system in this study takes process and fault related
information from the database. Quantitative risk assessment then
follows.

CASE STUDY

Methylamine is one of the most important materials that is used
as a raw material of an organic compound. Methylamine is pro-

T2
 = x − τ( )TS − 1 x − τ( )

T2UCL  = 
n  − 1( ) n + 1( )a

n n  − a( )
---------------------------------Fa a n − a,( )

Fig. 4. Logic diagram for consequence analysis of release of haz-
ard materials.

Fig. 5. Whole system structure.

Fig. 6. Principal component analysis screen.
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duced under 350-300 oC and 15-30 bar through the reaction of meth-
anol and ammonia.
1. Methylamine Process and Process Data

Ammonia and methylamine related products separation is per-
formed in this process. Process data is composed of 20 process var-

iables and each variable has 575 observations. Every variable is pre-
processed like outlier removal. The process variables are listed in
Table 1.
2. Data Analysis and Model Building

Process data have 20 variables and 575 observations. Through
principal component analysis we found that only 3 principal com-
ponents among 20 variables contain almost 95% information about
the MA process, so we decided to use 3 principal components. Table
2 shows the number of principal components and percentage varia-
tion of each PC. In order to do process monitoring, a time series
plot, chart and contribution plot are used.
3. Fault Detection and Risk Assessment

After principal component analysis, we check whether the value
exceeds the upper control limit using T2 plot. In this study, 99% and
99.9% UCL are used.

In Fig. 9(b), first and 286th observations show a process fault. The
cause of the process fault is NH3 feed to NH3 column and water
feed to NH3 column. Fig. 10 shows the contribution plot of the first
and 286th observation.

Quantitative risk assessment is performed under the scenario that
guesses ammonia discharge from an ammonia column. The tem-
perature and pressure of the ammonia feed is 20 and 20 bar, respec-
tively. Total discharge amount is 400 kg.

Table 3 shows the risk assessment result.

CONCLUSIONS

In this study, fault detection is performed by using principal com-
ponent analysis followed by risk assessment. Principal component

Fig. 7. PCA algorithm.

Fig. 8. Screen capture of risk assessment tool.

Table 1. Process input data (measurement data)

No Description No Description

01 Vaporized NH3 flow rate 11 Temperature 5 of converter
02 Level of gas separator 12 Reaction temperature of 

converter
03 CH3OH feed to converter 13 Reaction temperature of 

converter (set point)
04 Recycle liquid flow rate 14 Del P of NH3 column
05 Pressure of gas separator 15 Bottom flow rate in NH3 

column
06 Temperature 1 of converter 16 Steam flow rate at heat 

exchanger 8
07 Temperature 2 of converter 17 Water feed to NH3 column
08 Temperature 3 of converter 18 NH3 Feed to NH3 column
09 Temperature 4 of converter 19 Pressure of NH3 column
10 Temperature 5 of converter 20 Level of NH3 column

Table 2. Model overview for MA plant

No. of
PC

Eigenvalues
Percentage
variation

Average
value

Standard
deviation

1 6.41 60.66 05898.42 234.79
2 2.92 27.68 15979.77 659.32
3 0.90 08.55 03771.87 153.61
4 0.09 00.84 07414.05 307.67
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analysis is a useful data analysis method when there is strong cor-
relation between variables. The methylamine process is chosen as
a case study process.

Because PCA is based on process data, the quality of process data
is very important. So, first, data preprocessing, like outlier removal,
is performed before principal component analysis. After data pre-
processing, normal process data is used to calculate loading vector
and score vector. Offline model building, monitoring and fault detec-
tion is the base of online implementation.

The number of PCs is determined based on a scree plot. T2 sta-
tistic and contribution plot are used to detect process faults and to
isolate fault variables. The quantitative risk assessment step is fol-
lowed by fault detection. Discharge, dispersion, fire & explosion
modules are included in the risk assessment system.

As the system developed through this study was applied to the
methylamine plant, there was a significant decrease of ammonia
and water injection volume in the ammonia column for abnormal
operation, showing instability; thus ∆P of the ammonia column be-
came abnormal. And we performed quantitative risk analysis assum-
ing the decrease of ammonia feed flow rate as leakage, to find the
length from a minimum 13 meters to maximum 26 meters is in the
range of influence for 1/2 LFL. Therefore, it is necessary to con-
sider appropriate safety actions for potential hazards.

From now on, the following research must proceed so the sys-
tem developed through this research can be utilized for application
to an operator training system and a means of case study for design
and equipment change. As the effort to integrate and automate var-
ious fields of chemical process systems is in progress now, we also
have to proceed with other research to support this effort. Espe-
cially, a close connection with safety and process design field is re-
quired.
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NOMENCLATURE

B : model parameter matrix [m×n]
E : residual matrix [m×n]
Fa : F distribution
pk : loading vectors [n×1]
S : sample covariance matrix
tk : score vectors [m×1]
T2 : T2-statistic
T2

UCL : upper control limit of the T2-statistic
xi : row vector including ith event

Fig. 9. T2 plot of MA plant.

Fig. 10. Contribution plot of MA plant.

Table 3. Effect distance for wind speed and weather stability

Wind speed (m/sec) & stability Effect distance for 1/2 LFL

1.5/F 13.3
1.5/D 14.4
0.5/D 26.0
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: mean vector of xi's
X : process variables matrix
Y : responses matrix

Greek Letters
λ : eigenvector
τ : target value
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