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Abstract—The problem of determining shell side Nusselt numbers for a countercurrent, shell-and-tube configura-
tion is examined in detail for square and hexagona arrays of tubes when the shell side flow islaminar and parald to
the tubes. A multipole expansion method is employed to determine fluid velocity and temperature field for the fluid
on the shell side. The numerical results for the shell side Nusselt numbers are compared with those by a cell theory
and an asymptotic analysis. The cell theory agrees well with the numerical results at small area fractions and gives
better estimates for hexagonal arrays. The results for the hexagona arrays are in agreement with those of Sparrow et
al. [1961]. The asymptotic andysis shows better agreement with the numerical results for wider range of area fractions
of tubes in square and hexagond arrays. In addition, we determine shell sde Nussdlt number as a function of the ratio
of thermd conductivities of the fluids on the tube and shell side. Finaly, we present formulas for determining Nusselt

numbers for the periodic arrays.

Key words: Nussdt Number, Shell-and-Tube Exchanger, Asymptotic Andysis, Cdl Theory, Square and Hexagond Arrays

INTRODUCTION

Shell and tube configurations are commonly used in heat and
mass trangfer equipment such as hollow fiber modules used in ges
separation by membranes and heat exchangers Because of their
widespread use in industry, a number of investigators have analyti-
cdly studied the problem of predicting heat or mass transfer coeffi-
cients. The overdl heat (or mass) transfer coefficient is generaly
expressed as a sum of resgtances offered by the tube and shdll Sdes
and thetrangport of heet or massis examined separatdly for the tube
and shell Sdes The problem of determining the tube Sde heet trans:
fer coefficient under laminar flow conditions was firg formulated
by Gragtz who congdered the cases of congant wall temperature
and congtant wall heet flux separately. Andytica solutions for these
problems were obtained by Papoutsakis et d. [1981]. The limiting
cases such as trangport & amdl or large axid distances have dso
been examined, and the results may be found in standard text books
for heat and mass trander (s, eg., Bird, Stewart and Lightfoot
[1960]). An interesting andydis for the limiting case of amdl Pedet
number has been presented by Acrivos[1980].

For the case of shel sde, a number of experimentd invettiga-
tions have been performed due to their practicd importance in in-
dudtry. Kim and Aicher [1997] empirically examined hesat transfer
on the shell Sde for various geometries of shell-and-tube hest ex-
changers. However, theoreticd tudies for the case of shdl Sdeare
rare. The heat trander coefficent for the shell Sde for the case when
the mean flow direction is perpendicular to the tubes was deter-
mined in the limit of smadl Pedet and smdl Reynolds numbers by
Sangani and Acrivos [1982] and that in the limit of smal Reynolds
number but large Peclet number by Wang and Sangani [1997].

The present sudy is concerned with the longitudind case, i.e,

"To whom correspondence should be addressed.
E-malil: kangsa2@nate.com

the case of flow pardld to the tubesin periodic arangements. Spedif-
icaly, we determine Nussdt numbersfor fully developed shell sde
laminar flow pardld to tubes in sguare and hexagond arrays. We
examine in detail a specid Stuation in which the thermd inertia,
i.e, the product of mass flow rate and heat capadity, of the shdl and
tube sdefluidsisequa. For this case, the average temperature pro-
files of the fluids are linear and hest transfer across the tubesisin-
dependent of the axid podtion. Thisis equivaent to the case of con-
gant wal hest flux examined by Sparrow et d. [1961].

The common practice of separating the overd| resstanceto heat
trandfer into resstances on the tube and shell Sde and assuming
that the Nussdlt number on the tube and shell Sdes depends only
on the Reynolds and Pedlet numbers on each Sdeis nat rictly true
for fully developed flows. Thus, for example, the shdl sde heat
trandfer coefficient depends additiondly on the ratio of thermd con+
ductivities of the fluids on the tube and shell Sde. It is shown thet
the dependence on theratio is rather wesk at smdl to modest area
fractions but not so for high area fractions. The results for Nussdlt
numbers for square and hexagond arrays are compared with acdl
theory gpproximation and an asymptatic andysisfor smdl areafrac-
tions of tubes. Agreement between the cdll theory and numerica
resultsis excdlent a amdl area fractions. At larger area fractions,
the cdll theory gives better estimates for hexagond arrays The as-
ymptotic analysisis shown to give more accurate results than does
the cdl| theory for both square and hexagond arrays

This paper is organized asfollows. The governing eguations and
the method are described in detal in Section 2. The theory and resuilts
are presented in Sections 3, and the conclusion of thiswork is given
in Section 4.

FORMULATION OF THE PROBLEM
AND THE METHOD

We consider acountercurrent shel and tube configuration as shown
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Fig. 1. (@) Schematic diagam of a shell-and-tube configuration,
(b) Square and hexagonal arrays.

in Hg. 1. Theflow on both sdesis laminar and unidirectiond. The
fluids undergo no phase change, and, to amplify the andlyss, we
congder the case when the product of the mass flow rate and heset
cgpacity for the fluid on the shell Sde equasthat on the tube side.
For this gpecid case the average temperatures of the fluids on the
tube and shdll sides increase linearly with the axid digance. With
no loss of generdlity, we let the average temperature gradient to equd
1/Pe and write

T2 (Xay Xor X9)=(Xo/PE)+T(Xy, Xo) @
Te (X, Xo, Xa)=(Xo/PE)+T (X4, X,). (]

Here, xg-axisis taken to be dong the axes of the tubes and (x,, X,)
are the coordinates of a point in the plane normd to the tubes The
distances are nonrdimengiondized by g, the radius of the tubes Pe=
pc,Uak isthe Peclet number based on flow outsde the tubes. U is
the superficia velocity of thefluid on the shell side, p, ¢, and k are,
repectively, the density, spedific heet, and therma conductivity of
the shdl sdefluid. Upon subdtitution of (2) into energy eguation for
thefluid on the shell Sdewe obtain

VT, =u, ®

where 1, isthe velocity of the fluid non-dimensiondized by the su-
perficid velocity U, and

2 2
_9 L0

VZ
ox; I’

@
is the Lgplacian operator in the x,-X, plane. Since we have taken
the product of mass flow rate and heat capacity for tube and shell
sdefluidsto be equd, the average velocity of thefluid ingde atube
equas pc,U/(¢pcy), where p, and ¢, are, respectively, the density
and specific heat of the tube sde fluid and ¢ is the area fraction of
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the tubes. The energy equation for the tube sde fluid reducesto
VT, =—u/(oe0), ©®

where o=k/k istheratio of fluid thermd conductivities and u isthe
gandard non-dimengond perabalic profile for laminer flow through
creular tubes. For atube centered  origin, we have

u=2(1-r. 6

Here ristheradid digancefrom the center of thetube The negetive
sgn on the right-hand-side of (5) accounts for the countercurrent
nature of the flows on the tube and shell Sdes.

The positions of the center of N tubes will be dencted by x*, o=
1, 2, ..., N. Thexe centers lie within a unit cdl that is extended peri-
odicadly. Note that N is unity for square and hexagond arrays of
tubes. The boundary conditions for temperature are therefore spa
tid periodicity and continuity of temperature and flux at the sur-
face of the tubes

T.=T, at[x —x9=1. @

Note thet we have assumed that the tube wal thickness is negligi-
bly smdl and it offers no resistance to the heet trandfer.

We shdl be interested in Nusselt number, the non-dimensiona
heat transfer coefficient. The overal Nussalt number isdefined as

_ ahovera]l _ 9
N Uoverall = k _27[kAToveraJ|’ (8)

n-VT.=an-VT,

where Q isthe rate of hegt trandfer per tube per unit length of the
exchanger and AT, is the difference between the average tem+-
peratures of the fluid on the tube and shell Sdes We shdl use two
kinds of averages Thefirst isagpatid average

_ 1
T =r 57 TR, ©

and the second is a fluid velocity weighted average, referred to in
the literature as the mixing-cup temperature,

(Tde=3], UT.dA. (10)

Here, 7isthe area of the unit cdl non-dimensiondized by & ad
D, isthe area occupied by the shell Sdefluid. Note thet theintegral
in (10) is divided by 7 only since the velocity is non-dimensona-
ized by the superficid veocity and hence

JDS UdA =7. 1)

The average temperatures for the tube sde fluid are defined in a
dmilar manner.

The heat trandfer per tube can be rdated to the average temperature
gradient. Thus, from heet flux, (3) and (11), it is easy to show that

kr_k

Q=N =74 (12
Subdituting for Qin (8) we obtain
_ 1
N uwera“ - 2¢ATuveraII ’ (13)

We shdl use the method of multipole expangon for determining
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the velocity and temperature fidds.

The method uses periodic fundamentd singular solutions of La:
place and bi-harmonic equations and their derivetives to congtruct
velocity and temperature fidds. We shdl describe here in more de-
tall the procedure for determining the velocity fied which follows
the analysis presented in Sangani and Yao [1988].

1. Velocity Field
The shdl Sdefluid vdocity stidfies

Vu,=G, (14)

where G is the pressure gradient non-dimensiondized by uU/&. A
multipole expanson expresson for the velocity fidd is given by
[Sangani and Yao, 1988]

0.=Us + X, S A AT 0:18,(x ), (15
where A, and A, arethe 2™-muitipolesinduced by the presence of
tube o, A,=0, and 9,=(0"/0xY) (k=1, 2) is a short-hand natation
for the n-th order partia derivative with repect to x,. Thefunction
S isagpatidly periodic function satisfying [Hasmoato, 1959]

V2S,(%) =4n[%—xz6(x—xo} (16)

In the above expression, x, are the coordinates of the | atice points
of the array and 6 is Dirac’s ddta function. In addition to the above
differentia equation, we reguire that the integrd of S, over the unit
cdl be zero. A Fourier series representation of S, and an efficient
technigue based on Ewad summetion for evaluating S, are described
by Hasmoto [1959].

Subdtituting (15) into (14), and meking use of (16), we find that
the non-dimensond presaure gradient is related to the sum of mo-
nopoles:

G=223 As=a6(A), (x

where <A;> is the average monopole. The multipoles A, and A,
and the congtant U, in (15) are to be determined from the no-dip
boundary condition u=0 on the surface of the tubes and (11), which
datesthat the non-dimensond superficid velocity is unity. For this
purpose it is convenient to re-expand u around the center of each
tube. For example, u, is expanded near tube o as

us=i[uﬁ(r)cosn9 +0%r)sinn6] (18)

with

ui(n=ar"+e! n=1, ug(r)=alogr +e; +Gr/4, 19

where r=[x—x°|. The terms Sngular a r=0 in the above expresson
arise from the sngular part of S, a r=0. Noting that S, behaves as
—2log r asr— 0 [Hasmoto, 1959], and usng the formulas for the
derivatives of log r givenin Appendix, we obtain

al=—2A%  a'=2(-1)"(n-1IAY (n>1). (20)

The coefficients A, are similarly related to &’

The coefficients of the regular terms, such as €7, are rdaed to
the derivatives of the regular part of U, a x=x" [Sangani and Yeo,
1983]. For example,

o 1 n n-—. I o
e’ :H[al—gnal VAU, (21)

e:=n—1.[a;*laz—fna:*agvz]u;<x“>, ()

where £=n/4 for n>2, £ =(n—2)/4 for n>3, and &=&,=,=&,=0.
In (21)-(22), u, denotes the regular part u, obtained by removing
the sngular part, —2log r, from Sy(x—x?).

To determine the relation between U, in (15) and the superficid
velodity we must integrate u over the area D, occupied by the shell
sdefluid. Sncethe integras of S, and its derivatives over the unit
cdl vanish, it is easier to evduae the integrd of ug over D, by in-
tegrating (15) over the unit cdl and subtracting from it the integra
of u, indde the tubes With the non-dimensiond superficid veloc-
ity taken as unity, the above procedure yieds

N
1=u0—%§ljj:0 [, uctr, Oyrcird. )

Care mugt be taken in carrying out above integration to account for
the singular nature of U a x=x* Upon carrying out integration, we
obtain

Uo=1+¢(1=9/2)(Ac) +2¢(A,). (24

Thelagt term on the right-hand-Sde of the above equation was miss:
ing in the expression given in Sangani and Yao [1989]. Fortunately,
the omission of thisterm led to only smdl numericd error in the
results for pressure drop presented by these invedtigators.

The no-dip boundary condition on the surface of the tube, to-
gether with the orthogondity of trigonometric functions, requires thet

us(1) =t%1) =0. (25

Subdituting for & and €7 from (20) and (21) into expressons for
U and applying (25) we obtain a set of linear equationsin the multi-
pole coeffidents A¢. Thisset istruncated by retaining only the terms
with n<N; to yidd atotd of 2N,+1 equations in the same number
of unknowns, solving which yidds the velocity of the fluid on the
shdl sde
2. Temperature Fidd

The temperature of the fluid on the shell Sdeis determined ina
smilar manner. A forma solution of (3) that is patidly periodicis
given by

T =3 3 (B! +BIaT9,1S,(x —x)

a=1n=0

+[AF01+AN9L 10,1S,(x —X”) (26
where the spatidly periodic function S, stifies
V’S,=S, @n
As shown by Hasmoto [1959]
S(x) =m(+n2)m,1|§6k’zmexp(2mk'x), @)

where the summation is over al reciprocd lattice vectors except
k=0. As mentioned earlier, Hasmoto [1959] has described ameth-
od for eva uating these functions using the Ewald summation tech-
nique.

Subdtituting for T, and U, from (26) and (15) into (3) and usng

Korean J. Chem. Eng.(Val. 22, No. 1)
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(16) and (27), we find thet, in order for (26) to be the solution for
T, wemus have

AT Lo
—Tﬂ;BﬁUo- (29

To determine the multipoles B,,, we expand T, near the center of
each tube. Nesr tube o

T(X) =if “(rycosn@+fn(r)sinne, (30)
n=0
with
f"=—1r2(1—logr)ag+r—2eg+b"logr +g +L4-G (3D
n 4 4 0 (] 64 ’
a l l (22 8 O (2P o
fi :ér(mgr _é)al +r§el +bir 1+glr, (32)
I,an I,n+1 . N
fa T +4(n+1)en +hor +gar’ (n22), (€<)

and similar expressions for T . Once again, the coefficients of the
sngular terms, eg. b?, can be rdaed to the multipolesinduced by
tube o (i.e, AY and BY) and the coefficients of regular terms can
be rdaed to the derivatives of the regular part of T, a x=x". The
results are given in the appendix.

Inside tube o, the temperature satisfies (5), a formd solution of
whichis

T(X) :—a—ip(z—l —lié)+r;)[dﬁ‘(r)cosn9 +dZ(r)sinno]r. (34
The coefficients d and d can be diminated upon application of
the conditions of continuity of temperature and flux a the surface
of the tube, r=1, leading to relations among the coefficients d, a,
€, and g. These coefficients together with the expressions that
relae these codfficients to A and B lead to a st of equations that
can be solved to determine the entire temperature fidd.

The condition of continuity of flux integrated over the surface of
thetubeyidds

Bg=%1Ag—3—léG +4—1¢—%A5. @)
Thus, we see the monopole induced is not an unknown. Thisisa
direct consequence of the fact that the total hest lost by eech tubeis
fixed (cf. (12)). On noting thet U, is given by (24), we see thet the
condition (29) is autometicaly satisfied.

The average temperature of the tube sdefluid isgiven by

51 1 =) 3
(T =g #(0) =g~ (1 5 ) (00, (@
where, in deriving the lagt equdity, use has been made of the con-
tinuity of temperature a r=1.

The average temperature of the shdl Sdefluid isdetermined from
integrating T, given by (26) over the entire unit cdl and subtracting
from it the integrals over the area occupied by the tubes. The latter
are evauated by using the local expansion near each tube (cf. (30)).
The resulting expression is
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_ 1 oy, 9(27-11¢)
T9="20=9 10 T96 1°9p @
R R
+1_¢<bz> 24(1_¢)<aa>- (37

The difference between the average temperatures of the tube and
shdl ddefluidsis given by

AT=<Tt>_<Ts>=$D+4(11_¢)
_(@12-30-¢" (G . ¢ oy O
2 1201-9) 16 12 g )

It is customary to write the overd| heat transfer coefficient in terms
of individud hesat trandfer coefficients on the shell and tube Sdes.
Thetube side temperature drop is easily caculated and is given by

N R
AT =(T) <Tw>—6ac¢- (39)
The tube Sde Nussalt number istherefore given by
NU=—— =3 (40)
U 20 pAT, T

Thisis, of course, isthe wdl-known result for the tube side Nussdlt
number for the Graetz problem based on congtant wall heet flux.
We now define the shdll side Nussdlt number Nu, via

1 1 1

N Us N Uoverall acN Uy

where AT=AT—AT, isthe shell Sdetemperature difference.

For determining Nussalt numbers based on mixing-cup temper-
ature differences (cf. (10)), we need to integrate the product uT,
over the area.occupied by the shell Sdefluid. Thisis difficult because
it would reguire evaugting S,, S,, and ther derivatives a many po-
ints outsde the tubes It is more efficient ingteed to solve for an aux-
iliary function v defined by

Vy=T, w=0 al|x—-x7=1. (42

Subdtituting for T, from (42) into (10) and using Green's theorem
we obtain

=2¢AT,, (42)

YTYe=[, UTAA =] uV*ydA
=[5, WV udA +[, (uVy-yVu)-nd. 43
Theintegra over dD,, which congsts of the unit cell boundary and
the surface of the tubes, vanishes owing to the boundary condition

u=1=0 on the tube surface and the gpatid periodicity of wand u.,.
On usng (14) we obtain

(T9.=, oA, (@

A formd expression for y can bewritten in the ssme way asfor u
and T

N o - e
w(xX) =y, + leo [Ce7 +Cra1 70,1,

+[Bpdl +B1ol "0,1S, +[A79] +An0] 0,]S; (45)
whaeS, S, ad S, and thar derivatives, areto be evduated a x—
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x*, and V°S,=S,. Expression (28) with m=3 can be used to evau-
ae S,. The coefficients y, C, and C, are to be evauated from the
boundary condition =0 on the surface of the tubes. Findly, snce
V2S =4nit a dl points outside the tubes, we require that

gcg =0. (46)

To determine the coefficients C;, we expand y near the surface of
each tube as

l//=§t//n(r)cosn9+yfn(r)sinn9 @7
with
VA=Y +UR, 49
V= e e
i e (0. (49

For the purpose of applying boundary conditions a r=1, we evau-
aeygar=1lusng

VR(D)=BAA+BAL+BA BB BB+ BC, (50
where
_(=D"(n-3)! _(=D"(n-2)!(n+2)
ﬁ 16 1 ﬁZ - 8 ]
_(=D"nI(n+3)(n+4) _(=1)"(n-2)!
Bs= 16n ’ b= 8 ’

p=liping A=2(-1y(n-1)!
n

ﬁ1:y64, ﬁz::|_/4Y ,BFJJZ ﬁ_;:ﬁs:ﬂﬁzo
B=532, B=38, pB=12 forn=1,
B=332 for n=2. (59)

Now theintegral of y over the area occupied by the shell sdefluid
can be determined by integrating y given by (45) over the unit cell
firg and then subtracting from it the integras ingde the tubes by
using the expresson (47) for w near each tube. The find result for
the mixing-cup based temperature differenceis

for n=0,

AT.=AT, +AT.. 52)
with
_11 1 24
ATl.c_48¢v Nul.c _2¢AT1,C _117 (53)
B 36y 5
AT,.= 2¢Nusc =g+ G¢[32 5(A9
. & 3
<A2> +3 <A4> += (Ae> 16 <Bo> + <B4> +Co
_ <go> (&) _¥
AC+ o+ 3076 32 12 8.6 aﬂ &4

RESULTS AND DISCUSSION

Table1l shows Nussdt numbers a sdected vaues of ¢ and o
for square as well as hexagond arrays of tubes. It is seen thet the

Table 1. Nu, and Nug, as functions of o, and ¢ for square and
hexagonal arrays

Nug Nu .
¢ o Sguare Hexagona  Square  Hexagond
array aray aray aray
0.2 0 2.166 2.311 1.856 2.040
1 2.167 2.311 1.858 2.040
10 2.167 2.311 1.859 2.040
) 2.167 2.311 1.859 2.040
04 0 2.469 4.443 2575 3.760
1 3515 4.444 2.626 3.762
10 3551 4.445 2.667 3.763
oo 3.559 4.445 2.675 3.763
0.6 0 3.193 7.584 1.884 5721
1 3.795 7.584 2.300 5.853
10 4248 7.763 2.627 5.954
oo 4.344 7.780 2.699 5.976

Thick solid line: Nu; by cell theory
Thin solid line: Nus_ by cell theory
Thick dash line: Nu, by asymptotic analysis
Thin dash line: Nus by asymptotic analysis
Black circles: exact results for Nug

Blank circles: exact results for Nus,

0 T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

¢

Fig. 2. Nussdt numbers Nu, and Nu, ., asfunctions of ¢ for square
array of tubes.

mixing-cup basad Nussdt number is amdler than thet based on area
average. Thisisto be expected since the mixing-cup basad temper-
aure of the shel sde fluid is weighted by the fluid velodity thet
generdly increases with the increase in the radid distance from the
tube. The temperature difference, which is inversdy reated to the
Nussdt number, is greater for the mixing-cup based temperature
since the difference between the shell side fluid and tube wall tem-
perature increases in magnitude with the increase in the distance
from the tube wall. We ds0 see that the Nusselt numbers depend

Korean J. Chem. Eng.(Val. 22, No. 1)
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on the ratio of conductivities o, only dightly a moderate vaues of
¢ but thet the dependence becomes stronger at high values of ¢. We
a0 note that Nussdt numbersfor hexagond arrays are gregter than
those for square arrays a the same ¢. The different Nussalt num-
bersfor two arrays come from the configuration difference. Sx neight
boring tubes near atube a origin are placed a equd disance from
the tube a origin in hexagond aray while the tube at the originin
the square array is surrounded by four adjacent tubes and another
four tubes with larger digtance from the tube et the origin. The dis-
tance from tube a the origin to the nearest tubes is shorter for the
cae of Fuare array a the same area fractions of tubes, and thusiit
is expected that heet trandfer rate is much reduced for the region
where the digance between the tubesis small.

Figs 2 and 3 show the numerica results for Nussdt numbers
for o=co. Nussdlt numbers are seen to increase with the increase
in area fraction & smdl to moderate area fractions. At smdl ¢, the
hest mugt diffuse agrester digance into the shell sdefluid, and this
increesss AT, Interegtingly, the Nussalt number seemsto go through
amaximum & very high ¢. The solid lines in these figures repre-
sent the predictions of an asymptatic anadyd's and deshed lines show
the predictions from the cell theory to be described next.

Theandyssfor smdl ¢issimilar to one presented by Hasimoto
[1959] and Sangani and Acrivos [1982] who conddered the prob-
lem of determining drag force on sphericd particles This andyss
yields the following results for Nussdlt numbers for square and hex-

agond arrays.
Nu;1=1—2_%>[go +% +'§2-D +’ﬁé-° ¢S, +(Qc _69)
+(%C_5151)¢2 (2 zai al b) J (55)

Thick solid line: Nug by cell theory

Thin solid line: Nus by cell theory

Thick dash line: Nu, by asymptotic analysis

10 Thin dash line: Nug, by asymptotic analysis °

Black circles: exact results for Nug

Blank circles: exact results for Nug

Nu
[=}

¢

Fig. 3. Nusdt numbers, Nu, and Nu, ., as functions of ¢ for hex-
agonal array of tubes.
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Table2. S, S, S, and ther derivativesat r=0 asfunctions of ¢ for
square and hexagonal arrays

n Square array Hexagonal array
0;S, 0 —logg—1.4763 —logg—1.4975
2 2¢ 2¢
4 3.83314¢7 0
6 0 29.4765¢
8 440.392¢* 0
S, 0 -0.1527/¢ —0.1465/¢
4 0.7018¢ 15¢
0'S; 0 0.1465x 10°%/¢? -8.35x107¢*

Ay 40-11¢ , 5
Nuzi= 2«{90 S(150) 4¢A0‘V0+4¢2A°{A°ﬁ(2 16>

&Ecgl E Lﬁ¢+ ( %S, E)¢ +ho+ H (56)

2-31.41¢° 16
where
1 Af 0 _o1
Bo=2p 4(1 2)’ P=or

015,01,
AoS; +B,S, A S

_afsﬁ[%si L +&9¢ ‘Ao(z. gﬁu 0 +%5)¢1
h —AUM Bo %

3218 2 4’
Y=hy—AS; ~BoS, .
slfgs e e ol @

Here, the superstript r in S, S, and S, and their derivatives denote
the regular part of these functions at r=0. Their vaues for square
and hexagond arraysareliged in Table 2.

In addition to the asymptotic andyss for smal area fractions of
tubes, we dso compere the results of exact cdculations with the pre-
dictions obtained usng a cdl theory [Happd, 1959], which ismore
gopropriate for periodic arays than effective-medium theory. In
this theory, the periodic unit cdll is replaced by afluid cdl of outer
radius R=¢ " and inner radius unity. The fluid velocity isgiven by

us=—2A,logr +%5r2 +6,. (59
The congants are determined by using the boundary conditions u=

0 a r=1 and du/or=0 a r=R, and the condition thet the average
velocity of thefluidinthe cell equals 1/(1- ¢). Thisyidds

123,21
AD—IogR 2+Rz R (59)
and G=44A,.

The temperatures for the shell and tube sdefluids are given by

4 2
T5=A[ r’(1-logr) += (L—L)}—ZBOIOQHCO forr>1 (60)

16 4
2 4
r=-2(0.1)
)\4 16

forr<1. (61)
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The congants B, and G, are determined by using the conditions of
continuity of temperature and flux at r=1. The condition of no flux
a r=R is automaticaly satisfied. The average temperatures of the
fluids, and hence the Nusselt numbers, can be determined once these
two condants are determined. The results for the Nussdlt numbers

are given below.
R R 5
{ 16 _4_8)

H @
1
N uS . Cot

i (e L) )
5

+4—8[—R2IogR +1(R —; )} +—IogR(2IogR 1)

1 3
Nu, ZQ{C” 80t

o ¥

8
LRy +L(& R AN 5R°

2QRA6 4 12) RA128 96
R_7 2 2_ 1
+16 384)}+AUBO{2R ((IogR) IogR+2)

2 R -1 R R -1
-1- R( logR— ETH IogR+ 2 )}H (63

Fgs 2 and 3 compare the predictions of the cell theory with the
exact results for Nusselt numbers. The cdl theory results are gen-
erdly in better agreement with those for hexagond arrays than for
suare arrays. This agreement results from the observation that hex-
agond arrays of tubes are geometricdly closer to the cel mode
than the square arrays are, as shown in Fig. 1. In dl cases, how-
ever, the reaults obtained from the low ¢ andlyss yied more ac-
curate results than those obtained using the cdl theory. Since the
asymptotic andlyss for low ¢ uses asymptotic expressions for e
tidly periodic functions S|, S and S] and their derivatives thet di-
rectly give veocity and temperature field while the cdll theory em-
ploys asmple mode condgsting of atube and encapsulating cdl, it
is seen that the asymptotic andyss shows agreement with numei-
cd dmuldions for wider range of area fractions of tubes than the
cdl theory does.

CONCLUSION

We determined Nussdlt numbers for shell sde longitudina flow
aong the axes of tubesin square and hexagond arrays. The shel
sde Nusset numbers, which are rdlaed to the inverse of average
temperature difference between shell side and tube wall, are com-
puted based on two kinds of average temperatures, i.e,, spatid av-
erage and mixing-cup temperature. Nussalt numbers with mixing-
cup temperature are smdler than those based on atid average tem-
perature, because the difference between the temperatures of shell
sdeand tube wall increases with the digance from the tubewadl as
does fluid velocity by which mixing-cup temperature is weighted.
The shel side Nussdlt numbers for hexagond arrays are larger than
those for square array’s, saying hexagond arays are more efficient
for convective heat trandfer on the shdl Sde. The Nussalt numbers
of shell Sde count on theratio of therma conductivities of fluidsin

the tube and shdll Sde. At amall area fractions of tubes the depen-
dence on the conductivity ratio is week but it becomes sronger a
high areafractions of tubes.

Numericd results for Nussdt numbers are compared with those
by acdl theory. At amdl areafractions of tubes, the cdl theory agrees
quite well with the numerical results. At larger area fractions, the
cdl theory gives better esimates for hexagond arrays. An asymptatic
andyds for smdl area fractions is dso performed and shown to
give more accurate results than does the cell theory for both square
and hexagond arrays.
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APPENDI X

1 Derivatives of Singular Partsof S, S,, and S;

§:—Zogr (AD
9'S5=2(- 1)"(n—1)!r "cond (A2)
o 9,5=2(- 1)'(n-1)!r "Snnd (A3)
Si=3r'(1-logn) ()
1S, =%(—1)””(n -2)! rz‘”{cosne —n—Ezcos(n —2)9} (A5)

9179,S =%(—1)””(n -2)! rz’”[si nno _n_EZSi n(n-2) 9} (A6)
A
S —64r (3—2logr) (A7)

82$=3—12(—1)”(n—4)!r4’”[ﬂnn—1)cos(n ~4)6
—4ncos(n—2)0+2(n—3)cosnd) (A8)

9179,S; =3—,1é(—1)"(n - "[2n(n—1)sin(n—4)0
—4sin(n—2)0+2(n—3)sinnod] (A9
2. Formulas for Determining the Coefficients of Regular Terms

&2 G, (A10)

e Lonre
gn _n!alTs(X) 4(n 1) 64 n4

o= 82 "9, TYx") — —; (A1)

o 1 n o Z— a_
R =20 () — g i 6. (A1)

4n-1) 32(n-2)(n—3) 32-12:6

n-2 8., n-4_ &,
n 4n-1) n 32(n-2)(n-3) (AL3)

o 1 n- | s
hn =ﬁial 182‘/[()( )_
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a :radiusof tubes

C, - specific heat of the shell sidefluid

Cx - Specific heat of the tube side fluid

D, :areaoccupied by the shell sidefluid

G : pressuregradient non-dimensionalized by pU/e in axia

direction of tubes

hyear - Overdl heat transfer coefficient

k :therma conductivity of the shell fluid

NUyeq - Overal Nusselt number

Nu, : shell sde Nussat number

Nu, :tube side Nussdlt number

Pe : Peclet number

r : radial distance from the center of thetube a origin

Q :rateof heat trandfer per tube per unit length of the exchanger

T, :temperature of shell sdefluid

T, :temperature of tube sidefluid

<T> : spatia average temperature of shell side fluid

AT, - difference between the average temperatures of the fluid
on the tube and shell side

: superficia velocity of the fluid on the shell side

: velocity of the shell-side fluid non-dimensionalized by U

: velocity of the tube-side fluid non-dimensionalized by U

: position vector of the center of tube o

: coordinates (pogition vector) of thelattice points of thearray

: ratio of therma conductivity of tube-side fluid to that of
shell-side fluid

: Dirac's deltafunction

: areafraction of the tubes

: dengity of the shdll fluid

: dengity of the tube side fluid

: unit cell areanon-dimensionalized by &

: viscosity of fluid
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