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Abstract−The problem of determining shell side Nusselt numbers for a countercurrent, shell-and-tube configura-
tion is examined in detail for square and hexagonal arrays of tubes when the shell side flow is laminar and parallel to
the tubes. A multipole expansion method is employed to determine fluid velocity and temperature field for the fluid
on the shell side. The numerical results for the shell side Nusselt numbers are compared with those by a cell theory
and an asymptotic analysis. The cell theory agrees well with the numerical results at small area fractions and gives
better estimates for hexagonal arrays. The results for the hexagonal arrays are in agreement with those of Sparrow et
al. [1961]. The asymptotic analysis shows better agreement with the numerical results for wider range of area fractions
of tubes in square and hexagonal arrays. In addition, we determine shell side Nusselt number as a function of the ratio
of thermal conductivities of the fluids on the tube and shell side. Finally, we present formulas for determining Nusselt
numbers for the periodic arrays.
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INTRODUCTION

Shell and tube configurations are commonly used in heat and
mass transfer equipment such as hollow fiber modules used in gas
separation by membranes and heat exchangers. Because of their
widespread use in industry, a number of investigators have analyti-
cally studied the problem of predicting heat or mass transfer coeffi-
cients. The overall heat (or mass) transfer coefficient is generally
expressed as a sum of resistances offered by the tube and shell sides,
and the transport of heat or mass is examined separately for the tube
and shell sides. The problem of determining the tube side heat trans-
fer coefficient under laminar flow conditions was first formulated
by Graetz who considered the cases of constant wall temperature
and constant wall heat flux separately. Analytical solutions for these
problems were obtained by Papoutsakis et al. [1981]. The limiting
cases such as transport at small or large axial distances have also
been examined, and the results may be found in standard text books
for heat and mass transfer (see, e.g., Bird, Stewart and Lightfoot
[1960]). An interesting analysis for the limiting case of small Peclet
number has been presented by Acrivos [1980].

For the case of shell side, a number of experimental investiga-
tions have been performed due to their practical importance in in-
dustry. Kim and Aicher [1997] empirically examined heat transfer
on the shell side for various geometries of shell-and-tube heat ex-
changers. However, theoretical studies for the case of shell side are
rare. The heat transfer coefficient for the shell side for the case when
the mean flow direction is perpendicular to the tubes was deter-
mined in the limit of small Peclet and small Reynolds numbers by
Sangani and Acrivos [1982] and that in the limit of small Reynolds
number but large Peclet number by Wang and Sangani [1997].

The present study is concerned with the longitudinal case, i.e.,

the case of flow parallel to the tubes in periodic arrangements. Specif-
ically, we determine Nusselt numbers for fully developed shell side
laminar flow parallel to tubes in square and hexagonal arrays. We
examine in detail a special situation in which the thermal inertia,
i.e., the product of mass flow rate and heat capacity, of the shell and
tube side fluids is equal. For this case, the average temperature pro-
files of the fluids are linear and heat transfer across the tubes is in-
dependent of the axial position. This is equivalent to the case of con-
stant wall heat flux examined by Sparrow et al. [1961].

The common practice of separating the overall resistance to heat
transfer into resistances on the tube and shell side and assuming
that the Nusselt number on the tube and shell sides depends only
on the Reynolds and Peclet numbers on each side is not strictly true
for fully developed flows. Thus, for example, the shell side heat
transfer coefficient depends additionally on the ratio of thermal con-
ductivities of the fluids on the tube and shell side. It is shown that
the dependence on the ratio is rather weak at small to modest area
fractions but not so for high area fractions. The results for Nusselt
numbers for square and hexagonal arrays are compared with a cell
theory approximation and an asymptotic analysis for small area frac-
tions of tubes. Agreement between the cell theory and numerical
results is excellent at small area fractions. At larger area fractions,
the cell theory gives better estimates for hexagonal arrays. The as-
ymptotic analysis is shown to give more accurate results than does
the cell theory for both square and hexagonal arrays.

This paper is organized as follows. The governing equations and
the method are described in detail in Section 2. The theory and results
are presented in Sections 3, and the conclusion of this work is given
in Section 4.

FORMULATION OF THE PROBLEM
AND THE METHOD

We consider a countercurrent shell and tube configuration as shown
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in Fig. 1. The flow on both sides is laminar and unidirectional. The
fluids undergo no phase change, and, to simplify the analysis, we
consider the case when the product of the mass flow rate and heat
capacity for the fluid on the shell side equals that on the tube side.
For this special case the average temperatures of the fluids on the
tube and shell sides increase linearly with the axial distance. With
no loss of generality, we let the average temperature gradient to equal
1/Pe and write

Tt
*(x1, x2, x3)=(x3/Pe)+Tt(x1, x2) (1)

Ts
*(x1, x2, x3)=(x3/Pe)+Ts(x1, x2). (2)

Here, x3-axis is taken to be along the axes of the tubes and (x1, x2)
are the coordinates of a point in the plane normal to the tubes. The
distances are non-dimensionalized by a, the radius of the tubes. Pe=
ρcpUa/k is the Peclet number based on flow outside the tubes. U is
the superficial velocity of the fluid on the shell side, ρ, cp and k are,
respectively, the density, specific heat, and thermal conductivity of
the shell side fluid. Upon substitution of (2) into energy equation for
the fluid on the shell side we obtain

(3)

where us is the velocity of the fluid non-dimensionalized by the su-
perficial velocity U, and

(4)

is the Laplacian operator in the x1-x2 plane. Since we have taken
the product of mass flow rate and heat capacity for tube and shell
side fluids to be equal, the average velocity of the fluid inside a tube
equals ρcpU/(φρtcpt), where ρt and cpt are, respectively, the density
and specific heat of the tube side fluid and φ is the area fraction of

the tubes. The energy equation for the tube side fluid reduces to

(5)

where αc=kt/k is the ratio of fluid thermal conductivities, and ut is the
standard non-dimensional parabolic profile for laminar flow through
circular tubes. For a tube centered at origin, we have

ut=2(1−r2). (6)

Here, r is the radial distance from the center of the tube. The negative
sign on the right-hand-side of (5) accounts for the countercurrent
nature of the flows on the tube and shell sides.

The positions of the center of N tubes will be denoted by xα, α=
1, 2, ..., N. These centers lie within a unit cell that is extended peri-
odically. Note that N is unity for square and hexagonal arrays of
tubes. The boundary conditions for temperature are therefore spa-
tial periodicity and continuity of temperature and flux at the sur-
face of the tubes:

(7)

Note that we have assumed that the tube wall thickness is negligi-
bly small and it offers no resistance to the heat transfer.

We shall be interested in Nusselt number, the non-dimensional
heat transfer coefficient. The overall Nusselt number is defined as

(8)

where Q is the rate of heat transfer per tube per unit length of the
exchanger and ∆Toverall is the difference between the average tem-
peratures of the fluid on the tube and shell sides. We shall use two
kinds of averages. The first is a spatial average

(9)

and the second is a fluid velocity weighted average, referred to in
the literature as the mixing-cup temperature,

(10)

Here, τ is the area of the unit cell non-dimensionalized by a2 and
Ds is the area occupied by the shell side fluid. Note that the integral
in (10) is divided by τ only since the velocity is non-dimensional-
ized by the superficial velocity and hence

(11)

The average temperatures for the tube side fluid are defined in a
similar manner.

The heat transfer per tube can be related to the average temperature
gradient. Thus, from heat flux, (3) and (11), it is easy to show that

(12)

Substituting for Q in (8) we obtain

(13)

We shall use the method of multipole expansion for determining

∇2Ts = us,

∇2
 = 

∂2

∂x1
2

------- + 
∂2

∂x2
2

-------

∇2Tt = − ut αcφ( ),⁄

Ts = Tt, n ∇Ts⋅  = αcn ∇Tt⋅ at x  − xα
 = 1.

Nuoverall = 
ahoverall

k
--------------- = 

Q
2πk∆Toverall

--------------------------,

Ts〈 〉  = 
1

1− φ( )τ
----------------- TsdA,

Ds
∫

Ts〈 〉c = 
1
τ
--- usTsdA.

Ds
∫

usdA = τ.
Ds
∫

Q = 
kτ
N
----- = 

k
πφ
------.

Nuoverall = 
1

2φ∆Toverall

-----------------------.

Fig. 1. (a)  Schematic diagam of a shell-and-tube configuration,
(b) Square and hexagonal arrays.
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the velocity and temperature fields.
The method uses periodic fundamental singular solutions of La-

place and bi-harmonic equations and their derivatives to construct
velocity and temperature fields. We shall describe here in more de-
tail the procedure for determining the velocity field which follows
the analysis presented in Sangani and Yao [1988].
1. Velocity Field

The shell side fluid velocity satisfies

(14)

where G is the pressure gradient non-dimensionalized by µU/a2. A
multipole expansion expression for the velocity field is given by
[Sangani and Yao, 1988]

(15)

where  and  are the 2n-multipoles induced by the presence of
tube α, , and ∂k

n=(∂n/∂xk
n) (k=1, 2) is a short-hand notation

for the n-th order partial derivative with respect to xk. The function
S1 is a spatially periodic function satisfying [Hasimoto, 1959]

(16)

In the above expression, xL are the coordinates of the lattice points
of the array and δ is Dirac’s delta function. In addition to the above
differential equation, we require that the integral of S1 over the unit
cell be zero. A Fourier series representation of S1 and an efficient
technique based on Ewald summation for evaluating S1 are described
by Hasimoto [1959].

Substituting (15) into (14), and making use of (16), we find that
the non-dimensional pressure gradient is related to the sum of mo-
nopoles:

(17)

where <A0> is the average monopole. The multipoles  and 
and the constant U0 in (15) are to be determined from the no-slip
boundary condition us=0 on the surface of the tubes and (11), which
states that the non-dimensional superficial velocity is unity. For this
purpose it is convenient to re-expand us around the center of each
tube. For example, us is expanded near tube α as

(18)

with

(19)

where r=|x−xα|. The terms singular at r=0 in the above expression
arise from the singular part of S1 at r=0. Noting that S1 behaves as
−2log r as r�0 [Hasimoto, 1959], and using the formulas for the
derivatives of log r given in Appendix, we obtain

(20)

The coefficients  are  similarly related to .
The coefficients of the regular terms, such as en

α, are related to
the derivatives of the regular part of us at x=xα [Sangani and Yao,
1988]. For example,

(21)

(22)

where ξn=n/4 for n≥2, =(n−2)/4 for n≥3, and ξ0=ξ1= = =0.
In (21)-(22), us

r denotes the regular part us obtained by removing
the singular part, −2log r, from S1(x−xα).

To determine the relation between U0 in (15) and the superficial
velocity we must integrate us over the area Ds occupied by the shell
side fluid. Since the integrals of S1 and its derivatives over the unit
cell vanish, it is easier to evaluate the integral of us over Ds by in-
tegrating (15) over the unit cell and subtracting from it the integral
of us inside the tubes. With the non-dimensional superficial veloc-
ity taken as unity, the above procedure yields

(23)

Care must be taken in carrying out above integration to account for
the singular nature of us

α at x=xα. Upon carrying out integration, we
obtain

(24)

The last term on the right-hand-side of the above equation was miss-
ing in the expression given in Sangani and Yao [1988]. Fortunately,
the omission of this term led to only small numerical error in the
results for pressure drop presented by these investigators.

The no-slip boundary condition on the surface of the tube, to-
gether with the orthogonality of trigonometric functions, requires that

(25)

Substituting for an
α and en

α from (20) and (21) into expressions for
un
α and applying (25) we obtain a set of linear equations in the multi-

pole coefficients An
α. This set is truncated by retaining only the terms

with n≤Ns to yield a total of 2Ns+1 equations in the same number
of unknowns, solving which yields the velocity of the fluid on the
shell side.
2. Temperature Field

The temperature of the fluid on the shell side is determined in a
similar manner. A formal solution of (3) that is spatially periodic is
given by

(26)

where the spatially periodic function S2 satisfies

(27)

As shown by Hasimoto [1959]

(28)

where the summation is over all reciprocal lattice vectors except
k=0. As mentioned earlier, Hasimoto [1959] has described a meth-
od for evaluating these functions using the Ewald summation tech-
nique.

Substituting for Ts and us from (26) and (15) into (3) and using

∇2us = G,

us = U0 + An

α∂1

n
 + Ãn

α
∂1

n − 1∂2[ ]S1 x − xα( ),
n = 0

∞

∑
α= 1

N

∑

An

α
Ãn

α

Ã0 0≡

∇2S1 x( ) = 4π 1
τ
--- − δ x − xL( )

xL

∑ .

G = 
4π
τ

------ A0
α

 = 4φ A0〈 〉,
α = 1

N

∑

An

α
Ãn

α

us = un
α r( ) nθcos  + ũn

α r( ) nsin θ[ ]
n = 0

∞

∑

un
α r( ) = an

αr
− n

 + en
α n 1≥ , u0

α r( ) = a0
α rlog  + e0

α
 + Gr2 4⁄ ,

a0
α

 = − 2A0
α, an

α
 = 2 − 1( )n n − 1( )!An

α n 1≥( ).

Ãn

α
ãn
α

en
α

 = 
1
n!
----- ∂1

n
 − ξn∂1

n − 2∇2[ ]us
r xα( ),

ẽn
α

 = 
1
n!
----- ∂1

n − 1∂2− ξ̃n∂1
n − 3∂3∇

2[ ]us
r xα( ),

ξ̃n ξ̃1 ξ̃2

1= U0  − 
1
τ
--- us

α r θ,( )rdrdθ.
θ = 0

2π
∫r = 0

1

∫
α= 1

N

∑

U0  = 1+ φ 1− φ 2⁄( ) A0〈 〉  + 2φ A2〈 〉.

un
α 1( ) = ũn

α 1( ) = 0.

Ts x( ) = Bn
α∂1

n
 + B̃n

α∂1
n − 1∂2[ ]S1 x − xα( )

n = 0

∞

∑
α= 1

N

∑
+ An

α∂1
n

 + Ãn
α∂1

n − 1∂2[ ]S2 x − xα( )

∇2S2  = S1

Sm x( ) = 
1

πτ − 4π2( )m − 1
----------------------------- k

− 2m 2πik x⋅( ),exp
k 0≠
∑
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(16) and (27), we find that, in order for (26) to be the solution for
Ts, we must have

(29)

To determine the multipoles Bn, we expand Ts near the center of
each tube. Near tube α

(30)

with

(31)

(32)

(33)

and similar expressions for . Once again, the coefficients of the
singular terms, e.g. bn

α, can be related to the multipoles induced by
tube α (i.e., An

α and Bn
α) and the coefficients of regular terms can

be related to the derivatives of the regular part of Ts at x=xα. The
results are given in the appendix.

Inside tube α, the temperature satisfies (5), a formal solution of
which is

(34)

The coefficients dn
α and  can be eliminated upon application of

the conditions of continuity of temperature and flux at the surface
of the tube, r=1, leading to relations among the coefficients dn

α, an
α,

en
α, and gn

α. These coefficients together with the expressions that
relate these coefficients to An

α and Bn
α lead to a set of equations that

can be solved to determine the entire temperature field.
The condition of continuity of flux integrated over the surface of

the tube yields

(35)

Thus, we see the monopole induced is not an unknown. This is a
direct consequence of the fact that the total heat lost by each tube is
fixed (cf. (12)). On noting that U0 is given by (24), we see that the
condition (29) is automatically satisfied.

The average temperature of the tube side fluid is given by

(36)

where, in deriving the last equality, use has been made of the con-
tinuity of temperature at r=1.

The average temperature of the shell side fluid is determined from
integrating Ts given by (26) over the entire unit cell and subtracting
from it the integrals over the area occupied by the tubes. The latter
are evaluated by using the local expansion near each tube (cf. (30)).
The resulting expression is

(37)

The difference between the average temperatures of the tube and
shell side fluids is given by

(38)

It is customary to write the overall heat transfer coefficient in terms
of individual heat transfer coefficients on the shell and tube sides.
The tube side temperature drop is easily calculated and is given by

(39)

The tube side Nusselt number is therefore given by

(40)

This is, of course, is the well-known result for the tube side Nusselt
number for the Graetz problem based on constant wall heat flux.
We now define the shell side Nusselt number Nus via

(41)

where ∆Ts=∆T−∆Tt is the shell side temperature difference.
For determining Nusselt numbers based on mixing-cup temper-

ature differences (cf. (10)), we need to integrate the product usTs

over the area occupied by the shell side fluid. This is difficult because
it would require evaluating S1, S2, and their derivatives at many po-
ints outside the tubes. It is more efficient instead to solve for an aux-
iliary function ψ defined by

(42)

Substituting for Ts from (42) into (10) and using Green’s theorem
we obtain

(43)

The integral over ∂Ds, which consists of the unit cell boundary and
the surface of the tubes, vanishes owing to the boundary condition
us=ψ=0 on the tube surface and the spatial periodicity of ψ and us.
On using (14) we obtain

(44)

A formal expression for ψ can be written in the same way as for us

and Ts:

(45)

where S1, S2 and S3, and their derivatives, are to be evaluated at x−

4π
τ

------ B0
α

 = U0.
α = 1

N

∑

Ts x( ) = f n
α r( ) nθcos  + f̃ n

α r( ) nθ,sin
n = 0

∞

∑

f n
α

 = − 
1
4
---r2 1− rlog( )a0

α
 + 

r2

4
---e0

α
 + b0

α r + g0 + 
r4

64
------G,log

f 1
α

 = 
1
2
---r rlog  − 

1
2
--- 

 a1
α

 + 
r3

8
---e1

α
 + b1

αr − 1+ g1
αr,

f n
α

 = 
r2 − n

4 1− n( )
-----------------an

α
 + 

rn + 1

4 n + 1( )
------------------en

α
 + bn

αr − n
 + gn

αrn n 2≥( ),

f̃ n
α

Tt x( ) = − 
2
αcφ
-------- r2

4
--- − 

r4

16
------ 

 
 + dn

α r( ) nθcos  + d̃n
α r( ) nθsin[ ]rn.

n = 0

∞

∑

d̃n
α

B0
α

 = 
1
4
---A0

α
 − 

1
32
------G + 

1
4φ
------ − 

1
2
---A2

α.

Tt〈 〉  = − 
5
24
------ 1

αcφ
-------- + d0〈 〉  = 

1
6αcφ
----------- − 

a0〈 〉
4

--------- 1− 
3φ
8

------ 
 

 + g0〈 〉,

Ts〈 〉  = − 
1

4 1− φ( )
----------------- − 

φ g0〈 〉
1− φ
------------ + 

φ
96
------ 27 − 11φ( )

1− φ
------------------------ a0〈 〉

+ 
φ

1− φ
---------- b2〈 〉  − 

φ
24 1− φ( )
-------------------- a4〈 〉.

∆T = Tt〈 〉  − Ts〈 〉  = 
1

6αcφ
----------- + 

1
4 1− φ( )
-----------------

− 
a0〈 〉
4

---------12 − 3φ − φ2

12 1− φ( )
--------------------------- + 

g0〈 〉
1− φ
---------- + 

φ
1− φ
---------- b2〈 〉  − 

φ
24 1− φ( )
-------------------- a4〈 〉.

∆Tt = Tt〈 〉  − Tw〈 〉  = 
1

6αcφ
-----------.

Nut = 
1

2αcφ∆Tt

-------------------- = 3.

1
Nus

-------- = 
1

Nuoverall

----------------- − 
1

αcNut

-------------- = 2φ∆Ts,

∇2ψ = Ts, ψ = 0 at x − xα
 = 1.

τ Ts〈 〉c = usTsdA = us∇2ψ Ad
Ds
∫Ds

∫
= ψ∇2usdA + us∇ψ − ψ∇us( ) n⋅ l.d∂Ds

∫Ds
∫

Ts〈 〉c = 
G
τ
---- ψdA.

Ds
∫

ψ x( ) = ψ0  + Cn
α∂1

n
 + C̃n

α∂1
n − 1∂2[ ]S1

n = 0

∞

∑
α= 1

N

∑
+ Bn

α∂1
n

 + B̃n
α∂1

n − 1∂2[ ]S2 + An
α∂1

n
 + Ãn

α∂1
n − 1∂2[ ]S3
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xα, and ∇2S3=S2. Expression (28) with m=3 can be used to evalu-
ate S3. The coefficients ψ0, Cn and  are to be evaluated from the
boundary condition ψ=0 on the surface of the tubes. Finally, since
∇2S1=4π/τ at all points outside the tubes, we require that

(46)

To determine the coefficients , we expand ψ near the surface of
each tube as

(47)

with

ψn=ψn
r+ψn

s, (48)

(n≥0). (49)

For the purpose of applying boundary conditions at r=1, we evalu-
ate ψn

s at r=1 using 

ψn
s(1)=β1An+β2An+2+β3An+4+β4Bn+β5Bn+2+β6Cn, (50)

where

β6=2(−1)n(n−1)!

β1=3/64, β2=1/4, β4=1/2, β3=β5=β6=0 for n=0,
β1=5/32, β2=3/8, β4=1/2 for n=1,
β1=3/32 for n=2. (51)

Now the integral of ψ over the area occupied by the shell side fluid
can be determined by integrating ψ given by (45) over the unit cell
first and then subtracting from it the integrals inside the tubes by
using the expression (47) for ψ near each tube. The final result for
the mixing-cup based temperature difference is

∆Tc=∆Tt, c+∆Ts, c (52)

with

(53)

(54)

RESULTS AND DISCUSSION

Table 1 shows Nusselt numbers at selected values of φ and αc

for square as well as hexagonal arrays of tubes. It is seen that the

mixing-cup based Nusselt number is smaller than that based on area
average. This is to be expected since the mixing-cup based temper-
ature of the shell side fluid is weighted by the fluid velocity that
generally increases with the increase in the radial distance from the
tube. The temperature difference, which is inversely related to the
Nusselt number, is greater for the mixing-cup based temperature
since the difference between the shell side fluid and tube wall tem-
perature increases in magnitude with the increase in the distance
from the tube wall. We also see that the Nusselt numbers depend

C̃n

C0
α

 = 0.
α = 1

N

∑

C̃n
α

ψ = ψn r( ) nθcos  + ψn r( ) nsin θ
n = 0

∞

∑

ψn
r

 = hnr
n

 + 
gn

4 1+ n( )
-----------------rn + 2

 + 
en

32 n + 1( ) n + 2( )
-------------------------------------rn + 4

+ 
G

32 12 6⋅ ⋅
--------------------r6δn0

β1= 
− 1( )n n − 3( )!

16
------------------------------, β2  = 

− 1( )n + 1 n − 2( )! n + 2( )
8

--------------------------------------------------,

β3  = 
− 1( )nn! n + 3( ) n  + 4( )

16n
-------------------------------------------------, β4  = 

− 1( )n + 1 n − 2( )!
8

-----------------------------------,

β5  = 
− 1( )n + 1n! n + 2( )

2n
--------------------------------------,

∆Tt c,  = 
11

48φ
---------, Nut c,  = 

1
2φ∆Tt c,
----------------- = 

24
11
------,

∆Ts c,  = 
1

2φNus c,
----------------- = g0〈 〉  + 

A0〈 〉
2

---------- − 
3G
64
------- + Gφ 5

32 9⋅
----------- A0〈 〉

+ 
5

32
------ A2〈 〉  + 

3
8
--- A4〈 〉  + 

5
4
--- A6〈 〉  + 

5
16
------ B0〈 〉  + 

B2〈 〉
2

----------  − 
3
2
--- B4〈 〉  + C0〈 〉

− 2 C2〈 〉  + h0〈 〉  + 
g0〈 〉
8

--------- + 
e0〈 〉

32 6⋅
----------- + 

G
32 12 8 6⋅ ⋅ ⋅
-------------------------- − 

ψ0

φ
----- .

Table 1. Nus and Nus, c as functions of αc and φ for square and
hexagonal arrays

φ αc

Nus Nus, c

Square
array

Hexagonal
array

Square
array

Hexagonal
array

0.2 00 2.166 2.311 1.856 2.040
01 2.167 2.311 1.858 2.040
10 2.167 2.311 1.859 2.040
∞ 2.167 2.311 1.859 2.040

0.4 00 2.469 4.443 2.575 3.760
01 3.515 4.444 2.626 3.762
10 3.551 4.445 2.667 3.763
∞ 3.559 4.445 2.675 3.763

0.6 00 3.193 7.584 1.884 5.721
01 3.795 7.584 2.300 5.853
10 4.248 7.763 2.627 5.954
∞ 4.344 7.780 2.699 5.976

Fig. 2. Nusselt numbers, Nus and Nus, c, as functions of φ for square
array of tubes.
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on the ratio of conductivities αc only slightly at moderate values of
φ but that the dependence becomes stronger at high values of φ. We
also note that Nusselt numbers for hexagonal arrays are greater than
those for square arrays at the same φ. The different Nusselt num-
bers for two arrays come from the configuration difference. Six neigh-
boring tubes near a tube at origin are placed at equal distance from
the tube at origin in hexagonal array while the tube at the origin in
the square array is surrounded by four adjacent tubes and another
four tubes with larger distance from the tube at the origin. The dis-
tance from tube at the origin to the nearest tubes is shorter for the
case of square array at the same area fractions of tubes, and thus it
is expected that heat transfer rate is much reduced for the region
where the distance between the tubes is small.

Figs. 2 and 3 show the numerical results for Nusselt numbers
for αc=∞. Nusselt numbers are seen to increase with the increase
in area fraction at small to moderate area fractions. At small φ, the
heat must diffuse a greater distance into the shell side fluid, and this
increases ∆Ts. Interestingly, the Nusselt number seems to go through
a maximum at very high φ. The solid lines in these figures repre-
sent the predictions of an asymptotic analysis and dashed lines show
the predictions from the cell theory to be described next.

The analysis for small φ is similar to one presented by Hasimoto
[1959] and Sangani and Acrivos [1982] who considered the prob-
lem of determining drag force on spherical particles. This analysis
yields the following results for Nusselt numbers for square and hex-
agonal arrays:

(55)

(56)

where

(57)

Here, the superscript r in S1
r, S2

r and S3
r and their derivatives denote

the regular part of these functions at r=0. Their values for square
and hexagonal arrays are listed in Table 2.

In addition to the asymptotic analysis for small area fractions of
tubes, we also compare the results of exact calculations with the pre-
dictions obtained using a cell theory [Happel, 1959], which is more
appropriate for periodic arrays than effective-medium theory. In
this theory, the periodic unit cell is replaced by a fluid cell of outer
radius R=φ−1/2 and inner radius unity. The fluid velocity is given by

(58)

The constants are determined by using the boundary conditions us=
0 at r=1 and ∂us/∂r=0 at r=R, and the condition that the average
velocity of the fluid in the cell equals 1/(1−φ). This yields

(59)

and G=4φA0.
The temperatures for the shell and tube side fluids are given by 

for r>1 (60)

for r<1. (61)
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 Fig. 3. Nusselt numbers, Nus and Nus, c, as functions of φ for hex-
agonal array of tubes.

Table 2. S1
r, S2

r, S3
r and their derivatives at r=0 as functions of φ for

square and hexagonal arrays

n Square array Hexagonal array

∂1
n
S1

r
0 −logφ−1.4763 −logφ−1.4975
2 2φ 2φ
4 3.83314φ2 0
6 0 29.4765φ3

8 440.392φ4 0
∂1

nS2
r 0 −0.1527/φ −0.1465/φ

4 0.7018φ 1.5φ
∂1

nS3
r 0 0.1465×10−3/φ2 −8.35×10−4/φ2
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The constants B0 and C0 are determined by using the conditions of
continuity of temperature and flux at r=1. The condition of no flux
at r=R is automatically satisfied. The average temperatures of the
fluids, and hence the Nusselt numbers, can be determined once these
two constants are determined. The results for the Nusselt numbers
are given below.

(62)

(63)

Figs. 2 and 3 compare the predictions of the cell theory with the
exact results for Nusselt numbers. The cell theory results are gen-
erally in better agreement with those for hexagonal arrays than for
square arrays. This agreement results from the observation that hex-
agonal arrays of tubes are geometrically closer to the cell model
than the square arrays are, as shown in Fig. 1. In all cases, how-
ever, the results obtained from the low φ analysis yield more ac-
curate results than those obtained using the cell theory. Since the
asymptotic analysis for low φ uses asymptotic expressions for spa-
tially periodic functions S1

r, S2
r and S3

r and their derivatives that di-
rectly give velocity and temperature field while the cell theory em-
ploys a simple model consisting of a tube and encapsulating cell, it
is seen that the asymptotic analysis shows agreement with numeri-
cal simulations for wider range of area fractions of tubes than the
cell theory does.

CONCLUSION

We determined Nusselt numbers for shell side longitudinal flow
along the axes of tubes in square and hexagonal arrays. The shell
side Nusselt numbers, which are related to the inverse of average
temperature difference between shell side and tube wall, are com-
puted based on two kinds of average temperatures, i.e., spatial av-
erage and mixing-cup temperature. Nusselt numbers with mixing-
cup temperature are smaller than those based on spatial average tem-
perature, because the difference between the temperatures of shell
side and tube wall increases with the distance from the tube wall as
does fluid velocity by which mixing-cup temperature is weighted.
The shell side Nusselt numbers for hexagonal arrays are larger than
those for square arrays, saying hexagonal arrays are more efficient
for convective heat transfer on the shell side. The Nusselt numbers
of shell side count on the ratio of thermal conductivities of fluids in

the tube and shell side. At small area fractions of tubes the depen-
dence on the conductivity ratio is weak but it becomes stronger at
high area fractions of tubes.

Numerical results for Nusselt numbers are compared with those
by a cell theory. At small area fractions of tubes, the cell theory agrees
quite well with the numerical results. At larger area fractions, the
cell theory gives better estimates for hexagonal arrays. An asymptotic
analysis for small area fractions is also performed and shown to
give more accurate results than does the cell theory for both square
and hexagonal arrays.
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APPENDIX

1. Derivatives of Singular Parts of S1, S2, and S3
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2. Formulas for Determining the Coefficients of Regular Terms
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a : radius of tubes
cp : specific heat of the shell side fluid
cpt : specific heat of the tube side fluid
Ds : area occupied by the shell side fluid
G : pressure gradient non-dimensionalized by µU/a2 in axial

direction of tubes
hoverall : overall heat transfer coefficient
k : thermal conductivity of the shell fluid
Nuoverall : overall Nusselt number
Nus : shell side Nusselt number
Nut : tube side Nusselt number
Pe : Peclet number
r : radial distance from the center of the tube at origin
Q : rate of heat transfer per tube per unit length of the exchanger
Ts : temperature of shell side fluid
Tt : temperature of tube side fluid
<Ts> : spatial average temperature of shell side fluid
∆Toverall : difference between the average temperatures of the fluid

on the tube and shell side
U : superficial velocity of the fluid on the shell side
us : velocity of the shell-side fluid non-dimensionalized by U
ut : velocity of the tube-side fluid non-dimensionalized by U
xα : position vector of the center of tube α
xL : coordinates (position vector) of the lattice points of the array
αc : ratio of thermal conductivity of tube-side fluid to that of

shell-side fluid
δ : Dirac’s delta function
φ : area fraction of the tubes
ρ : density of the shell fluid
ρt : density of the tube side fluid
τ : unit cell area non-dimensionalized by a2

µ : viscosity of fluid
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