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Abstract−The algorithms for calculation of densities from Sanchez-Lacombe (S-L) and group-contribution lattice-

fluid (GCLF) equations of state have been put forward, respectively. From the S-L equation of state the relationship

between the equation characteristic parameters and critical properties was deduced, and the influence of molecular

weight of the polymers on critical properties was investigated. However, for the GCLF equation of state, it was sur-

prising to find that there as many as four roots were found at a saturation temperature and pressure for gases, while

still two roots above the critical temperature. For polymers, only two roots could be found. So the formerly accepted

consistency between the magnitude of the density and vapor or liquid phase is not applicable yet. A way about how

to identify the root and corresponding phase was suggested.
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INTRODUCTION

The gas solubility and the effects of dissolved gases on the phys-

ical properties of a polymer at rubbery or molten state, such as swell-

ing volume, are important in optimal design and process control of

polymer production because the permeation rate is a function of

the gas diffusion coefficient and solubility [Garg et al., 1994]. Even

when measuring the solubility by means of magnetic suspension

balance (MSB) method, and correlating the solubility data of poly-

mer-gas systems, the densities of the individual component and the

mixture must be estimated. Especially, in recent years the use of

polymers as the solvents of distillation processes has received in-

creasing attention [Lei et al., 2003, 2005; Li et al., 2005]. But no

thermodynamic model has been used to describe the phase equilib-

rium of polymer-gas systems. However, the familiar cubic equations

of state such as van der Waals, Redlich-Kwong, Peng-Robinson

equations of state, etc. are not suitable for polymer-gas systems [Lee

and Kang, 2005; Serbanovic et al., 2004]. The most commonly used

equations of state (EOS) describing the P-V-T behavior of polymer-

gas systems are the Sanchez-Lacombe (S-L) [Sanchez and Lacombe,

1976, 1978] and group-contribution lattice-fluid (GCLF) [Byun and

Choi, 2004; High and Danner, 1990; Peng et al., 2001] both of which

are based on lattice-fluid models in which a mean field approxima-

tion is used to determine the number of configurations available to

a system of N molecules each of which occupies r sites and N0 va-

cant sites (holes). In this approximation, firstly, random mixing of

the r sites with each other and with the vacant sites is assumed. Then,

local nonrandomness is considered by adding extra parameters to

account for molecular interaction.

Since the S-L and GCLF equations of state are of the form of

transcendental equations, the calculation of densities (or molar vol-

umes) is more complicated than that of common cubic equations

of state which, however, are only suitable for low molecular weight

compounds. It is known that cubic equations of state can be trans-

formed into cubic polynomials with respect to molar volume. Unfor-

tunately, even for these simple forms we often get into trouble in

solving them using the traditional Newton-Raphson method because

unreasonable densities (or molar volumes) are obtained, let alone

S-L and GCLF equations of state. As we know, most of the equa-

tions of state are of the property of multiple peaks, and the Newton-

Raphson method is only valid for solving local extremum. Thus,

the converged results strongly depend on the initial values. The ap-

propriate initial values are sometimes in a very narrow range at high

pressure. In order to find all of the meaningful roots, various initial

values should be set by trial and error by hand. For a one-stage equi-

librium calculation, it may be possible to discard unmeaningful roots

immediately. But for multi-stage equilibrium calculation, this would

not be feasible. However, to date no computation methods for solv-

ing the S-L and GCLF equations of state are readily available in

the references. Therefore, one has to look for a new algorithm for

solving equations of state.

CALCULATION FOR THE S-L EQUATION OF STATE

The S-L equation of state is given by

(1)

(2)

where ,  and  are the reduced pressure, density and tempera-

ture, respectively; P*, ρ* and T* are characteristic parameters of the

S-L equation of state either for pure components or for mixtures

(only the mixing and combing rules need to be incorporated).
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In the case of the reduced density  as variable, Eq. (1) becomes

(3)

Deriving Eq. (3) with respect to ,

(4)

For the Newton-Raphson method,

(5)

which might lead to undesirable solutions if directly used. But in

another way we can investigate the solution configuration by locat-

ing the extremum points satisfying that

(6)

The roots of Eq. (6) are

(7)

and

(8)

Evidently,

(9)

from which one can conclude that  and  have the same sign,

provided that 

Thus, an algorithm for solving S-L equation of state to obtain

the vapor and liquid densities is proposed (see the block diagram

Fig. 1).

In addition, we can go a further step to explore some interesting

phenomena on the basis of the above analysis:

1. For polymers, due to enormous molecular weights, r→∞. In

other words, ∆≥0 and →0 ( →0 corresponding to the vapor

phase). This means that the vapor pressure of polymers can be ne-

glected.

2. According to the S-L equation of state, the P-V-T behavior of

long polymers does not depend on their molecular weight.

3. If  (which is equivalent to ( /

)Tc=0 and ( / )Tc=0), then T=Tc. Therefore, the critical tem-

perature, density and pressure are obtained as follows:

(10)

(11)

(12)

Eqs. (10)-(12) construct a bridge between the characteristic param-

eters of S-L equation of state (P*, ρ* and T*) and critical properties

(Tc, ρc and Pc). In particular, this can be used to determine the critical

properties of polymers, which, otherwise, cannot be done by well-

known prediction methods, e.g., the Joback method [Poling et al.,

2001].

Figs. 2 through 4 illustrate the influence of molecular weight of

polypropylene (PP) and polystyrene (PS) on critical properties (Tc,

ρc and Pc). The critical pressure, Pc, is so minute that it is approxi-

mately equal to zero as the molecular weight increases to some ex-

tent; with increasing the molecular weight, the critical density ρc de-
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Fig. 1. Algorithm for solving S-L equation of state to obtain the
vapor and liquid densities.

Fig. 2. Influence of the molecular weight of PP and PS on the crit-
ical pressure P

c
.



104 C. Wang and Z. Lei

January, 2006

creases but the critical temperature Tc increases; however, the higher

the molecular weight, the slower the change of ρc and Tc. In contrast

to the low value of Pc, Tc is very high, above 1,000 K for PP and

PS.

CALCULATION FOR THE GCLF EQUATION

OF STATE

The GCLF equation of state is established based on the Panay-

iotou-Vera EOS, and is of the form:

(13)

where ,  and  are the reduced pressure, temperature and molar

volume, respectively, defined by

(14)

and

(15)

zq=(z−2)r+2 (16)

z=10, R=8.314 J mol−1 K−1, νh=9.75×10−3 m3 kmol−1.

where q is the interaction surface area parameter, r the number of

lattice sites occupied by a molecule, z the coordination number, R

the universal gas constant, νh the volume of a lattice site, and P*, T*

and ν* referred to as scaling parameters.

This equation of state contains two adjustable parameters, molec-

ular interaction energy ε* and molecular reference volume ν*, that

are suitable for either pure components or mixtures (only the mix-

ing and combing rules need to be incorporated). Once these two

parameters are known, all of the remaining parameters in Eq. (13)

can then be determined from Eqs. (14)-(16) with respect to reduced

volume at a given temperature and pressure. In contrast to the S-L

equation of state, here it is more convenient to search for the roots

using reduced volume instead of reduced density since Eq. (13) is

formulated with respect to reduced volume.

Ethane and polypropylene (PP) are selected as the representatives

of gases and polymers, respectively. The equation parameters come

from Lee and Danner [1996]. Figs. 3-5 illustrate the isotherms of

ethane and polypropylene (PP). It can be seen that:

1. From the isotherm of ethane at 200 K shown in Fig. 5, four

roots corresponding to the saturated vapor pressure are found: points

A ( =1.10), B ( =5.25), C ( =141.05) and D ( =−2.0×10−7). Thus,

the question arises, which root corresponds to which phase? Com-

parison with the results coming from the website (NIST data bank):

http://webbook.nist.gov/chemistry/form-ser.html shows that the root

with the highest density (point A) corresponds to the liquid phase,
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Fig. 3. Influence of the molecular weight of PP and PS on the crit-
ical density ρ

c
.

Fig. 4. Influence of the molecular weight of PP and PS on the crit-
ical temperature T

c
.

Fig. 5. 200 K isotherm of ethane, calculated with the GCLF equa-
tion of state: (a) in the positive direction of ; (b) in the neg-
ative direction of ; the dashed line represents P=saturated
vapor pressure (0.2176 MPa) at 200 K; =1/ .
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and the third one (point C) to the gas phase, while the other two

solutions (points B and D) with no physical meaning. Therefore, in

this case the formerly accepted opinion that the lowest root belongs

to the vapor phase and the highest to the liquid phase is no longer

tenable.

2. From the isotherm of ethane at 400 K (above critical point)

shown in Fig. 6, two roots are found at a given positive pressure.

Evidently, the solution with the highest density (in the positive direc-

tion of ) is associated with the supercritical fluid phase, while the

remaining root is negative and has no physical meaning.

3. From the isotherm of polypropylene (PP) at 400 K shown in

Fig. 7, two roots are also found at a given positive pressure. It should

also be mentioned that the P-V-T behaviour of polymers is inde-

pendent of molecular weight in terms of the GCLF equation of state.

Thus, an algorithm for solving the GCLF equation of state to ob-

tain the vapor and liquid densities is proposed:

1. Rearrange Eq. (13), and it becomes

(17)

Deriving Eq. (17) with respect to ,

(18)

That is,

(19)

where 

where 

Eq. (19) is a cubic equation and thus Deiters’ method [Deiters,

2002] can be adopted. It is thought that the CPU velocity of Deiters’

method is almost twice faster than that of Cardano’s method with-

out loss of accuracy. Herein, Deiters’ method is attached in the ap-

pendix and interested readers can refer to it.

2. Evaluate the Discriminant

(20)

where 

If d≥0, go to step 3; otherwise, there are three different real roots

that can be found from Eq. (19), ,  and . Taking account of

the discontinuous points in Eq. (17), =0−δ and =1+δ (δ is a

very small positive number arbitrarily given beforehand), the whole

solution space is divided into six regions: (−∞, ), ( , ), ( ,

), ( , ), ( , ) and ( , +∞) after sorting the sequence of ,

, ,  and  from the low to high values. For the convenience

of numerical calculation, −∞ and +∞ may be replaced by big neg-
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Fig. 6. 400 K isotherm of ethane, calculated with the GCLF equa-
tion of state: (a) in the positive direction of ; (b) in the neg-
ative direction of ; =1/ . 
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Fig. 7. 400 K isotherm of polypropylene (PP), calculated with the
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ative and positive numbers. In each region, for instance, ( , ),

judge whether f( )f( )<0 or not. If no, stop searching in this re-

gion; if yes, search the root by the Newton-Raphson method. In

this way all of the roots in Eq. (13) will be found.

Since our purpose is to obtain the vapor and liquid densities from

the physical insight, only two regions, ( , ) and ( , +∞), need

to be emphasized so as to shorten the run time and exclude unrea-

sonable solutions. The liquid density lies in the region of ( , ),

the vapor density in the region of ( , +∞).

3. If d≥0, for polymers there are two different real roots that can

be found from Eq. (19), while for gases two different real roots at

T=Tc and one root at T>Tc. Under this condition, only the densities

of liquid phase for polymers and of supercritical phase for gases

are of concern. However, initial values for the Newton-Raphson

method should be selected with caution. For polymers the initial

value of  should be very close to unity because the extremum in

the positive direction of  approaches unity as shown in Fig. 7. Di-

vergence will occur if the initial value is on the right side of the ex-

tremum in the positive direction of . For gases the only require-

ment for the initial value is that >1.

CONCLUSION

Although the S-L and GCLF equations of state are commonly

used for describing the P-V-T behaviour of polymer-gas systems,

the problem about how to solve them was not discussed before. Since

the S-L and GCLF equations of state are of the form of transcen-

dental equations, the calculation of densities is more complicated

than that of common cubic equations of state which are of the form

of simple cubic polynomial equation. Moreover, some unusual phe-

nomenon can arise from these equations of state.

From the S-L equation of state the relationship between the equa-

tion characteristic parameters and critical properties was deduced,

and the influence of molecular weight of the polymers on critical

properties was investigated. As we know, critical properties are very

important in estimating many thermodynamic properties such as

molar volumes, thermal conductivity, diffusion coefficient, etc. There-

fore, it is possible that the critical properties of polymers may be

applied in this estimation, which leads to the range of thermodynamic

equations to be extended to the systems containing polymers.

However, for GCLF equation of state, physically unreasonable

solutions may appear. It is surprising to find that there are as many

as four roots found at a saturation temperature and pressure for gases,

while still two roots above critical temperature. For polymers, only

two roots can be found. So the formerly accepted consistency be-

tween the magnitude of the density and vapor or liquid phase is not

applicable yet.
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APPENDIX: DEITERS’ ALGORITHMS FOR SOLVING 

CUBIC EQUATIONS

Given is a polynomial equation with real coefficients ai:

a3x
3+a2x

2+a1x+a0=0 with a3≠0

1. Divide by a3 to obtain the normalized form

g(x)=x3+b2x
2+b1x+b0=0 with 

g'(x)=3x2+2b2x+b1, g''(x)=6x+2b2.

2. Determine an interval containing all real roots:

−r≤xk≤+r with r=1+max(|bi|)

3. Select an initial value from the interval boundaries:

where xinfl=−1/3b2 is the location of the inflection point. This choice

ensures that no extremum lies between the initial value and the nearest

root.

4. Iterate of the first root by Kepler’s method:

As no inflection points or extrema are lying between the initial value

and the nearest root, as ensured by the previous step, convergence

is guaranteed.

5. Perform a deflation (division of the normalized cubic polyno-

mial by a linear factor containing the first root, x1):

with c2=1, c1=c2x1+b2, c0=c1x1+b1

6. Find the roots (if any) of the quadratic polynomial h(x) analyt-

ically.

NOMENCLATURE

M : molecular weight [kg/kmol]

P : pressure [Pa]

P* : characteristic pressure [Pa]

: reduced pressure [dimensionless]

Pc : critical pressure [Pa]

q : effective chain length or surface area parameter [dimension-

less]

r : number of lattice sites [dimensionless]

R : gas constant [kJ/(kmol K)]

T : temperature [K]

T* : characteristic temperature [K]

: reduced temperature [dimensionless]

Tc : critical temperature [K]

ν : molar volume [m3/kmol]

ν * : reference volume [m3/kmol]

: reduced volume [dimensionless]

νh : volume of a lattice site [m3/kmol]

z : coordination number [dimensionless]

Greek Letters

ε * : molecular interaction energy [kJ/kmol]

θ : molecular surface fraction [dimensionless]
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ρ : density [kg/m3]

ρ * : characteristic density [kg/m3]

: reduced density [dimensionless]

ρc : critical density [kg/m3]
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