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Abstract−A one-dimensional discrete-sectional model has been developed to simulate particle growth in aerosol

reactors. Two sets of differential equations for volume and surface area, respectively, were solved simultaneously to

determine the size distributions of agglomerates and primary particles. The surface area equations were derived in such

a way that the coagulation integrals calculated for the volume equations could be used for the surface area equations

as well, which is new in this model. The model was applied to a production of TiO2 particles by oxidation of titanium

tetrachloride. Model predictions were compared with experimental data and those of a two-dimensional sectional mod-

el. Good agreement was shown in calculated particle size distributions between the present model and the two-dimen-

sional model, which is more rigorous but demands a large amount of computer time and memory. Compared to experi-

mental data, the primary particle size calculated by the model was more sensitive to the variation of reactor temperature.
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INTRODUCTION

Aerosol reactors, in which small particles suspended in gases are

formed by chemical reaction, have been used to produce a variety

of particles for different applications. Carbon black, silica and titania

are well-known examples. Initially, the aerosol precursor is converted

by chemical reaction to condensable product molecules. The con-

densable molecules self-nucleate to form a cloud of stable nuclei that

grow subsequently by collision to larger particles. The particle size

distribution at a time can be represented by the general dynamic

equation (GDE), in discrete or continuous form [Friedlander, 1977].

The discrete GDE, while rigorously valid, is impractical because

of the huge demands on computer time and memory. The continu-

ous GDE is more tractable but cannot represent the particle growth

where discrete size effects are important.

A discrete-continuous model was proposed later; the discrete rep-

resentation is used up to a certain size past which the particle size

distribution is represented as continuous [Gelbard and Seinfeld, 1979].

The discrete-continuous model still requires an impractically large

amount of computer time for a system in which the particle size

varies over orders of magnitude. By dividing the continuous size

domain into finite sections, the discrete-continuous model was ex-

tended to the discrete-sectional model that reduced the computational

load considerably [Okuyama et al., 1986; Wu and Flagan, 1988;

Landgrebe and Pratsinis, 1990]. In these discrete-sectional models,

however, particles were assumed to coalesce instantaneously on

collision to form spherical particles, although in aerosol reactors

fractal-like agglomerates composed of many primary particles are

often formed due to incomplete coalescence.

The concept of a finite rate of coalescence for neighboring pri-

mary particles comprising an agglomerate was first introduced by

Koch and Friedlander [1990]. They proposed a simple law by which

the surface area of an agglomerate decreases with time by sinter-

ing, in proportion to the difference between instantaneous surface

area and the area of the completely fused sphere of equal volume.

Xiong and Pratsinis [1993a] incorporated the sintering law into a sec-

tional model to study the growth of primary particles due to sinter-

ing. Their model was two-dimensional with particle volume and

area as coordinates, and required enormous computation time to

calculate the quadruple integrals for coagulation and sintering coeffi-

cients. Simpler one-dimensional sectional models comparable to the

two dimensional model were reported later by Tsantilis and Pratsinis

[2000] and Jeong and Choi [2001]. The two models differ in the

method of approximating the particle size distribution in a section.

In the model of Tsantilis and Pratsinis, a representative size was as-

sumed for all the particles in a section, while in the model of Jeong

and Choi, the size distribution was assumed to be constant at the

mean value determined so that the number of particles in the sec-

tion can be conserved. Two sets of differential equations were set

up: one for the volume and the other for the surface area. By solving

the equations simultaneously, the volume and the area of each sec-

tion were obtained, from which average primary particle size in the

section was determined. The problem with these sectional models is

that the cluster dynamics cannot be properly taken into consideration.

In the present work, a one-dimensional discrete-sectional model

was developed. The volume and area equations were used to deter-

mine primary particle size, as in the Jeong and Choi’s sectional mod-

el. However, it is new in that the surface area equations were de-

rived in a different way so that the coagulation integrals calculated

for the volume equations could be used as well by the area equa-

tions, thereby reducing computation time and memory. Another

difference is that the interactions between small discrete particles

or molecular clusters and agglomerates were taken into account. The

small clusters, on collision with an agglomerate, were assumed to

coalesce instantaneously on the primary particles.

The present model was applied to a production of TiO2 particles

by oxidation of titanium tetrachloride. Model predictions were com-
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pared with experimental data and those by the two-dimensional mod-

el by Xiong and Pratsinis [1993b].

MODEL DERIVATION

Fig. 1 shows the generation and growth of particles by nucle-

ation, coagulation and coalescence in an aerosol reactor. The rate of

change of particle numbers with respect to time and particle size can

be represented by the GDE also called as the Population Balance

Equation (PBE) [Friedlander, 1977] as follows:

(1)

The first term of the left-hand side (LHS) is the rate of change of

total number of particles in the particle volume from v to v+dv. The

second LHS term is the loss or gain of number of particles by con-

densation at a rate G. The third LHS term is the rate of formation

of new particles of critical volume v* at a rate of I. The two right-

hand-side (RHS) terms are the gain and loss of particles by coagu-

lation, respectively, in the particle volume from v to v+dv.

By applying the discrete-sectional method to the GDE, the rate

of change of volume and surface area of discrete particles or parti-

cles in a section can be represented as ordinary differential equa-

tions. The equations for volume are similar to those used in previous

models, but the equations for surface area include our own idea to

share the collision integrals calculated for the volume equations.

Fig. 2 illustrates the discrete and sectional regimes. In the discrete

regime, particles are assumed to be spherical. In the sectional regime,

the particles are either spherical or in agglomerated form depend-

ing on operating conditions. The agglomerates form if the temper-

ature is not high enough for complete coalescence of particles on

collision.

1. Volume Equations

The rate of change of total volume of monomers is represented by

(2)

where Vd1 is the volume of monomers, I is the nucleation rate of

monomer, vm is the monomer volume, Vdj is the volume of j-mers

(particles consisting of j molecules),  is the coagulation coeffi-

cient for the monomers and the j-mers, Vsk is the volume of all the

particles in the k
th
 section and  is the coagulation integral for the

monomers and the particles in the k
th
 section. It is shown in Tables 1,

2 and 3 how the coagulation coefficients for discrete particles and

the coagulation integrals for agglomerates are calculated. The first

RHS term of Eq. (2) is the generation rate of Vd1 by nucleation. The

second and third RHS terms account for the loss of Vd1 by coagu-

lation of monomers with all discrete particles and agglomerates in

sections, respectively.

A product monomer was assumed to be a nucleus. This assump-

tion has been used for materials like TiO2 and SiO2 whose vapor

pressures are extremely low [Ulrich, 1971]. The nucleation rate, I,

can be calculated by the equation, I=krc
n, where kr is the rate con-

stant, c is the concentration of precursor and n is the reaction order.

The population balance for the volume of i-mers, Vdi, (i=2 to

imax) is

(3)

The first RHS term is the production rate of Vdi by coagulation of

smaller discrete particles, while the second and third RHS terms

are the loss of Vdi by coagulation of i-mers with all discrete particles

and agglomerates in sections, respectively.

∂n

∂t
------ + 

∂ Gn( )
∂v

-------------- − I v*( ) v − v*( )δ

= 
1

2
--- β v − u u,( )n v − u t,( )n u t,( )du − n v t,( ) β v u,( )n u t,( )du

0

  ∝

∫
0

v

∫

dVd1

dt
----------- = Ivm − Vd1 β 1 j,

2DD
Vdj − Vd1 β 1 k,

3DS
Vsk

k=1

m

∑
j=1

imax

∑

β
 1 j,

2DD

β
 1 k,

3DS

dVdi

dt
---------- = 

1

2
--- β j i−j,

1DD
VdjVd i−j( ) − Vdi β i j,

2DD
Vdj − Vdi β i k,

3DS
Vsk

k=1

m

∑
j=1

imax

∑
j=1

i−1

∑

Fig. 1. Particle growth mechanism in aerosol reactors.

Fig. 2. Illustration of discrete and sectional regimes. Ndi and n(u, t)
represent the number of i-mers per unit volume of gas in
the discrete-regime and the number distribution function
for particles of volume u in the sectional regime, respectively.

Table 1. Discrete-discrete coagulation coefficients

[2≤i≤imax] [1≤j≤i−1]

Coefficient for coagulation of a j-mer and a (i− j)-mer to produce i-mer.

[1≤i≤imax] [1≤j≤imax]

Coefficient for coagulation of a i-mer and a j-mer.

[1≤i≤imax] [1≤j≤imax] [1≤k≤m]

Coefficient for coagulation of an i-mer and a j-mer to produce an agglomerate in the k
th

 section.

βj i−j,

 1DD β jvm i − j( )vm,{ } ivm[ ]

jvm( ) i − j( )vm{ }
------------------------------------------------

βi j,

 2DD β ivm jvm,( )

jvm( )
------------------------

βi j k, ,

 3DD θ vk−1 ivm + jvm vk≤ ≤[ ]β ivm jvm,( )
ivm( ) jvm( )

-------------------------------------------------------------------------
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The balance of volume in the first section, Vs1, is

(4)

The first RHS term is the production rate of Vs1 by coagulation of

two discrete particles. The second and third RHS terms are the loss

and production rates, respectively, of Vs1 by discrete particle-agglom-

erate coagulation. The fourth RHS term is the loss of Vs1 by coagula-

tion of two first section agglomerates. The last term is the loss of by

coagulation of first section agglomerates with larger section agglom-

erates.

Finally, the balance of volume in the k
th
 section (k=2 to m), Vsk, is

dVs1

dt
---------- = 

1

2
--- VdiVdjβ

 

i j 1, ,

3DD
ivm + jvm( ) − Vs1 Vdiβ

 

i 1,

2DS
 + Vs1 Vdiβ

 

i 1,

4DS

i=1

imax

∑
i=1

imax

∑
j=1

imax

∑
i=1

imax

∑

− 
1

2
---Vs1Vs1β1

 3SS
 − Vs1 Vsiβi 1,

 4SS

i=2

m

∑

Table 2. Section-Section coagulation integrals

[1≤i≤k−1] [1≤j≤k−1] [2≤k≤m]

Coagulation integral for an agglomerate produced in the k
th

 section by coagulation of two smaller section agglomerates, 

one in the i
th

 section and the other in the j
th

 section.

[1≤i≤k−1] [2≤k≤m]

Coagulation integral for an agglomerate removed from the k
th

 section by coagulation of a k
th

 section agglomerate and a 

smaller i
th

 section agglomerate.

[1≤k≤m]

Coagulation integral for an agglomerate removed from the k
th

 section by coagulation of two k
th

 section agglomerates.

[k+1≤i≤m] [1≤k≤m]

Coagulation integral for an agglomerate removed from the k
th

 section by coagulation of a k
th

 section agglomerate and a 

bigger i
th

 section agglomerate.

[1≤i≤k−1] [2≤k≤m]

Coagulation integral for an agglomerate produced in the k
th

 section by coagulation of a k
th

 section agglomerate and a 

smaller i
th

 section agglomerate.

βi j k, ,

 1SS

βi j k, ,

 1SS1

βi j k, ,

 1SS2

θ vk−1 u + v vk< <[ ]β u v,( ) u + v( )dvdu

uv vi − vi−1( ) vj − vj−1( )
-----------------------------------------------------------------------------------

vj−1

vj

∫vi−1

vi

∫

θ vk−1 u + v vk< <[ ]β u v,( )

v vj − vj−1( ) vi − vi−1( )
--------------------------------------------------------dvdu

vj−1

vj

∫vi−1

vi

∫

θ vk−1 u + v vk< <[ ]β u v,( )

u vj − vj−1( ) vi − vi−1( )
--------------------------------------------------------dvdu

vj−1

vj

∫vi−1

vi

∫

βi j k, ,

 1SS
 = βi j k, ,

 1SS1

+ βi j k, ,

 1SS2

βi k,

 2SS θ u + v vk>[ ]β u v,( )

u vi − vi−1( ) vk − vk−1( )
---------------------------------------------dvdu

vk−1

vk

∫vi−1

vi

∫

βk

 3SS θ u + v vk>[ ]β u v,( ) u + v( )

uv vk − vk−1( )
2

-----------------------------------------------------------dvdu
vk−1

vk

∫vk−1

vk

∫

βi k,

 4SS β u v,( )

u vi − vi−1( ) vk − vk−1( )
---------------------------------------------dvdu

vk−1

vk

∫vi−1

vi

∫

βi k,

 5SS θ u + v vk<[ ]β u v,( )

v vi − vi−1( ) vk − vk−1( )
---------------------------------------------dvdu

vk−1

vk

∫vi−1

vi

∫

Table 3. Discrete-section coagulation integrals

Vsk [1≤ i≤ imax] [1≤i≤k−1] [2≤k≤m]

Coagulation integral for an agglomerate produced in the k
th

 section by coagulation of a smaller j
th

 section agglomerate

and an i-mer.

[1≤ i≤ imax] [1≤k≤m]

Coagulation integral for an agglomerate removed from the k
th

 section by coagulation of a k
th

 section agglomerate and

an i-mer.

[1≤ i≤ imax] [1≤k≤m]

Coagulation integral for an cluster (discrete particle, i-mer) removed from the i
th

 discrete section by coagulation of an

i-mer and a k
th

 section agglomerate.

[1≤ i≤ imax] [1≤k≤m]

Coagulation integral for an agglomerate produced in the k
th

 section by coagulation of a k
th

 section agglomerate and an

i-mer.

θ vk−1 ivm + u vk< <[ ]β ivm u,( ) 1+ ivm/u( )
2/3

ivm( ) vj − vj−1( )
--------------------------------------------------------------------------------------------du

vk−1

vk

∫

βi k,

 2DS θ ivm + u vk>[ ]β ivm u,( )

ivm vk − vk−1( )
---------------------------------------------------du

vk−1

vk

∫

βi k,

 3DS β ivm u,( )du

u vk − vk−1( )
--------------------------

vk−1

vk

∫

βi k,

 4ADS θ ivm + u vk<[ ]β ivm u,( ) 1+ ivm/u( )
2/3

 −1{ }

ivm vk − vk−1( )
---------------------------------------------------------------------------------------------du

vk−1

vk

∫
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(5)

The first RHS term is the production rate of Vsk by coagulation of

discrete particles with smaller section agglomerates. The second

RHS term is the production rate of Vsk by coagulation of two smaller

section agglomerates. The third and fourth RHS terms account for

the loss of Vsk by coagulation of the k
th
 section agglomerates with

discrete particles and smaller section agglomerates, respectively. The

fifth and sixth RHS terms are the production rate of Vsk by coagula-

tion of the k
th
 section agglomerates with discrete particles and smaller

section agglomerates, respectively. The seventh RHS term is the

loss rate of Vsk by coagulation between two k
th
 section agglomerates.

The last term is the loss rate of Vsk by coagulation of the k
th
 section

agglomerates with larger section agglomerates.

2. Surface Area Equations

The discrete particles are assumed to be spherical and the surface

area and the diameter of an i-mer (dpi) can be determined simply

from the volume (vpi) by (6vpi/π)1/3. However, the surface area of

the particles in a section depends not only on the volume but also

on the number of primary particles. In the present model, it is as-

sumed that the number of primary particles composing an agglom-

erate varies, but the primary particles in a section are of the same

size, as shown in Fig. 2.

The volume, v, and the surface area, a, of an agglomerate in the

k
th
 section can be represented, respectively, by

v=npkvpk (6)

a=npkapk (7)

where npk is the number of primary-particles in the agglomerate, vpk

is the primary-particle volume and apk is the primary-particle surface

area in the k
th
 section.

Similarly, the total volume, Vsk, and surface area, Ask, in the k
th

section are

Vsk=Npkvpk (8)

Ask=Npkapk (9)

where Npk is the total number of primary particles in the k
th
 section.

From Eqs. (6), (7), (8) and (9)

(10)

By using Eq. (10), the surface area equations were derived in such

a way as to share the coagulation integrals calculated for the vol-

ume equations. It is demonstrated how the share is possible, for an

example: the loss rate of surface area from the k
th
 section by coagula-

tion of k
th
 section particles with smaller section particles. By this

coagulation, the rate of surface area change in the k
th
 section can be

represented by

(11)

θ[u+v>vk] equals to 1 if (u+v) is greater than, the upper limit of

volume section k, and 0, otherwise. β(u, v) is the collision coeffi-

cient for two agglomerates of volume u in the i
th
 section and v in

the k
th
 section, n(u, t) and n(v, t) are the number density functions

of the two colliding agglomerates, respectively, and a is the surface

area of the agglomerate removed from the k
th
 section by the colli-

sion.

The number density functions were assumed to be constant

throughout a section as follows [Gelbard et al., 1980]:

(12)

(13)

By substituting Eqs. (10), (12) and (13) into Eq. (11)

(14)

The double integral in Eq. (14) is the same as that of corresponding

volume-change equation,  in Table 1 of Landgrebe and Pratsinis

[1990]. The coagulation integral,  calculated for the volume

equation can thus be shared by the surface area equation. The proofs

of share for the other integrals are shown elsewhere [Moniruzzaman,

2005].

The variation with time of the surface area of particles in the first

section, As1, is represented, using the coagulation integrals calcu-

lated for the volume equation, by

(15)

The first RHS term is the production rate of As1 by coagulation be-

tween discrete particles. The second and the third RHS terms are

the loss and gain of As1 by coagulation of first section agglomer-

ates with discrete particles. The fourth RHS term is the loss of As1

by coagulation between two first section agglomerates. The fifth

RHS term is the loss of As1 by coagulation of first section agglom-

erates with larger section agglomerates. The sixth RHS term is the

loss rate of As1 by sintering of neighboring primary-particles in an

agglomerate. The derivation of the sintering term is shown in the

appendix.

The balance of surface area in the k
th
 section, Ask, (k=2 to m) is

(16)

The first RHS term is the production rate by coagulation of smaller

section agglomerates with discrete particles. The second RHS term

dVsk

dt
---------- = VdiVsjβi j k, ,

 1DS
 + 

1

2
--- VsiVsj βi j k, ,

 1SS1+ βi j k, ,

 1SS2( )
j=1

k−1

∑
i=1

k−1

∑
j=1

k−1

∑
i=1

imax

∑

− Vsk Vdiβi k,

 2DS
 − Vsk Vsiβi k,

 2SS
 + Vsk Vdiβi k,

 4DS

i=1

imax

∑
i=1

k−1

∑
i=1

imax

∑

+ Vsk Vsiβi k,

 5SS
 − 

1

2
---VskVskβk

 3SS
 − Vsk Vsiβi k,

 4SS

i=k+1

m

∑
i=1

k−1

∑

a = 
Ask

Vsk

-------v

dAsk

dt
----------

β
 2SS

 = θ u + v vk>[ ]β u v,( )n v t,( )n u t,( ) a( )dvdu
vk−1

vk

∫vi−1

vi

∫
i=1

k−1

∑

n u t,( ) = 
Vsi

u vi − vi−1( )
------------------------

n v t,( ) = 
Vsk

v vk − vk−1( )
-------------------------

dAsk

dt
----------

β
 2SS

 = Ask Vsi

θ u + v vk>[ ]β u v,( )
u vi − vi−1( ) vk − vk−1( )
----------------------------------------------dvdu

k−1

vk

∫
i−1

vi

∫
i=1

k−1

∑

β
2

i k, ,

β
2

i k, ,

dAs1

dt
---------- = 

1

2
--- VdiVdjβ

 

i j 1, ,

3DD
36π( )1/3

ivm + jvm( )2/3[ ]
j=1

imax

∑
i=1

imax

∑

− As1 Vdiβ
 

i 1,

2DS
 + As1 Vdiβ

 

i 1,

4DS

i=1

imax

∑
i=1

imax

∑  − 
1

2
---As1Vs1β1

 3SS

− As1 Vsiβi 1,

 4SS
 − 

1

τ1

---- As1− Vs1

3 36π( )1/3

v1

2/3

 − v0

2/3[ ]
2 v1− v0[ ]

----------------------------------------------
i=2

m

∑

dAsk

dt
---------- = VdiAsjβi j k, ,

 1DS
 + 

1

2
--- AsiVsjβi j k, ,

 1SS1+ 
1

2
--- AsjVsiβi j k, ,

 1SS2

j=1

k−1

∑
i=1

k−1

∑
j=1

k−1

∑
i=1

k−1

∑
j=1

k−1

∑
i=1

imax

∑

− Ask Vdiβi k,

 2DS
 − Ask Vsiβi k,

 2SS
 + Ask Vdiβi k,

 4DS

i=1

imax

∑
i=1

k−1

∑
i=1

imax

∑

+ Vsk Asiβi k,

 5SS
 − 

1

2
---AskVskβk

 3SS
 − Ask Vsiβi k,

 4SS

i=k+1

m

∑
i=1

k−1

∑

− 
1

τk

---- Ask − Vsk

3 36π( )1/3

vk

2/3

 − vk−1

2/3[ ]
2 vk− vk−1[ ]

----------------------------------------------
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is the production rate by coagulation between two smaller section

agglomerates. The third and fourth RHS terms are the loss rates by

coagulation of the k
th
 section agglomerates with discrete particles

and smaller section agglomerates, respectively. The fifth and sixth

RHS terms are the production rates by coagulation of k
th
 section

agglomerates with discrete particles and smaller section agglomer-

ates, respectively. The seventh RHS term is the loss by coagulation

between two k
th
 section agglomerates. The eighth RHS term is the

loss by coagulation of the k
th
 section agglomerates with larger sec-

tion agglomerates. The ninth RHS term is the loss rate by sintering.

3. Numerical Method and Simulation Conditions

Eqs. (2), (3), (4), (5), (15) and (16) were solved simultaneously

for Vsk and Ask by using an ordinary differential-equation solver

“ODEINT” [Press et al., 1992]. From the Vsk and Ask, the primary

particle diameter, dpk, of the k
th
 section was calculated as follows:

dpk=6Vsk/Ask (17)

The particle number concentration in the k
th
 section, Nsk, was de-

termined by the following equation [Landgrebe and Pratsinis, 1990]:

Nsk=(Vsk∆vk)ln(vk/vk−1) (18)

Details of the FORTRAN code for this model are shown elsewhere

[Moniruzzaman, 2005]. The section spacing factor or the ratio of the

volume range of a section to that of the section smaller by one unit,

fs, was set at 2.05. The number of discrete sizes, imax, was 20. The

number of discrete sizes greater than 18 was reported to be enough

[Wu and Flagan, 1988]. With a spacing factor of 2.05, the number

of discrete sizes at 20, the molecular volume of TiO2 at 3.11×10−29 m3

and the upper limit of the last section at 5.23×10−19 m3 in volume

or 1,000 nm in diameter for a sphere of equal volume, the number

of sections, m, were determined at 29.

The coagulation coefficient, β, for two colliding agglomerates

was used as follows [Rogak and Flagan, 1992]:

β=2π(dci+dcj)(Di+Dj)fD (19)

where dci and dcj are the collision diameters, Di and Dj are the dif-

fusion coefficients for the two agglomerates, and fD is a correction

factor to cover the entire size region from the free molecular to the

continuum region [Rogak and Flagan, 1992]. The collision diame-

ter of a spherical particle is its diameter and the collision diameter

of an agglomerate composed of primary particles was determined

from the equation proposed by Matsoukas and Friedlander [1991],

with the mass fractal dimension at 1.8.

For the TiCl4 oxidation, a first order reaction was assumed with

the rate constant as follows [Pratsinis et al., 1990]:

(20)

The sintering time for titania used in the surface area equations

was obtained from the equation proposed by Kobata et al. [1991].

(21)

where dpk is the primary-particle diameter in the k
th section.

The entire time span was divided into a number of time steps.

The coagulation integrals and the sintering time were updated every

time step by using the primary particle diameter at the previous time

step. The effects of the number of time steps on the accuracy are

discussed later.

RESULTS AND DISCUSSION

The present model was compared to the model by Langrebe and

Pratsinis [1990] for a system where a collision between two particles

led to a complete coalescence forming a larger spherical particle.

This particular case requires the solution of volume equations only

since the surface area can be determined simply from the volume.

Fig. 3 shows a comparison in particle volume distribution at a resi-

dence time long enough to meet the requirement for the self-preserv-

ing size distribution. The dimensionless number concentration and

the dimensionless particle volume in the figure represent n(v, t) /

NT and v/ , respectively, where n(v, t) is the number density func-

tion of particles, NT is the total number concentration and  is the

number average particle volume. The distribution predicted by the

present model is comparable to that of the model by Landgrebe and

Pratsinis [1990] but deviates from the precise solution, represented

by the solid-dotted curve, of the general dynamic equation given

earlier [Graham and Robinson, 1976]. The assumption of the size

distribution in a section by a constant value may be a reason for the

deviation from the exact size distribution. The deviation was slightly

smaller with the present model than with the model by Landgrebe

and Pratsinis [1990].

Fractal-like agglomerates, instead of spherical particles, are formed

when particle coalescence is slow compared to collision. The pri-

mary particles composing an agglomerate then grow by sintering

between neighboring primary-particles. In this situation, the volume

and surface area equations must be solved simultaneously. The co-

agulation coefficients for the agglomerates and the sintering time

vary with the size of primary particles, as described earlier and are

updated every time step by using the primary-particle diameter at

the previous time step. The step size would therefore affect the ac-

curacy. The step size was varied from 0.0005 to 0.005 s to study its

effect on the average primary particle size, with the TiCl4 concen-

kr = 8.26 10
4 − 

88.8 kJ( )
RT

--------------------⎝ ⎠
⎛ ⎞exp×

τk = 7.4 10
16

Tdpk

4 3.1 10
4×

T
-------------------⎝ ⎠
⎛ ⎞×

v

v

v

Fig. 3. Comparison of the present model with the v-based model of
Landgrebe and Pratsinis [1990] and the ‘Normalized Lai’s
self-preserving distribution of Graham and Robinson [1976]
(Simulation conditions are for Fig. 3(a) of Landgrebe and
Pratsinis [1990]).
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tration at 1.35×10−5 mol/L, the pressure at 1 atm and the reactor tem-

perature at 1,300 K. The result is shown in Fig. 4. Virtually no dif-

ference is seen in primary particle diameter between the two step

sizes of 0.0005 and 0.001 s. With the step-size increased to 0.0025 s

the diameter showed a deviation from those with smaller step sizes,

in the range of residence time between 0.002 and 0.01 s. A further

increase of the step size to 0.005 s made the deviation persist for a

longer period up to the residence time of 0.1 s. At residence times

longer than 0.1 s, however, the diameter was insensitive to the step

size ranging from 0.0005 to 0.005 s. The computation time must

increase with decreasing the step size, and an optimum step size is

required to be determined before a simulation is made. The com-

putation time with a personal computer (Pentium IV, 2.8 GHz) was

a few hours, varying with simulation conditions.

The sintering law used in the present model was derived for two

spheres of equal diameter, and may be effective for the sintering of

particles within an agglomerate. The effectiveness of the law may,

however, be of doubt for a pair differing in size considerably, particu-

larly for a pair resulting from collision of a discrete particle and an

agglomerate. The discrete particle is so small that the coalescence

may occur instantaneously, rather than at the finite rate calculated

by the sintering law. Fig. 5 shows a comparison in primary particle

size between the instantaneous and the finite coalescences, at a reac-

tor temperature of 1,300 K and concentration of 1.35×10−5 mol/L.

In the early stage up to a residence time of about 0.01 s the differ-

ence was undetectable, probably because the primary particles were

very small and nearly instantaneously coalesced. Thereafter, an ap-

preciable gap in particle size evolved, the particle size being larger

with the instantaneous coalescence. After the discrete particles were

exhausted, the gap narrowed because of the higher sintering rate of the

smaller primary-particles. Eventually, the two sizes became nearly the

same at a time of 1.0 s. As the temperature was increased to 1,500 K,

the gap was minimal over the whole range of temperature. In the

analysis that follows we assume the instantaneous coalescence.

Over a reactor temperature range of 1,300 to 1,700 K, the aver-

age primary particle size was compared in Fig. 6 among the present

model, the two-dimensional sectional model by Xiong and Pratsi-

nis [1993a] and experimental data [Xiong and Pratsinis, 1993b].

Compared to experimental data the present model underestimated

the size at temperatures lower than 1,450 K and overestimated at

higher temperatures. The experimental data indicate that the titania

sintering rate is not as strong a function of temperature as the theory

predicts. The two models gave similar temperature dependency of

the size, but the primary particle size obtained by the present model

was larger than that of the two dimensional model over the entire

range of temperature. The dynamics of small clusters could not be

properly accounted for in the 2D model [Xiong and Pratsinis, 1993a].

This may be a reason for the discrepancy between the two models.

Fig. 7 shows the number distributions of the agglomerates vary-

ing in size, produced at a temperature of 1,700 K. The agglomerate

size is expressed as surface area equivalent diameter, which is de-

fined as the diameter of a sphere whose surface area is the same as

the surface area of an agglomerate. The number fraction of the par-

ticles in the size range between any two diameters is equal to the

area under the curve. As shown in the figure, the surface area equiv-

Fig. 5. Comparison of average primary particle size between in-
stantaneous and finite coalescence (TiCl4 concentration: 1.35
×10−5 mol/L; Reactor temperature: 1,300 K).

Fig. 6. Comparison of average primary particle size by present
model with 2D model and experimental data (TiCl4 con-
centration: 1.35×10−5 mol/L; Reactor residence time: 1.6 s).

Fig. 4. Effect of time-step size on primary particle size. ∆t indi-
cates time-step size (TiCl4 concentration: 1.35×10−5 mol/L;
Reactor temperature: 1,300 K).
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alent diameter was smaller by model prediction. Between two ag-

glomerates of equal volume, the surface area equivalent diameter

should be smaller for the agglomerate composed of larger primary

particles. This explains why the surface area equivalent diameter

predicted by the model was smaller, while the primary particle size,

as shown in Fig. 6, was larger than experimental data. The size dis-

tribution by the present model is closer to experimental data than

that by the 2D model. The inclusion of the discrete regime in the

present model may be a reason for the distribution closer to experi-

mental data, compared to the 2D model.

CONCLUSION

A one-dimensional discrete-sectional model for particle growth

in aerosol reactors was developed and tested for a production of

TiO2 particles by oxidation of titanium tetrachloride. The present

model gave particle size distributions comparable to those by the

two-dimensional model which is more rigorous but demands a larger

amount of computer time and memory. Compared to experimental

data, the primary particle size calculated by the model was more

sensitive to the variation of reactor temperature, implying that the

activation energy for sintering used in the model may be too high,

or an important factor other than the coagulation, condensation and

sintering may be missing in the modeling of particle growth. The

assumption of instantaneous coalescence for the discrete-particle

agglomerate collision led to a significant increase in primary parti-

cle size for reactor residence time within a range. Outside the range

the instantaneous coalescence had little effect on primary particle

size. The present model could not predict experimental data suffi-

ciently and there is an obvious need for improvement, particularly

in the particle growth by sintering.
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APPENDIX: Derivation of the last RHS terms

in Eqs. (15) and (16)

The surface area of an agglomerate of volume in the k
th
 section

can be given according to Eq. (10)

(A1)

The surface area of a completely coalesced sphere having the same

volume, v, of the agglomerate is

as=(36π)1/3(v)2/3 (A2)

The rate of decrease in surface area from an agglomerate of volume

v by sintering can be given as [Koch and Friedlander, 1991]

(A3)

The rate of decrease in surface area by sintering, dAsk/dt|sin, for the

k
th
 section in the volume range of vk−1 to vk:

(A4)

From Eqs. (A3) and (A4),

(A5)

From Eqs. (A1) , (A2) and (A5),

(A6)

From Eqs. (13) and (A6),

(A7)

(A8)

where [1≤k≤m]

NOMENCLATURE

a : surface area of an agglomerate [m2]

apk : primary-particle surface area in the k
th
 section [m2]

as : surface area of a sphere having the volume of an agglomer-

ate [m2]

Ask : total surface area of all particles in the k
th
 section per unit

volume of gas [m2 m−3]
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Fig. 7. Comparison of the present model in particle size distribu-
tion with experimental data [Xiong and Pratsinis, 1993b]
and the model by Xiong and Pratsinis [1993a] (TiCl4 con-
centration: 1.35×10−5 mol/L; Reactor temperature: 1,300 K).
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c : reactant concentration [molecules m−3]

Di : diffusion coefficient for the agglomerate of volume in the

i
th
 section [m2 s−1]

dci : collision diameter of an agglomerate in the i
th
 section [m]

dpk : primary-particle diameter in the k
th
 section [m]

ds : surface area equivalent diameter of agglomerate [m]

Df : mass fractal dimension

fD : correction factor given in Eq. (19)

fs : section spacing factor

G : growth rate of particle by condensation [m3 s−1]

I : nucleation rate of product monomer [molecules m−3]

imax : maximum number of discrete sections

kr : reaction rate constant [s−1]

m : total number of sections

n0 : reaction order

npk : number of primary particles in an agglomerate in the k
th
 sec-

tion

Npk : total number of primary particles in the k
th
 section per unit

volume of gas [m−3]

n(u, t) : size distribution function for particle volume [m−6]

Ndi : total number of i-mers per unit volume of gas [m−3]

Nsk : total number of particles in the k
th
 section per unit volume

of gas [m−3]

NT : total number of particles per unit volume of gas [m−3]

R : gas constant [J mol−1 K−1]

t : time [s]

T : temperature [K]

u, v : volume of a particle or in sectional regime [m3]

v* : volume of a critical nucleus [m3]

vm : monomer volume [m3]

: number average particle volume [m3]

vk−1 : lower limit of the particle volume of the k
th
 section [m3]

vk : upper limit of the particle volume of the k
th
 section [m3]

vpi : volume of an i-mer [m3]

vpk : primary particle volume in the k
th
 section [m3]

Vdi : total volume of all the i-mers per unit volume of gas [m3 m−3]

Vsk : total volume of all particles in the kth section per unit volume

of gas [m3 m−3]

Greek Letters

β : collision frequency function [m3 s−1]

θ : step function

τ : characteristic coalescence time [s]

τk : characteristic coalescence time in the k
th
 section [s]

ψ : dimensionless number concentration [=n(v, t) /NT]

η : dimensionless particle volume [=v/ ]
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