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Abstract−The onset of Taylor-Görtler instability induced by an impulsively started rotating cylinder with constant

shear stress was analyzed by using propagation theory based on linear theory and momentary instability concept. It is

well-known that the primary transient Couette flow is laminar but secondary motion sets in when the inner cylinder

velocity exceeds a certain critical value. The dimensionless critical time τc to mark the onset of instability is presented

here as a function of the modified Taylor number T. For the deep-pool case of small τ, since the inner cylinder velocity

increases as Vi∝  in the present impulsive shear system, the present system is more stable than impulsive started case

(Vi=constant). Based on the present τc and the Foster’s [1969] comment, the manifest stability guideline is suggested.
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INTRODUCTION

The stability of time-dependent Couette flow has been exten-

sively studied theoretically and experimentally. The related flow

driven by centrifugal forces occurs in a wide range of scientific and

engineering fields, such as polymer processing and Bridgman crys-

tal growth systems [Schweizer and Scriven, 1983; Yeckel and Derby,

2000]. The onset of secondary motion when an inner cylinder is

impulsively accelerated with constant angular velocity was investi-

gated experimentally by Chen and Christensen [1967], Kirchner

and Chen [1970], Liu [1971] and Kasagi and Hirata [1975]. And,

a related stability analysis has been conducted by using the amplifi-

cation theory [Chen and Kirchner, 1971; Kasagi and Hirata, 1975],

the frozen-time model [Chen and Kirchner, 1971], maximum-Tay-

lor-number criterion [Tan and Thorpe, 2003] and propagation the-

ory [Kim et al., 2004; Kim and Choi, 2004, 2005]. Among these,

the amplification theory and the frozen-time model are quite popu-

lar. The amplification theory is the initial value approach where the

randomly-selected initial disturbances are introduced into the lin-

earized transient Navier-Stokes equation, and the growth of these

disturbances is tracked by integration of the initial value problem.

The onset time of secondary motion is defined as the time when

the disturbance kinetic energy grows 103-fold its initial value. In

the frozen-time model, the basic velocity field is frozen at a time tc,

and the critical Taylor number is obtained by solving the linearized

Navier-Stokes equation which is frozen at a given time.

Recently, Tan and Thorpe [2003] suggested a simple instability

analysis, so-called the maximum-Taylor-number criterion. In this

model, a newly defined transient-Taylor number is introduced and

the critical conditions are determined by letting the maximum value

of this transient-Taylor number to the well-known steady state cri-

tical Rayleigh number by considering the similarity between the

time-dependent Bénard-Rayleigh problem and the time-dependent

Taylor problem. Since it is well-known that the governing equation

and the boundary conditions for these two problems are very simi-

lar and even approximately identical [Chandrasekhar, 1961], the

above-mentioned methods which were originally devised for the

Bénard-Rayleigh problem have been extended into the Taylor prob-

lem by taking advantage of the similarities.

Another model to analyze the time-dependent convective insta-

bility problem is the propagation theory [Kim et al., 2002, 2004,

2005]. This theory has dealt with the onset of thermal instabilities

in the initially motionless fluid layers heated rapidly from below,

which assumes that at t=tc infinitesimal temperature disturbances

are propagated mainly within the thermal penetration depth ∆T. In

this method the length scales in disturbance variables and the stabil-

ity parameters are rescaled with thermal penetration depth ∆T. In a

usual deep-pool conduction system of ∆T∝ , the most impor-

tant parameter becomes the time-dependent Rayleigh number, which

is yielded by replacing the length scale in the Rayleigh number which

is yielded by replacing the length scale in the Rayleigh number with

∆T. Here α is the thermal diffusivity. The resulting stability criteria

have compared well with experimental data of various systems such

as solidification [Hwang and Choi, 1996], Marangoni-Bénard con-

vection [Kang and Choi, 1997; Kang et al., 2000] and Rayleigh-

Bénard convection in porous media [Yoon and Choi, 1989].

Here we will try to analyze the time-dependent Taylor problem in

the flow induced by an impulsive shear by employing the propagation

theory and the frozen-time model. In this case, the rotation of an inner

cylinder is driven by an imposed constant wall shear stress, and the

inner cylinder rotates with angular velocity proportional to the square

root of time for a certain time. This system corresponding to the

Rayleigh-Bénard system heated from below with constant heat flux.

The resulting theoretical results will be compared with each other, and

the effect of rotating history on the onset of vortices will be studied.

STABILITY ANALYSIS

1. Governing Equations

t

αt
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The system considered here is a Newtonian fluid confined be-

tween the two concentric cylinders of radii Ri and Ro(>Ri). Let the

axis of inner cylinder be along the z' axis of a cylindrical coordi-

nate system (r', θ, z'). At the time t=0, the inner cylinder starts to

rotate by an imposed constant shear stress τw and outer cylinder is

kept stationary. A schematic diagram of the basic system is shown

in Fig. 1. The governing equations of the present flow field is ex-

pressed by

(1)

(2)

where U, P, ν and ρ represent the velocity vector, the dynamic pres-

sure, the kinematic viscosity and the density, respectively.

The important parameters to describe the present system are the

Taylor number T, the Reynolds number Re and the radius ratio η

defined as

where Vr=τwd/(ρν) and d=(Ro−Ri). Here Vi is the inner cylinder

velocity and has the relation of Vr  for the deep-pool case of small

τ. In case of a very slow rotating speed the basic velocity profile

finally becomes time-independent and Taylor vortices appear at T=

Tc.

But for an impulsively started system of large T, the secondary

motion onsets before the basic flow field becomes fully-developed

and time-independent, and therefore in this transient period the cri-

tical time to mark the onset of Taylor-Görtler vortices is important

problem. For the present system, the basic velocity field for devel-

oping Couette flow is represented for the case of constant physical

properties in dimensionless form:

(3)

with the following initial and boundary conditions,

(4)

where τ=ν t/d2, v0=V0/Vr, D=∂/∂r, D*=∂/∂r+1/r and r=r'/d.

The exact solutions of Eqs. (3) and (4) can be obtained by using

the Laplace transform as [Carslaw and Jaeger, 1959];

(5a)

where J and Y are Bessel functions and ξ=r(1−η)/η. The function

Q is

(5b)

The λn’s are the roots of the equation

(5c)

For the limiting case of small τ the above solution can be reduced

as

(6)

where ζ=y/  and y=(r'−Ri)/d. The present study concerns the

case of η→1, i.e., narrow-gap approximation. For this limiting case,

the gap size d(=Ro−Ri) is small compared to mean radius (Ro+Ri)/

2 and there is no need to distinguish between D*(=∂/∂r+1/r) and

D(=∂/∂r) under this approximation [Chandrasekhar, 1961], i.e., the

effect of curvature can be neglected. Since the above solution does

not work so well for η→1 case, the above basic flow solutions can

be reduced as

(7a)

(7b)

where (τ, y), v0(τ, ζ), µn=(n−1/2)π, ierfc(χ)=1/ exp(−χ2)−χerfc

(χ) and erfc denotes the complementary error function. Furthermore,

for the deep-pool systems of small τ, where the boundary-layer thick-

ness is much smaller than gap size, the above solution can be approxi-

mated as

(8)

and this approximation is adopted for the limiting case of τ→0. A

comparison between the exact solution of Eq. (5) and the approxi-

mate solution of Eq. (8) is given in Fig. 2. As shown in this figure,

Eq. (8) is a good approximation of Eq. (5) for τ<0.05.

The following relation can be obtained by considering the chain

rule for partial derivatives,

(9)
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Fig. 1. Schematic diagram of system considered here.
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where = /  and v0
*=v0/ . The first term in the right column

is negligible with respect to the second term, as shown in Fig. 3.

Therefore, ∂ /∂τ=−(ζ/2τ)(v0
*/∂ζ) is valid for the limiting case of

τ→0, and this relation implies that the base flow has self-similar

characteristics.

2. Stability Equation

The typical disturbances which are observed experimentally are

the axisymmetric ones having the following forms [Chandrasekhar,

1961]:

(10a)

(10b)

where k is the wave number and the primed quantities representing

disturbance amplitudes are a function of r' and t. Under linear theory

the stability equations of amplitude functions are obtained when w'

and p' are eliminated. Under the narrow-gap approximation, where

∂/∂r'+1/r'≈∂/∂r', the resulting dimensionless disturbance equations

are represented by

(11)

(12)

with proper boundary conditions,

(13a)

(13b)

where u=d2u'/(νRi), v=2u'ρν/(τwd) and a=kd. The subscript ‘0’ de-

notes the basic state and a represents the dimensionless vertical wave

number. It should be noted that the radial velocity component u' is

nondimensionalized by νRi/d
2 rather than Vr.

3. Propagation Theory

The propagation theory employed to find the onset time of sec-

ondary motion, i.e., the critical time tc is based on the assumption

that in deep-pool systems of small time the perturbed angular veloc-

ity component V1 is propagated mainly within the hydrodynamic

boundary-layer thickness ∆∝  at the onset time of secondary

flow, and the following scale relations are valid for perturbed quan-

tities from the linearized equations of Eq. (2):

(14)

(15)

from the balance between viscous, inertia and centrifugal terms in

Eq. (2). Now, based on the relation (14), the following amplitude

relation is obtained in dimensionless form:

(16)

where v0~  and δ(∝ ) is the usual dimensionless boundary-

layer thickness. The relation (15) yields:

(17)

where Ta∆ is the Taylor number based on the boundary layer thick-

ness ∆. With increasing T both the onset time tc and corresponding

∆(~ ) become smaller and the characteristic value of Tτ(∆/d)3

i.e. Tτ 5/2 will become a constant.

There are many possible forms of dimensionless amplitude func-

tions of disturbances like

(18)

which satisfy the relation (19). Now, we set (τ, y)=u*(τ, ζ) and

(τ, y)=v*(τ, ζ) as in Eqs. (5) and (6). If disturbance amplitudes

follow the property of the primary flow shown in the relation (8), it

is probable that and also ∂ /∂τ≈−(ζ/(2τ))(∂u*/∂ζ) and ∂ /∂τ≈−

(ζ/(2τ))(∂v*/∂ζ). At this stage the criterion to determine n is neces-

sary. Shen [1961] suggested a momentary instability condition: the

temporal growth rate of the kinetic energy of the perturbation veloc-

ity should exceed that of the basic velocity at the onset condition of

secondary motion. In the present system the dimensionless kinetic

energy is defined as
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Fig. 2. Base flow profiles for the case of η=0.9.

Fig. 3. Comparison of the time derivatives of the primary velocity.
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(19)

where ||·|| denotes the norm. Since there is no basic flow in θ and z'

directions and the condition of |u/v|→0 is valid for τ→0 (see the

relation (16)), the dimensionless kinetic energy can be divided into

the basic one and the perturbed one:

(20)

Then the temporal growth rates of the basic kinetic energy r0 and

the perturbation energy r1 are obtained as

(21)

For the case of n=1/2 the condition of r0=r1 is fulfilled, which will

be discussed later. This condition of r0=r1 is suggested as a mar-

ginal condition like that in Choi et al.’s [2004] Rayleigh-Bénard

problem. By the above scaling reasoning we set u=τ 2u*(ζ) and v=

τ 1/2v*(ζ). For a deep-pool system of small τ, the dimensionless

time τ is related with the time for development of the boundary-

layer thickness, which plays dual roles of time and length. By using

relations (19) and (20) the following self-similar stability equations

are obtained with ∂/∂τ=(−ζ/2τ)D and ∂
2
/∂y2=(1/τ)D

2
 from Eqs. (11)

and (12),

(22)

(23)

where D=d/dζ, a*=a  and v0
*=v0/ . The proper boundary con-

ditions of no-slip are

u*=Du*=Dv*=0 at ζ=0, (24a)

u*=Du*=v*=0 as ζ→∞. (24b)

For a given τ, T* and a* are treated as eigenvalues and the mini-

mum value of T* is found in the plot of T* vs. a* under the principle

of exchange of stabilities. This produces the earliest time tc and its

corresponding wave number ac.

The conventional frozen-time model neglects the terms involv-

ing ∂/∂τ in Eqs. (14) and (15) in amplitude coordinates τ and y. This

results in (D2
−a*2)2u*=v0

*a*2v* and (D2
−a*2)v*=2T*Dv0

*u* instead of

Eqs. (25) and (26). The minimum T-value is obtained for a given

τc.

SOLUTION METHOD

In the present study the stability Eqs. (22)-(24) are solved by em-

ploying the outward shooting scheme. In order to integrate the stabil-

ity equations the proper values of D2v*, D3v* and u* at ζ=0 are as-

sumed for a given a*. Since the stability equations and the bound-

ary conditions are all homogeneous, the value of D2v*(0) can be

assigned arbitrarily and the T*-value is assumed. This procedure

can be understood easily by taking into account characteristics of

the eigenvalue problem. After all the values at ζ=0 are provided,

this eigenvalue problem can be treated numerically.

Integration is performed from the heated surface ζ=0 to a ficti-

tious outer boundary with the fourth order Runge-Kutta-Gill meth-

od. If guessed values of T*, D3v*(0) and u*(0) are correct, v*, Dv* and

u* will vanish at the outer boundary. To improve the initial guesses

the Newton-Raphson iteration is used. When convergence is achieved,

the outer boundary is increased by a predetermined value and the

above procedure is repeated. Since the disturbances decay exponen-

tially outside the boundary-layer thickness, the incremental change

of T* also decays fast with an increase in outer boundary depth. This

behavior enables us to extrapolate the eigenvalue T* to the infinite

depth by using the Shank transform. The results of this procedure

are presented in Fig. 2, as a plot of T* vs. a*. The minimum value

of T*, i.e., Tc
*=128.08 at ac

*=0.96, will mark the onset of vortices. In

the case of the frozen-time model a similar technique is employed

and the characteristic values obtained.

RESULTS AND DISCUSSION

For a single-mode instability the onset time to mark secondary

motion is predicted by propagation theory. Based on the results of

Fig. 2, the critical conditions to mark the onset of secondary motion

are given by

τ
c
=6.97T−2/5 and a

c
=0.36T1/5 τ

c
<0.01, (25)

The above stability condition can be rewritten as a function of Ta:

τ
c
=25.41Ta−2/3 and a

c
=0.19Ta1/3 for τ

c
<0.01, (26)

since Ta=Tτ. This equation is less convenient in predicting τc but it

is more useful for comparison with impulsively started (Vi=constant)

system where the critical conditions are given as [Kim et al., 2004]:

τ
c
=20.05Ta−2/3 and a

c
=0.19Ta1/3 for τ

c
<0.01. (27)

For the case of small τ, since the inner cylinder velocity increases

as Vi∝  in the present impulsive shear case, this system is more

stable than impulsive started case (Vi=constant), even if both cases

are unstable to small amplitude disturbances. The resulting nor-

malized amplitude functions of u* and v* are shown in Fig. 3. It is

shown that v' is propagated mainly within the basic boundary-layer

thickness. For a given T, the fastest growing mode of infinitesimal

disturbances would set in at τ=τc with a=ac. The above equations

show that τc decreases with an increase in T. From distributions of

the basic flow (Eq. (8)) and the perturbation quantities, we can obtain

the following relation:

(28)

The above equation indicates that the propagation theory satisfies

Choi et al.’s [2004] criterion on instability of r1≥r0. In a frozen-time

model, the growth rates of the disturbances are assumed to be zero

and the critical conditions are determined under the assumptions of

r1=0 and r1>>r0. These assumptions are contradictory to each other,

since r0>0 as shown in Eq. (28). So, the frozen-time model seems

to have lost its theoretical background.

Now, the domain of time is extended to τ>0.05 by keeping Eqs.

(22) and (23) and using Eq. (11). In Eq. (27) the infinite upper bound-

ary is replaced with the finite one y=1, i.e., ζ=1/  and in Eq. (25)

and (26) T* and a* are replaced with τc
5/2T and τc

1/2a. Also, in Eq.

(11) τ is fixed as τc but ζ is maintained. Since τ is the fixed parameter,
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the resulting stability equations are a function of ζ only and the spirit

of relations (19) and (20) is still alive. For a given τc the minimum

T-value and its corresponding wave number ac are obtained. The

results are summarized in Fig. 4, wherein those obtained from the

conventional frozen-time model are also shown. For τ<0.01 the

predictions from the propagation theory are the same as those in

deep-pool systems (Eq. (28)). For large τc they approach the criti-

cal value of Tc=1200 and ac=2.52 since the basic flow velocity pro-

file is linear in the steady state. This critical value of Tc=1200 is

smaller than that of Tac=1695 for the constant velocity case, and

this trend is similar to the Rayleigh-Bénard problem where Raq, c=

1296 is smaller than Rac=1708. Here Raq is the Rayleigh number

based on the heat flux and corresponds to the present Taylor num-

ber based on the wall shear stress. It is known that for small τ the

frozen-time model yields the lower bounds of τc and the terms in-

volving ∂/∂τ in Eqs. (25) and (26) stabilize the system.

Recently Tan and Thorpe [2003] suggested a simple instability

analysis. They defined transient Taylor number Tat as

(29)

and assumed that at the detection time of manifest convection the

following relation is maintained, based on Eq. (8):

Maximum of(Ta
t
)=817, (30)

which is satisfied by ymax=1.9349 . This results in T*=175.91.

This relation corresponds to the system of η→1. In the R-B sys-

tem heated from below with constant heat flux, the value 817 cor-

responds to the critical Rayleigh number for the rigid-free bound-

aries. Tan and Thorpe’s [2003] predictions agree with the present

τc-values. It is interesting that common relation is involved in the

above results: T*=constant.

Foster [1969] commented that with correct dimensional relations

the relation of τm≈4τc would be kept for a large Rayleigh-number

R-B problem. This means that a fastest growing mode of instabili-

ties, which set in at τ=τc, will grow with time until manifest convec-

tion is detected near the whole bottom boundary at τ=τm. For the

impulsively started system, Chen and Kirchner [1971] and Kim and

Choi [2005] reported a similar trend based on the amplification the-

Tat = 

d
3

y
5

dV0/dy( )2

ν
2

Ri

---------------------------------,

τ

Fig. 4. Marginal stability curve under the principle of exchange of
stabilities for small time of τ

c
→0 from the propagation

theory.

Fig. 5. Amplitude profiles at τ=τ
c
 for small time of τ

c
→0 from the

propagation theory.

Fig. 6. Stability conditions: (a) critical time and (b) critical wave
number.
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ory and the propagation theory, respectively. From the Foster’s com-

ment (τo 4τc), the following relation can be obtained:

τ
m
=4τ

c
=101.64Ta−2/3 for τ

c
<0.01. (31)

based on the results of Eq. (26). Since the inner cylinder velocity

increases continuously during the growth period (τc≤τ≤τm), the detec-

tion time τm is obtained from Eq. (31) by replacing Ta with Tτm:

τ
m
=16.00T−2/5 for τ

m
≤0.01. (32)

This procedure is applied in transient diffusive systems [Kim et al.,

2005], successfully. A similar trend is expected for τc>0.01. It seems

evident that convective motion is very weak during tc≤ t≤ tm since

the related momentum transport is well represented by the diffu-

sion state. This growth period is described in Fig. 7.

CONCLUSIONS

The onset of secondary motion in the flow by a suddenly started

rotating cylinder with constant shear has been analyzed by using

linear stability theory. Propagation theory has been employed to

predict the critical time to mark the onset of convective instability.

Also, the stability guidelines and the critical Taylor number Tc have

been suggested. The present impulsive shear system is more stable

than the impulsive started system, even if both systems are unsta-

ble when the inner cylinder velocity exceeds a certain value. It seems

that the propagation theory is a powerful method to predict the stabil-

ity criteria reasonably well in the simple systems, hydrodynamic or

thermal, of which the basic states involve transient diffusion pro-

cesses.
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