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Abstract−Cubic spline collocation method with the far-side boundary condition has been proposed as a numerical

method for the convection-dominant convection-diffusion problem. It has been shown that the proposed method can

give highly accurate result for very large Peclet number problems by effectively suppressing the undesired ripple that

is commonly observed in ordinary orthogonal collocation method.
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INTRODUCTION

A variety of numerical methods have been presented for the solu-

tion of transient convection-diffusion problems. The governing equa-

tion given by a second-order partial differential equation (PDE) is

solved numerically using two different types of techniques. In the

method of lines (MOL) [1], the space dimensions are discretized

by a method such as finite difference method (FDM), finite ele-

ment method (FEM), orthogonal collocation method (OCM), and

others to obtain a set of ordinary differential equations (ODE's) in

time. Alternatively, both the space and time dimensions are dis-

cretized to obtain a set of nonlinear algebraic equations. The nu-

merical solution by the MOL can be stiff with time due to the dif-

fusion terms and steep in the spatial direction due to convection [2].

It might produce spurious oscillations in a convection dominant case

due to the difficulty of chasing the steep profile. In this respect, dis-

covering a successful numerical technique for the convection-domi-

nant problem has been considered one of the challenging research

subjects [3]. Special high-resolution FDM's such as essentially non-

oscillatory and total variation diminishing have been suggested and

applied to the convection-dominant problems [4,5]. Also the spline

collocation method has been proposed by Soliman [6] for a static

convection-diffusion problem. The collocation method which is

classified as a method of weighted residuals [7] has several impor-

tant advantages over the other discretization methods for simple

geometry cases. It can provide an accurate solution with a small

number of collocation points, gives continuous solutions, and eas-

ily handles general boundary conditions while still being simple to

program [8]. In addition, the collocation method generates a low-

order ODE model which can be conveniently used for real-time

control and optimization. In spite of these advantages, it is prone to

generate spurious oscillations in the solution for the convection-

dominant case.

The aim of the present study is to propose the cubic spline col-

location method (CSCM) and a new numerical boundary condi-

tion (BC) named far-side BC to improve the performance of the

reduced-order ODE model for a convection-dominant transient con-

vection-diffusion system. In the CSCM, the interpolation function

is given as a concatenation of piecewise cubic polynomials defined

over each subdomain such that the adjacent polynomials satisfy some

smoothness conditions, called cubic spline conditions, at the con-

necting points. Hence, the CSCM provides a much smoother solu-

tion by using multiple cubic splines than the OCM, which approx-

imates a true profile by a single high-order polynomial. The far-side

BC is a finite approximation of the zero-slope condition at infinity,

which is valid for many convection-diffusion problems. This BC

can be easily adopted in the CSCM. The effectiveness of the pro-

posed methods is demonstrated through numerical study.

TRANSIENT DIFFUSION-CONVECTION PROBLEM

We consider the following PDE describing the transient behav-

ior of solute concentration in a one-dimensional adsorption system

such as simulated moving bed (SMB) process:

(1)

where y and q represent the solute concentrations in the bulk and

adsorbent phases, respectively; ε and D denote the overall void frac-

tion of the bed and the diffusion coefficient, respectively; u repre-

sents the linear velocity of the moving phase. Let us assume that y

and q are partitioned according to the following linear adsorption

isotherm:

q=Hy (2)

Substituting Eq. (2) into Eq. (1) and rearranging Eq. (1) using the

dimensionless space coordinates, z /L, where L is the column

length, and dimensionless time  give

(3)

where Pe uL/D denote the Peclet number. The initial and bound-

ary conditions for this problem are usually given as

y(0, z)=yI(z) (4)

y(t, 0)=y0(t) (5)
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(6)

The BC in Eq. (6) needs more contemplation. Nevertheless, it is

generally taken under the assumption that the column is sufficiently

long irrespective of the reality.

CUBIC SPLINE COLLOCATION AND FAR-SIDE 

BOUNDARY CONDITION

1. Cubic Spline Collocation

The idea of the collocation method is to approximate the PDE

solution using a parameterized interpolation function (z; θ(t))

such that the residual of Eq. (3) obtained by substituting y(t, z)

with the interpolation function vanishes at pre-specified collocation

points. In the ordinary OCM, a polynomial in z is used for the

interpolation function and the collocation points are chosen as the

zeros of an orthogonal polynomial. In the OCM, the degree of the

interpolation polynomial increases with the number of collocation

points. This may result in undesirable ripples in the resulting

approximate solution. The CSCM is same as the OCM except that

the cubic spline function is used as the interpolation function. The

cubic spline func- tion is a concatenation of piece-wise cubic poly-

nomials whose derivatives from the zeroth to the second-order are

continuous at the nod- al points where adjacent two piece-wise

cubic polynomials are con- nected. If the domain [0, 1] is divided

into n intervals and the cor- responding nodes are defined as z0=0,

z1, …, zn−1, zn=1, the cubic spline is described as follows:

(7)

where Sk(z)=1 over [zk, zk+1] and 0 otherwise; pk(z) denotes a cubic

polynomial that satisfies

(8)

where the superscript (j) denotes the jth-order derivative. Since the

degree of the piecewise polynomials is limited to three and strong

smoothness conditions are imposed at each node, the cubic spline

is inherently smooth and ripple is suppressed though not completely

eliminated.

Each cubic polynomial has four coefficients. Therefore, when

there are n intervals, we have 4n coefficients to determine. The above

spline condition specifies 3(n−1) relations for the coefficients. Col-

location condition at the n−1 internal points and the BC at two bound-

ary points provide n+1 conditions. Hence, two more conditions are

needed to uniquely determine the cubic polynomials. In this study,

we introduced the following conditions:

(9)

The collocation points may be chosen differently from the nodal

points for the cubic spline. In this study, both points were taken to

be same.

After some straightforward manipulations, the interpolation func-

tion can be parameterized with the output at the collocation points

as follows [9]:

(10)

where M(z) is an (n+1)×1 vector and Y represents [y(t, z0) y(t, z1)

… y(t, zn) ]
T. From the above relation, we have

(11)

The requirement that the residual is zero at the collocation points

leads Eq. (3) to

(12)

Indeed, the above ODE holds only at the internal points (from  z1

to zn−1) while the boundary conditions hold on the boundaries. After

the boundary conditions are applied, Eq. (12) is reduced to

(13)

2. Far-side Boundary Condition

In most convection-diffusion problems, the BC in Eq. (6) is valid

only when the column is long enough or the concerned process is

specially designed for the condition to be enforced. Nevertheless,

the condition has been exclusively adopted for this type of prob-

lems even when the column is not sufficiently long. As shall be seen

later, application of Eq. (6) compels the profile of y to be flat at z=1

and may induce undesirable ripples in the inner region. In fact, a

finite-length column can be considered as a cut of an infinite-length

column. Hence, the physically more correct BC for most convec-

tion-diffusion problems is

 for a sufficiently large zL (14)

For finite difference/element/volume methods, Eq. (14) increases

complexity since the region, (1, zL) should be discretized, too. How-

ever, the collocation method has no problem in adopting the above

condition. For the CSCM, we have

(15)

RESULTS AND DISCUSSION

In Fig. 1, responses of y(t, z) by the regular OCM and CSCM,

and the CSCM with the far-side BC to a step change in y0(t) are

compared for Pe=75. For such a high Peclet number, the true so-

lution represents a simple plug flow profile with minor axial disper-

sion effect. Hence the solution cannot contain any ripples as far as

the BC at z=0 doesn’t changes sinusoidally. The set of ODE’s from

the collocation approximation was solved using the Runge-Kutta

4th-order method (in MATLAB). All the results in the figures were

obtained with n=7. For the regular OCM and CSCM, however, zn=

1 is chosen as a boundary while for the CSCM with the far-side

BC, zn=zL=10 was taken as a boundary. As given in the figure, the

OCM uses the zeros of the nth-order Legendre polynomial as the

collocation points whereas the CSCM’s use the equi-distance points
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over [0, 1] with or without zL as collocation points. The CSCM show

better profiles than the OCM with unrealistic ripples effectively sup-

pressed though not completely. Comparison of the axial profiles

shows that the inherent smoothness of the cubic splines yields such

a result. It can be seen that the far-side BC enhances the perfor-

mance of the numerical model even more.

In Fig. 2, performance of the three different approximations are

compared for Pe=225. It lucidly shows the merits from the CSCM

with the far-side BC. Although y oscillates all through the time by

the very high Peclet number, the CSCM with the far-side BC could

produce most physically correct profiles among the three approxi-

mations.

Existence of oscillatory modes can be determined by the com-

plex eigenvalues in D in Eq. (13). In Table 1, we present the range

of Pe that gives non-oscillatory stable solution when n=5 and 15,

respectively. It can be seen that the CSCM can stand severer con-

vection-dominant problems without oscillation than the OCM. An

interesting result is that the choice of BC does not show any con-

Fig. 1. Response of y(t) to a step change in y0(t) when yI(z)=0 and Pe=75; (a) OCM (b) CSCM with traditional BC in (6) (c) CSCM with
far-side BC in (14).



The use of cubic splines and far-side boundary condition for the collocation solution of a transient convection-diffusion problem 207

Korean J. Chem. Eng.(Vol. 24, No. 2)

spicuous effect on the suppression of oscillation. However, numeri-

cal study has revealed that although the complex eigenvalues begin

to appear with the almost same Pe values, the oscillation develops

more slowly with the far-side BC than with the traditional BC.

An additional interesting result is that the CSCM with the far-

side BC gives numerically stable solution for very large number of

collocation points. With MATLAB coding, the OCM starts to pro-

duce numerically unstable results from n=29 whereas the CSCM

gives stable results for any number of collocation points we have

tested. Fig. 3 shows the result with n=200 by the CSCM with the

BC at zL=10 when Pe=7500.

Finally, to find how accurately can the proposed CSCM with far-

side BC approximate the true solution, we considered the follow-

ing steady state problem:

(16)Pe
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∂y
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------
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Fig. 2. Response of y(t) to a step change in y0(t) when yI(z)=0 and
Pe=225; (a) OCM (b) CSCM with traditional BC in (6) (c)
CSCM with far-side BC in (14).

Table 1. Range of Pe that gives non-oscillatory stable profile

OCM with (6) CSCM with (6) CSCM with (14)

n=50 P
e
≤7.230 P

e
≤18.00 P

e
≤18.00

n=15 P
e
≤11.15 P

e
≤45.24 P

e
≤45.30

Fig. 3. Response of y(t) to a step change in y0(t) for the case of Pe=
7500 when the CSCM with the far-side BC with n=200 is
used.

Fig. 4. Maximum absolute errors of approximate solutions by the
CSCM with far-side BC and the OCM compared with the
analytic solution to Pe(∂y/∂z)−(∂2y/∂z2)−ky=0 with Pe=75.
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In Fig. 4, the maximum absolute errors of the approximate solutions

are compared with the analytic solution y(z)=

The approximate solutions were obtained by the CSCM with far-

side BC and the normal OCM for Pe=75 and k=10 and 50. As can

be observed, the CSCM yields much smaller error than the OCM

and, in addition, decreases the error monotonically with increasing

the number of collocation points while the OCM does not.

CONCLUSIONS

In this paper, a cubic spline collocation method with the far-side

boundary condition has been proposed for numerical solution of

convection-dominant convection-diffusion problem. Numerical study

with a one-dimensional adsorption system shows that the proposed

method represents the very steep concentration profile of the con-

cerned system more correctly by effectively suppressing the unre-

alistic oscillation. The proposed method is useful not only in ob-

taining numerical solutions but also in deriving a reliable reduced-

order model that can be used for real-time optimization and/or con-

trol of a convection-dominant convection-diffusion system such as

simulated moving bed process.
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