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Abstract−For n-by-n multivariable processes, multiloop controllers have n degrees of freedom and hence the n di-

agonal elements of closed-loop transfer functions can be designed to have desired closed-loop responses. Multiloop

controllers having desired closed-loop responses can be considered as an extension of the single-input single-output

internal model control and they can be used as reference controllers. However, computations of such multiloop con-

trollers have not been well developed. The Newton-Raphson method and the iterative sequential loop closing method

can be used, but they can suffer from a divergence problem for some processes. Here, the continuation method is ap-

plied to obtain multiloop control systems with desired closed-loop responses for a robust computation. The multiloop

controllers with desired closed-loop responses can be used to obtain dynamic interaction measures and design multiloop

PID controllers.
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INTRODUCTION

A multiloop control system where multiple single-input single-

output (SISO) controllers are used to control interacting multivari-

able processes is often chosen in the chemical industry because of

its simplicity. For n×n processes, the multiloop control system has

n controllers. Hence, it can be designed to have desired closed-loop

responses between n paired inputs and outputs. As shown later, mul-

tiloop controllers providing desired closed-loop responses are usu-

ally infinite dimensional and hence it is impossible to obtain the

parametric models of transfer functions exactly. Here computational

methods to obtain frequency responses of such multiloop control-

lers are investigated.

The direct synthesis method [1] and internal model control meth-

od [2] design control systems for SISO processes by specifying de-

sired closed-loop responses. They are very simple and, by approxi-

mating them, excellent PID control systems can also be obtained

[2,3]. The proposed controllers having desired closed-loop responses

can be considered as an extension of SISO internal model control-

lers and can be applied to analyze and design multiloop control sys-

tems.

For 2×2 processes, analytic solutions for the multiloop control

systems with desired closed-loop responses are available. For gen-

eral processes, Jung et al. [4] proposed a design method based on

the Newton-Raphson iteration in the frequency domain. However,

the method is complex and suffers from a convergence problem.

The sequential loop closing method [5,6] is one of the systematic

methods for designing a multiloop control system. The method de-

signs each loop sequentially, that is, the first loop is designed for

the first pair of inputs and outputs and it is closed. The second loop

is designed while the first loop has been closed. In this manner, all

loops are designed. Each controller is designed based on the transfer

function between the paired input and output while the former loops

have been closed. Here, by applying the desired closed-loop response

method for each step in the sequential loop closing method and re-

peating the design steps, we can obtain multiloop control systems

with desired closed-loop responses. Simulations show that this iter-

ative sequential loop closing method has better convergence prop-

erty than the Newton-Raphson method for various process mod-

els. However, the method can also suffer from a convergence prob-

lem. To overcome the convergence problem of the above methods,

the continuation method is applied to obtain frequency responses

of multiloop controllers. By fitting frequency responses of the pro-

posed multiloop controllers, practical multiloop PI/PID controllers

can be obtained.

MULTILOOP CONTROL SYSTEMS WITH DESIRED 

CLOSED-LOOP RESPONSES

Consider a multivariable process transfer function:

(1)

where y(s) and u(s) are n output and input vectors, respectively, and

G(s) is a n×n process transfer function matrix. A multiloop con-

troller,

(2)

is designed. The closed-loop transfer function matrix becomes y(s)

y s( ) = G s( )u s( ) = 

g11 s( ) g12 s( ) ... g1n s( )

g21 s( ) g22 s( ) ... g2n s( )
..
. ..

. ... ..
.

gn1 s( ) gn2 s( ) ... gnn s( )

u s( )

C s( ) = 

c1 s( ) 0 ... 0

0 c2 s( ) ... 0
..
. ..

. ... ..
.

0 0 ... cn s( )
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=(I+G(s)C(s))−1G(s)C(s)r(s), where r(s) is the set-point variable.

Since the number of controllers is n, n elements in the closed-loop

transfer function matrix can be designed to be desired ones like

(3)

where θii and ri are the time delay and the relative order in gii(s),

respectively, and λi is a desired closed-loop time constant. The term

of diag(A) means a column vector whose elements are equal to the

diagonal elements of a square matrix A. Eq. (3) is a nonlinear func-

tion for C(s) and hence iterative methods are required to solve.

For a 2×2 process, Eq. (3) is

=h1(s)

=h2(s) (4)

Eq. (4) is quadratic for c1(s) or c2(s). Hence c1(s) and c2(s) have the

square roots of polynomial functions of s and cannot be represented

by rational transfer functions. Frequency responses of c1(jω) or c2(jω)

can be solved analytically.

NEWTON-RAPHSON METHOD AND SEQUENTIAL 

LOOP CLOSING METHOD

To solve the Eq. (3), Jung et al. [4] proposed a method based on

the Newton-Raphson iterations in the frequency domain. They solve

Z(jω)=diag((I+G(jω)C(jω))−1G(jω)C(jω))

Z(jω)=−[h1(jω), h2(jω), …, hn(jω)]
T

=0 (5)

for C(jω) at each frequency ω by the Newton-Raphson method and

obtain PID controllers by fitting C(jω). The method is somewhat

complex and can have a convergence problem for some processes.

The sequential loop closing (SLC) method is one of the well-

known methods to tune the multiloop control systems systemati-

cally [5,6]. The method designs multiloop controllers sequentially.

The first loop is designed for the first pair of inputs and outputs and

it is closed. The second loop is designed while the first loop has

been closed. Since the first loop is closed, the transfer function of the

second pair is changed and hence design of the second loop should

be done with the changed transfer function. In this manner, all loops

are designed. Each controller is designed based on the transfer func-

tion between the paired input and output while former loops have

been closed. Here we iterate the design sequence until converges.

When each loop is designed to have a desired closed-loop response

and the iteration has been converged, multiloop control systems

will have desired closed-loop responses.

Since each loop is designed under all other loops being closed,

an effective transfer function should be obtained. Consider the con-

trol system that the m-th loop is open while all other loops are closed

as in Fig. 1. The transfer function between um and ym under all other

loops closed becomes

ym(s)=pm(s)um(s) (6)

where

pm(s)=em(I+G(s)Am(s)Bm)
−1G(s)Am(s)em

T

Am(s)=diag{c1(s) … cm−1(s) 1 cm+1(s) … cn(s)}

To obtain multiloop control systems with desired closed-loop re-

sponses, a controller at each step such that

(7)

is calculated. Frequency responses of cm(s) can be obtained easily.

If the iteration converges, controllers satisfy Eq. (5). It is remarked

that this sequential loop closing method can find cm(s), a rational

function of s. The order of cm(s) increases as iteration progresses

and hence model reduction is needed at each step.

For 2×2 processes, Eq. (7) becomes

(8a)

(8b)

With initial values of c2(jω)=0, we calculate c1(jω) and c2(jω) from

Eqs. (8a) and (8b) successively. Convergence conditions of this fixed-

point iteration can be derived. However, obtaining tight convergence

condition is as complex as solving equations themselves and, on

diag I + G s( )C s( )( )−1G s( )C s( )( ) = 

h1 s( )

h2 s( )
...

hn s( )

, hi s( ) = 

− θiis( )exp

λis +1( )
r

i

-------------------------

g11 s( )c1 s( ) + g11 s( )g22 s( ) − g12 s( )g21 s( )( )c1 s( )c2 s( )
1+ g11 s( )c1 s( ) + g22 s( )c2 s( ) + g11 s( )g22 s( ) − g12 s( )g21 s( )( )c1 s( )c2 s( )
--------------------------------------------------------------------------------------------------------------------------------------------------------

g22 s( )c2 s( ) + g11 s( )g22 s( ) − g12 s( )g21 s( )( )c1 s( )c2 s( )
1+ g11 s( )c1 s( ) + g22 s( )c2 s( ) + g11 s( )g22 s( ) − g12 s( )g21 s( )( )c1 s( )c2 s( )
--------------------------------------------------------------------------------------------------------------------------------------------------------

Bm = diag 1…1 0 1…1{ }
⎧ ⎨ ⎩ ⎧ ⎨ ⎩
m−1 n−m

em = 0…0 1 0…0{ }
⎧ ⎨ ⎩ ⎧ ⎨ ⎩
m−1 n−m

cm s( ) = 

hm s( )
1− hm s( )
-------------------

1

pm s( )
------------

c1 s( ) = 

h1 s( )
1− h1 s( )
------------------

1

g11 s( ) − 

g12 s( )g21 s( )c2 s( )
1+ g22 s( )c2 s( )

--------------------------------------

--------------------------------------------------------

c2 s( ) = 

h2 s( )
1− h2 s( )
------------------

1

g22 s( ) − 

g12 s( )g21 s( )c1 s( )
1+ g11 s( )c1 s( )

--------------------------------------

--------------------------------------------------------

Fig. 1. Control system with the m-th loop open (a) and its equiva-
lent system (b).
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the other hand, simple conditions are usually too conservative.

CONTINUATION METHOD

To solve the nonlinear problem of Eq. (5), the continuation meth-

od [7] can be applied. For this, we decompose G(s) as (see Fig. 2):

G(s; η)=Gd(s)+ηG0(s) (9)

where Gd(s) and G0(s) are the diagonal and off-diagonal parts of

G(s), respectively. For a G(s; η) and a frequency ω, Eq. (5) becomes

Z(jω; η)=diag((I+G(jω; η)C(jω; η))−1G(jω; η)C(jω; η))

Z(jω; η)=−[h1(jω), h2(jω), …, hn(jω)]
T

=0 (10)

C(jω; η), solution of Eq. (10), is traced from η=0 to 1. When η=0,

G(s; η) is diagonal and we can obtain each element of the control-

ler C(s; η=0) easily by the SISO internal model control method.

By applying the continuation method, we can obtain the controller

C(jω; η) for the process G(jω; η)|η=1=G(jω) at a given frequency

ω.

Continuation method solves

dZ(jω; η)=Θ[dc1, dc2, …, dcn]
T

+ϕdη=0

(11)

To obtain derivatives in Eq. (11), we apply the perturbation tech-

nique. Let η= +ε  and C(jω; η)= (jω; η)+ε (jω; η). The closed-

loop transfer function matrix becomes

[I+G(jω; η)C(jω; η)]−1G(jω; η)C(jω; η)

(12)

where

Terms of order ε in Eq. (12) are linear for (jω; η). To obtain an

explicit equation for (jω; η), we use the relationship [8]

(13)

where ⊗ means the Kronecker product and vec(A) is a vector such

that [a11, a21, …, an1, a12, a22, …, ann]
T

. Removing terms correspond-

ing to zeros, we have

(14)

From Eqs. (12) and (14), we can obtain

(15)

To trace Z(jω; η)=0 with increasing η from 0 to 1 for a given fre-

quency ω, we solve

(16)

Initial value is

i=1, 2, …, n (17)

For a small tracking error, Newton-Raphson correction with the

matrix can also be used [7].

APPLICATIONS OF FREQUENCY RESPONSES

OF MULTILOOP CONTROLLERS

One of the dynamic interaction measures in Lee and Edgar [9]

is defined as

q(λ)

(18)

It means the largest magnitude of difference between the actual closed-

loop transfer function matrix and the desirable closed-loop transfer

Θ = 

∂z1 jω; η( )
∂c1

-------------------------
∂z1 jω; η( )

∂c2

------------------------- ... ∂z1 jω; η( )
∂cn

-------------------------

∂z2 jω; η( )
∂c1

-------------------------
∂z2 jω; η( )

∂c2

------------------------- ... ∂z2 jω; η( )
∂cn

-------------------------

..

. ..
. ... ..

.

∂zn jω; η( )
∂c1

-------------------------
∂zn jω; η( )

∂c2

------------------------- ... ∂zn jω; η( )
∂cn

-------------------------

,

ϕ = 

∂z1 jω; η( )
∂η

-------------------------

∂z2 jω; η( )
∂η

-------------------------

..

.

∂zn jω; η( )
∂η

-------------------------

η η̃ C C̃

= I + G + εG̃ + O ε
2( )( ) C + εC̃ + O ε

2( )( )[ ]
−1

G + εG̃ + O ε
2( )( ) C + εC̃ + O ε

2( )( )

= I + G
 
C[ ]

−1

I − ε GC̃ + G̃C( ) I + G
 
C( )

−1

+ O ε
2( )[ ]

G
 
C + ε GC̃ + G̃C( ) + O ε

2( )[ ]

= H + ε S
 
GC̃S + SG̃C

 
Sη̃[ ] + O ε

2( )

G = Gd jω( ) + ηG0 jω( )

G̃ = G0 jω( )

S = I + G
 
C[ ]

−1

H = I + G
 
C[ ]

−1

G
 
C

C̃

C̃

vec S
 
GC̃S( ) = S

T

S
 
G( )⊗( )vec C̃( )

diag S
 
GC̃S( ) = D

T

S
T

S
 
G( )⊗( )Ddiag C̃( )

D = e1 en+2 e2n+3
… e

n
2, , , ,( ), ek = 0…0 1 0…0[ ]

T

⎧ ⎨ ⎩ ⎧ ⎨ ⎩
k−1 n

2
−k

Θ = D
T

S
T

S
 
G( )⊗( )D

ϕ = diag S
 
G0C 

S( )

d

dη
------

c1 jω; η( )

c2 jω; η( )
..
.

cn jω; η( )

 = − Θ
−1

ϕ

cn jω; η( )η=0 = 

hi jω( )
1− hi jω( )
---------------------

1

gii jω( )
---------------,

=   σMax
ω

lim I + G jω( )C jω( )( )−1G jω( )C jω( ) − 

h1 jω( ) ... 0
.
..

0 ... hn jω( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Max

Fig. 2. Continuation model for designing multiloop control systems.
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function matrix. If q(λ) is small, controller performance will not

differ much from desirable control performance. The dynamic inter-

action measure can be used to solve the pairing problem of deter-

mining the input-output pair with the lowest q(λ). To calculate q(λ),

Lee and Edgar [9] used the controllers of Eq. (17) for simplicity.

However, the controllers of Eq. (17) where interaction terms are

ignored totally are not used in practice and may not be the best choice

to calculate q(λ). The proposed controllers having desired closed

loop responses can be used for q(λ).

Approximating frequency responses of controllers having desired

closed loop responses, multiloop PI/PID controllers can be designed.

The design procedure is as follows.

Step 1: Choose the design parameters, λi's, and 100 logarithmically

equally spaced frequencies between min(1/λi)/10 and 10*max(1/λi).

Step 2: Set ε=0.1 and update C(jω) with initial values of Eq. (17)

until η=1.

Step 3: Approximate ci(jω) by PI or PID controller. For this, the

weighted least squares method as the routine ‘invfreqs’ in MAT-

LAB can be used.

Simulations show that this multiloop PI/PID controller design

method is well comparable with other design methods.

CASE STUDIES

For process models in Luyben [11], frequency responses of mul-

tiloop controllers having desired closed loop responses are com-

puted via the Newton-Raphson method [4], the repeated sequential

loop closing method and the proposed continuation method. The

Newton-Raphson method fails to converge for some 4×4 models.

The sequential loop closing method converges for all the models in

Luyben [11]. However, there may be other processes for which it

fails to converge.

Process 1: Consider the Wood-Berry column model [13]:

Fig. 3 shows step set point responses for controllers with desired

closed-loop response. Since the proposed C(s) is calculated in the

form of frequency responses, we use the FFT method [10] to sim-

ulate step set point responses. We can see that step responses be-

tween paired inputs and outputs are identical to desired closed-loop

responses.

Fig. 4 shows approximations of the proposed controllers by PI

controllers. PI controller parameters for λ=(5, 5) are in Table 1. Fig.

5 shows step set point responses for PI controllers obtained by fitting

the proposed controllers with desired closed-loop responses. Fig. 4

indicates that approximations by PI controllers are not so accurate.

G s( ) = 

12.8 − s( )exp

16.7s +1
------------------------------

−18.9 − 3s( )exp

21s +1
-------------------------------------

6.6 − 7s( )exp

10.9s +1
------------------------------

−19.4 − 3s( )exp

14.4s +1
-------------------------------------

Fig. 3. Step set point responses of the proposed control systems for
the Wood-Berry column model.

Fig. 4. Frequency responses of the proposed controllers (solid line)
and their approximate PI controllers (dashed line) for the
Wood-Berry column model (a: for the case of λ=(7, 7), b:
for the case of λ=(3.5, 3.5)).

Table 1. Tuning results for the Wood-Berry and Ogunnaike-Ray column models

Process BLT method Proposed PI controller

Wood-Berry

column

Kc={0.375, −0.075}

τI={8.29, 23.6}

λ={5, 5}

Kc={0.1896, −0.099}

τI={7.2283, 7.6794}

Ogunnaike-Ray

column

Kc={1.51, −0.295, 2.63}

τI={16.4, 18, 6.61}

λ={15, 15, 5}

Kc={0.2327, −0.0378, 1.1851}

τI={1.3769, 0.9057, 4.1179}
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However, control performance is far better than that of control sys-

tems designed by the biggest log-modulus tuning method [BLT; 11].

Process 2: Consider the Ogunnaike-Ray column model [12].

G(s)

Frequency responses of the proposed controllers for λ=(15, 15,

5) are calculated by the continuation method and their approximate

PI controller parameters are in Table 1. Fig. 6 shows step set point

responses for PI controllers obtained by approximating the pro-

posed controllers with desired closed-loop responses. We can see

that control performance is far better than that of control systems

designed by the BLT method.

CONCLUSION

The continuation method is applied to calculate multiloop con-

trollers having desired closed-loop responses. The convergence prob-

lem of iterative methods such as the Newton-Raphson method and

the sequential loop closing method for finding multiloop controllers

with desired closed-loop responses can be avoided. The proposed

controllers having desired closed-loop responses can be used to obtain

dynamic interaction measures and design multiloop PID controllers.

REFERENCES

1. D. E. Seborg, T. F. Edgar and D. A. Mellichamp, Process dynamics

and control, 2nd Ed., Wiley, New Jersey (2004).

2. M. Morari and E. Zafiriou, Robust process control, Prentice Hall,

New Jersey (1989).

3. Y. Lee, S. Park, M. Lee and C. Brosilow, AIChE J., 44, 106 (1998).

4. J. Jung, J. Y. Choi and J. Lee, Ind. Eng. Chem. Research, 38, 1580

(1999).

5. D. Q. Mayne, Automatica, 9, 201 (1973).

6. M. Hovd and S. Skogestad, Automatica, 30, 1601 (1994).

7. R. Seydel and V. Hlavacek, Che. Eng. Sci., 42, 1281 (1987).

8. R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge

Univ. Press, N.Y. (1991).

9. J. Lee and T. F. Edgar, Comp. Chem. Eng., 28, 479 (2004).

10. J. Lee and T. F. Edgar, Ind. Eng. Chem. Research, 43, 283 (2004).

11. W. L. Luyben, Ind. Eng. Chem. Process Des. Dev., 25, 654 (1986).

12. B. A. Ogunnaike and W. H. Ray, AIChE J., 25, 1043 (1979).

13. R. K. Wood and M. W. Berry, Chem. Eng. Sci., 28, 1707, 1973

(1973).

14. M. Lee, K. Lee, C. Kim and J. Lee, AIChE J., 50, 1631 (2004).

15. S. H. Shen and C. C. Yu, AIChE J., 40, 627 (1994).

= 

0.66 − 2.6s( )exp

6.7s +1
--------------------------------------  

− 0.61 − 3.5s( )exp

8.64s  +1
------------------------------------------  

− 0.0049 − s( )exp

9.06s +1
----------------------------------------

1.11 − 6.5s( )exp

3.25s  +1
--------------------------------------  

− 2.36 − 3s( )exp

5s +1
-------------------------------------  

− 0.01 −1.2s( )exp

7.09s +1
-----------------------------------------

− 34.68 − 9.2s( )exp

8.15s  +1
---------------------------------------------  

46.2 − 9.4s( )exp

10.9s  +1
--------------------------------------  

0.87 11.61s +1( ) −  s( )exp

3.89s +1( ) 18.8s +1( )
----------------------------------------------------------

Fig. 5. Unit step set point responses of multiloop PI control sys-
tems for the Wood-Berry column model (solid line: the pro-
posed multiloop controller, dotted line: the multiloop con-
troller designed by BLT method).

Fig. 6. Unit step set point responses of multiloop PI control sys-
tems for the Ogunnaike-Ray column model (solid line: the
proposed multiloop controller, dotted line: the multiloop
controller designed by BLT method).


