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Sandip Kumar Lahiri’ and Kartik Chandra Ghanta

Department of Chemical Engineering, NIT, Durgapur, West Bengal, India
(Received 18 April 2008 < accepted 1 February 2009)

Abstract—This paper describes a robust support vector regression (SVR) methodology that offers superior perfor-
mance for important process engineering problems. The method incorporates hybrid support vector regression and dif-
ferential evolution technique (SVR-DE) for efficient tuning of SVR meta parameters. The algorithm has been applied
for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed
that the developed SVR correlation noticeably improved prediction of pressure drop over a wide range of operating

conditions, physical properties, and pipe diameters.
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INTRODUCTION

Conventionally, two approaches, namely phenomenological (first
principles) and empirical, are employed for sturry flow modeling.
In phenomenological modeling, a detailed knowledge of the solid
liquid interaction and associated heat, momentum and mass trans-
port phenomena is required to represent mass, momentum, and en-
ergy balances. The advantages of a phenomenological model are:
(1) since it represents physico-chemical phenomenon underlying
the process explicitly, it provides a valuable insight into the process
behavior, and (ii) it possesses extrapolation ability.

Owing to the complex nature of many multiphase phase slurry
processes, the underlying physico-chemical phenomenon is seldom
fully understood. Also, collection of the requisite phenomenological
information is costly, time-consuming and tedious, and therefore
development of phenomenological process models poses consider-
able practical difficulties. Moreover, nonlinear behavior being com-
mon in multiphase slurry processes, it leads to complex nonlinear
models, which in most cases are not amenable to analytical solu-
tions and thus require computationally intensive numerical meth-
ods for obtaining solutions. The difficulty associated with the con-
struction and solution of phenomenological models necessitates ex-
ploration of altemative modeling formalisms. Modeling using empiri-
cal (regression) methods is one such alternative. In conventional
empirical modeling, appropriate linear or nonlinear models are con-
structed exclusively from the process input-output data without in-
voking the process phenomenology. A fundamental deficiency of
the conventional empirical modeling approach is that the structure
(functional form) of the data-fitting model must be specified a priori.
Satisfying this requirement, especially for nonlinearly behaving pro-
cesses, is cumbersome since it involves selecting heuristically an
appropriate nonlinear model structure from numerous alternatives.

In the last decade, artificial neural networks (ANNSs) and more
recently support vector regression (SVR) have emerged as two at-
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tractive tools for nonlinear modeling, especially in situations where
the development of phenomenological or conventional regression
models becomes impractical or cumbersome. In recent years, sup-
port vector regression (SVR) [28-30], which is a statistical learning
theory based machine leaming formalism, has gained popularity
over ANN due to its many attractive features and promising empiri-
cal performance. The salient features of SVR are: (i) like ANNS,
SVR is an exclusively data based nonlinear modeling paradigm;
(ii) SVR based models are based on the principle of structural risk
minimization, which equips them with greater potential to generalize;
(iif) parameters of an SVR model are obtained by solving a qua-
dratic optimization problem; (iv) the objective function in SVR being
of quadratic form, it possesses a single minimum, thus avoiding
the heuristic procedure involved in locating the global or the deep-
est local minimum on the error surface; and (v) in SVR, the inputs
are first nonlinearly mapped into a high dimensional feature space
wherein they are correlated linearly with the output; (vi) support
vector machine (SVM) always has solution, which can be quickly
obtained by a standard algorithm (quadratic programming); (vii)
SVM need not determine network topology in advance, which can
be automatically obtained when training process ends; and (viii)
SVM can be regarded as a representation of information reducing
(dimension reducing). It can solve high-dimension problems and
therefore avoid the “curse of dimensionality.”

This study is motivated by a growing popularity of support vector
machines (SVM) for regression problems. By virtue of their many
desirable learning properties, SVMs have been widely employed
in many different fields [Burbidge et al., 2001; 16; Bao and Sun,
2002; Guo, Li and Chan, 2001; Suykens, Vandewalle and Moore,
2001]. Although the foundation of the SVR paradigm was laid down
in the mid 1990s, its chemical engineering applications such as fault
detection [Agarwal., 2003; Jack et al., 2002] have emerged only
recently.

However, many SVM regression application studies are performed
by ‘expert’ users having good understanding of SVM methodol-
ogy. Since the quality of SVM models depends on a proper setting
of SVM meta-parameters, the main issue for practitioners trying to
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apply SVM regression is how to set these parameter values (to en-
sure good generalization performance) for a given data set. Whereas
existing sources on SVM regression give some recommendations
on appropriate setting of SVM parameters, there is clearly no con-
sensus and (plenty of) contradictory opinions.

Most of the earlier approaches use trial and error procedures for
tuning the SVM parameters while trying to minimize the training
and test errors. Such an approach apart from consuming enormous
time may not really obtain the best possible performance.

Conventionally, various deterministic gradient based methods
[8] are used for optimizing a process model. Most of these meth-
ods, however, require that the objective function should be smooth,
continuous, and differentiable. The SVR models cannot be guaran-
teed to be smooth, especially in regions wherein the input-output
data (training set) used in model building is located sparsely. Hence,
gradient-based methods cannot be used efficiently for optimizing the
input space of an SVR model. In such situations, an efficient optimi-
zation formalism known as differential evolution (DEs), which is
lenient towards the form of the objective function, can be used. In
the recent years, DEs that are members of the stochastic optimiza-
tion formalisms have been used with a great success in solving prob-
lems involving very large search spaces. The DEs were originally
developed as genetic engineering models mimicking population
evolution in natural systems. Specifically, DE, like genetic algorithm
(GA), enforce the “survival-of the- fittest” and “genetic propaga-
tion of characteristics” principles of biological evolution for search-
ing the solution space of an optimization problem. DE has been used
to design several complex digital filters [20] and to design fuzzy
logic controllers [23]. DE can also be used for parameter estima-
tions; e.g., Babu and Sastry, 1999 used DE for the estimation of
effective heat transfer parameters in trickle-bed reactors using radial
temperature profile measurements. They concluded that DE takes
less computational time to converge compared to the existing tech-
niques without compromising with the accuracy of the parameter
estimates.

In the present paper, SVR formalism is integrated with differen-
tial evolution to arrive at modeling and optimization strategies. The
strategy, henceforth referred to as “SVR-DE,” uses an SVR as the
nonlinear process modeling paradigm, and the DE for optimizing
the meta-parameters of the SVR model such that an improved pre-
diction performance is realized. To our knowledge, a hybrid involv-
ing SVR and DE is being used for the first time for chemical pro-
cess modeling and optimization. In the present work, we propose a
hybrid support vector regression-differential evolution (SVR-DE)
approach for tuning the SVR meta parameters and illustrate it by
applying it for predicting the pressure drop of solid liquid flow.

The paper is organized as follows: section 2 describes process
modeling using SVR methods; a brief introduction of DE is given
in section 3. The optimization of the SVR model using DEs is ex-
plained in section 4. Usage of SVR-DE strategies for case studies
of pressure drop in slurry pipeline along with the results is described
in sections 5 and 6, respectively. Finally, section 7 gives a summary
of the study.

SUPPORT VECTOR REGRESSION (SVR) MODELING

Support vector regression (SVR) is an adaptation of a recent statis-
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tical learning theory based classification paradigm, namely support
vector machines [28]. The SVR formulation follows the structural
risk minimization (SRM) principle, as opposed to the empirical risk
minimization (ERM) approach, which is commonly employed within
statistical machine learning methods and also in training ANNSs. In
SRM, an upper bound on the generalization error is minimized as
opposed to the ERM, which minimizes the prediction error on the
training data. This equips the SVR with a greater potential to gen-
eralize the input-output relationship learned during its training phase
for making good predictions for new input data. The SVR is a linear
method in a high dimensional feature space, which is nonlinearly
related to the input space. Though the linear algorithm works in the
high dimensional feature space, in practice it does not involve any
computations in that space, since through the usage of kernels all
necessary computations are performed directly in the input space.
In the following, the basic concepts of SVR are introduced. A more
detailed description of SVR can be found in [3,25,26,29].
1. Support Vector Regression: At a Glance

Consider a training data set g={(x;, ¥,), (X2, ¥»), - - -, X» ¥»)}, Such
that xi€ ¢ is a vector of input variables and y,€ v is the corre-
sponding scalar output (target) value. Here, the modeling objective
is to find a regression function, y=f{x), such that it accurately pre-
dicts the outputs {y} corresponding to a new set of input-output
examples, {(X, y)}, which are drawn from the same underlying joint
probability distribution, P(x, y), as the training set. To fulfill the stated
goal, SVR considers following linear estimation function.

fx)=<w, p(x)>+b 1)

where w denotes the weight vector; b refers to a constant known as
“bias”; f(x) denotes a function termed feature, and <w, ¢(x)> repre-
sents the dot product in the feature space, /, such ¢ x—1, wel. In
SVR, the input data vector, X, is mapped into a high dimensional
feature space, /, via a nonlinear mapping function, ¢, and a linear
regression is performed in this space for predicting y. Thus, the prob-
lem of nonlinear regression in lower dimensional input space " is
transformed into a linear regression in the high dimensional feature
space, /. Accordingly, the original optimization problem involving
nonlinear regression is transformed into finding the flattest function
in the feature space / and not in the input space, x. The unknown
parameters w and b in Eq. (4) are estimated by using the training
set, g To avoid over-fitting and thereby improving the generalization
capability, the following regularized functional involving summation
of the empirical risk and a complexity term w’, is minimized:

R, o[ 1= R, [ 1+ AW = 3 C(f(xi) ~ yi) + Awl’ @

where Rreg and Remp denote the regression and empirical risks,
respectively; w” is the Euclidean norm; C(.) is a cost function meas-
uring the empirical risk, and 4>0 is a regularization constant. For a
given function, f, the regression risk (test set error), Rreg(f), is the
possible error committed by the function f in predicting the output
corresponding to a new (test) example input vector drawn randomly
from the same sample probability distribution, P(x, y), as the train-
ing set. The empirical risk Remp (f), represents the error (termed
“training set error””) committed in predicting the outputs of the train-
ing set inputs. Minimization task described in Eq. (2) involves: (i)
minimization of the empirical loss function Remp(f) and, (ii) ob-
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Fig. 1. A schematic diagram of support vector regression using e-
sensitive loss function.

taining as small a w as possible, using the training set g. The com-
monly used loss function is the “e-insensitive loss function” given
as [30]:

CEx)-y)=lfx)-y-¢  For|fx)-y[ze 3
=0 otherwise

where &is a precision parameter representing the radius of the tube
located around the regression function (see Fig. 1); the region en-
closed by the tube is known as “e-intensive zone.” The SVR algo-
rithm attempts to position the tube around the data as shown in Fig. 1.

The optimization criterion in Eq. (3) penalizes those data points
whose y values lie more than & distance away from the fitted func-
tion, f(x). In Fig. 1, the size of the stated excess positive and negative
deviations is depicted by {'and {*, which are termed “slack” vari-
ables. Outside of the [—& &] region, the slack variables assume non-
zero values. The SVR fits f{(x) to the data in a manner such that: (i)
the training error is minimized by minimizing ¢'and * and, (ii)
w* is minimized to increase the flatness of f{x) or to penalize over
complexity of the fitting function. Vapnik 1998 showed that the fol-
lowing function possessing a finite number of parameters can mini-
mize the regularized function in Eq. (2).

P

f(x, 0, %) =Y (@i — 0i*)K(x,xi) +b @)

i=1

Table 1. Different kernel type

where, o and oi* (>=0) are the coefficients (Lagrange multipli-
ers) satisfying oi ad*=0 ,1=1, 2, ..., P, and K(x, xi) denotes the so
called ‘kernel” function describing the dot product in the feature
space. The kernel function is defined in terms of the dot product of
the mapping function as given by

K(xi, xj)=<g(xi), P(x)> ®)

The advantage of this formulation (Egs. (4) and (5)) is that for many
choices of the set {¢i(x)}, including infinite dimensional sets, the
form of K is analytically known and very simple. Accordingly, the
dot product in the feature space i / can be computed without ac-
tually mapping the vectors xi and xj into that space (i.e., computa-
tion of @(x(i) and @(x(j)). There exist several choices for the kernel
function K (Refer Table 1); the two commonly used kernel func-
tions, namely, radial basis function (RBF) and #th degree polyno-
mial, are defined below in Egs. (6) and (7), respectively.

Ksioni)  expf B
(x1,xj) exp(‘ Y ) ©6)
K(xi,xj) =[1+(xi,xj)"] @

In Eq. (4), the coefficients od and ai* are obtained by solving fol-
lowing quadratic programming problem.
Maximize:
»

R(a*,0)=-0.53 (ai* — cd)(aj* — o)K(xi, )

ij=1
P P

- €5 (di* + ad) + Yyi( ai* - i)

i=1 i=1

»
subject to constraints: 0< i, 0i*<C,Viand ) (0i*-ci)=0  (8)
i=1
Having estimated ¢, o and b, using a suitable quadratic pro-
gramming algorithm, the SVR-based regression function takes the
form

»

f(x, w) =f(x, o, o) = ¥ (i* — d)K (i, x) +b ©)

i=1

where, vector w is described in terms of the Lagrange multipliers
o and oF. Owing to the specific character of the above-described
quadratic programming problem, only some of the coefficients, (ci*—
od) are non-zero and the corresponding input vectors, xi, are called
support vectors (SVs). The SVs can be thought of as the most in-
formative data points that compress the information content of the

Case Name of Kernel Equation

Case 1 Linear k=u*v’;

Case 2 Polynomial k=(u*v'+1)"pl; pl is degree of polynomial

Case 3 Gaussian radial basis function k=exp(—(u—v)*(u—-v)"/(2*p1"2)); p1 is width of rbfs (sigma)

Case 4 Exponential radial basis function k=exp(—sqrt((u—v)*(u—v)")/(2*p1"2)); pl is width of rbfs (sigma)
Case 5 Splines z=1+u.*v+(1/2)*u.*v.*min(u, v)— (1/6)*(min(u, v)).*3; k=prod(z);
Case 6 B splines z=0; for r=0: 2*(p1+1)

z=z+(—1)*r*binomial(2*(p1+1), r)*(max(0, u—v+pl+1-r)). 2*pl1+1);

end

k=prod(z); p1 is degree of bspline

Where u, v-kernel arguments

Korean J. Chem. Eng.(Vol. 26, No. 5)
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training set. The coefficients & and &* have an intuitive interpreta-
tion as forces pushing and pulling the regression estimate f{(xi) to-
wards the measurements, yi. In Eq. (9), the bias parameter, b, can
be computed as follows:

b={ yi—f(xi),.o—& For die (0,C)
yi—f(xi),.o+ & For ai*e (0,C)

where, xi and yi denote the ith support vector and the correspond-
ing target output, respectively. In the SVR formulation, C and £are
two user-specified free parameters; while C represents the trade-off
between the model-complexity and the approximation error, € sig-
nifies the width of the &insensitive zone used to fit the training data.
The stated free parameters together with the specific form of the
kernel function control the accuracy and generalization performance
of the regression estimate. The procedure of judicious selection of
C and ¢is explained by [6].

2. Performance Estimation of SVR

It is well known that SVM generalization performance (estima-
tion accuracy) depends on a good setting of meta-parameters pa-
rameters C, & and kernel parameters such as kernel type, loss func-
tion type and the kernel parameters. The problem of optimal pa-
rameter selection is further complicated by the fact that SVM model
complexity, and hence its generalization performance, depends on
all five parameters.

Selecting a particular kernel type and kernel function parameters
is usually based on application-domain knowledge and also should
reflect distribution of input (x) values of the training data. Parameter
C determines the trade-off between the model complexity (flatness)
and the degree to which deviations larger than € are tolerated in opti-
mization formulation. For example, if C is too large (infinity), then
the objective is to minimize the empirical risk only, without regard
to model complexity part in the optimization formulation.

Parameter & controls the width of the &insensitive zone, used to
fit the training data [5,30].

The value of € can affect the number of support vectors used to
construct the regression function. The bigger & the fewer support
vectors are selected. On the other hand, bigger &values result in
more ‘flat’ estimates. Hence, both C and &values affect model com-
plexity (but in a different way).

To minimize the generalization error, these parameters should
be properly optimized.

Existing practical approaches to the choice of C and & can be sum-
marized as follows (Cherkassy and Ma):

o Parameters C and £are selected by users based on a priori knowl-
edge and/or user expertise (Cherkassky and Mulier, 1998; Vapnik,
1999; Vapnik, 1998; B. Scholkopf, Burges, Smola, 1999). Obvi-
ously, this approach is not appropriate for non-expert users. Based
on the observation that support vectors lie outside the &tube and
the SVM model complexity strongly depends on the number of sup-
port vectors, Scholkopf, Bartlett, Smola, and Williamson, 1998 sug-
gest to control another parameter v (the fraction of points outside
the &tube) instead of & Under this approach, parameter vhas to be
user-defined. Similarly, Mattera and Haykin, 1999 propose to choose
the &value so that the percentage of support vectors in the SVM
regression model is around 50% of the number of samples. How-
ever, one can easily show examples when optimal generalization
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performance is achieved with the number of support vectors larger
or smaller than 50%.

© Smola, Murata, Scholkopf and K. Muller, 1998 and Kwok, 2001
proposed asymptotically optimal &values proportional to noise vari-
ance, in agreement with general sources on SVM (Cherkassky and
Mulier, 1998; Vapnik, 1999; Vapnik, 1998). The main practical draw-
back of such proposals is that they do not reflect sample size. In-
tuitively, the value of & should be smaller for a larger sample size
than for a small sample size (with the same level of noise).

o Selection of €. It is well-known that the value of should be pro-
portional to the input noise level, that is, &< (Cherkassky and Mulier,
1998; Vapnik, 1999; Vapnik, 1998; Kwok, 2001; A. Smola, N.
Murata, B. Schélkopf and K. Muller, 1998).

Vladimir Cherkassky and Yungian Ma propose the following
(empirical) dependency:

E=TO ILI}
n

Based on empirical tuning, they propose that a constant value
7=3 gives good performance for various data set sizes, noise levels
and target functions for SVM regression. Here, n is number of train-
ing data sample. They assume that the standard deviation of noise
o'is known or can be estimated from data which is again a difficult
task for non expert user.

e Selecting parameter C equal to the range of output values (Mat-
tera and Haykin, 1999). This is a reasonable proposal, but it does
not take into account the possible effect of outliers in the training
data.

Vladimir Cherkassky and Yungian Ma propose to use instead
the following prescription for regularization parameter:

C=max(y+30l,[y-30))

where ¥ is the mean of the training responses (outputs), and ©; is
the standard deviation of the training response values. They claim
this prescription can effectively handle outliers in the training data.
However, the proposed value of C-parameter is derived and appli-
cable for RBF kernels only.

o Using cross-validation for parameter choice (Cherkassky and
Mulier, 1998; Scholkopf, Burges, Smola, 1999). This is very com-
putation- and data-intensive.

o Several recent references present statistical account of SVM
regression (Smola and Schdlkopf, 1998; Hastie, Tibshirani and Fried-
man, 2001) where the &parameter is associated with the choice of
the loss function (and hence could be optimally tuned to particular
noise density), whereas the C parameter is interpreted as a tradi-
tional regularization parameter in formulation that can be estimated for
example by cross-validation (Hastie, Tibshirani and Friedman, 2001).

o Selecting a particular kernel type and kernel function parameters
is usually based on application-domain knowledge and also should
reflect distribution of input (x) values of the training data. Very little
literature is available to throw light on this.

As evident from the above, there is no shortage of conflicting
opinions on optimal setting of SVM regression parameters. Exist-
ing software implementations of SVM regression usually treat SVM
meta-parameters as user-defined inputs. For non-expert users it is
very difficult task to choose these parameters as they have no prior
knowledge for these parameters for their data. In such a situation,
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users normally rely on trial and error method. Such an approach
apart from consuming enormous time may not really obtain the best
possible performance. In this paper we present a hybrid SVR-DE
approach, which not only relieves the user from choosing these meta
parameters but also finds the optimum values of these parameters
to minimize the generalization error.

DIFFERENTIAL EVOLUTION (DE): AT A GLANCE

Having developed an SVR-based process model, a DE algo-
rithm is used to optimize the N-dimensional input space (x) of the
SVR model. The DEs were originally developed as the genetic en-
gineering models mimicking population evolution in natural systems.
Specifically, DE, like genetic algorithm (GA), enforces the “survival-
of the-fittest”” and ““genetic propagation of characteristics” principles of
biological evolution for searching the solution space of an optimiza-
tion problem. The principal features possessed by the DEs are: (i) they
require only scalar values and not the second- and/or first-order de-
rivatives of the objective function, (ii) capability to handle nonlinear
and noisy objective functions, (iii) they perform global search and
thus are more likely to arrive at or near the global optimum, and
(iv) DEs do not impose pre-conditions, such as smoothness, differ-
entiability and continuity, on the form of the objective function.

Differential evolution (DE), an improved version of GA, is an
exceptionally simple evolution strategy that is significantly faster
and more robust at numerical optimization and is more likely to
find a function’s true global optimum. Unlike simple GA that uses
a binary coding for representing problem parameters, DE uses real
coding of floating point numbers. The mutation operator here is
addition instead of bit-wise flipping used in GA. And DE uses non-
uniform crossover and tournament selection operators to create new
solution strings. Among the Des advantages are simple structure,
ease of use, speed and robustness. It can be used for optimizing func-
tions with real variables and many local optima.

This paper demonstrates the successful application of differen-
tial evolution to a practical optimization problem. As already stated,
DE in principle is similar to GA. So, as in GA, we use a population
of points in our search for the optimum. The population size is de-
noted by NP. The dimension of each vector is denoted by D. The
main operation is the NP number of competitions that are to be car-
ried out to decide the next generation.

To start with, we have a population of NP vectors within the range
of the objective function. We select one of these NP vectors as our
target vector. We then randomly select two vectors from the popu-
lation and find the difference between them (vector subtraction).
This difference is multiplied by a factor F (specified at the start)
and added to a third randomly selected vector. The result is called
the noisy random vector. Subsequently, crossover is performed be-
tween the target vector and noisy random vector to produce the #ia/
vector: Then, a competition between the trial vector and target vector
is performed and the winner is replaced into the population. The
same procedure is carried out NP times to decide the next generation
of vectors. This sequence is continued till some convergence criterion
is met. This summarizes the basic procedure carried out in differ-
ential evolution. The details of this procedure are described below.
1. Steps Performed in DE

Assume that the objective function is of D dimensions and that

it has to be optimized. The weighting constants F and the crossover
constant CR are specified.

Step 1 Generate NP random vectors as the initial population: gen-
erate (NP * D) random numbers and linearize the range between 0
and 1 to cover the entire range of the function. From these (NP *
D) numbers, generate NP random vectors, each of dimension D,
by mapping the random numbers over the range of the function.

Step 2 Choose a target vector from the population of size NP:
first generate a random number between 0 and 1. From the value
of the random number decide which population member is to be
selected as the target vector (Xi) (a linear mapping rule can be used).

Step 3 Choose two vectors at random from the population and
find the weighted difference: Generate two random numbers. Decide
which two population members are to be selected (Xa, Xb). Find
the vector difference between the two vectors (Xa—Xb). Multiply
this difference by F to obtain the weighted difference.

Weighted difference=F (Xa—Xb)

Step 4 Find the noisy random vector: Generate a random num-
ber. Choose a third random vector from the population (Xc). Add
this vector to the weighted difference to obtain the noisy random
vector (X ).

Step 5 Perform crossover between Xi and X ¢ to find Xt, the trial
vector: Generate D random numbers. For each of the D dimensions,
if the random number is greater than CR, copy the value from Xi
into the trial vector; if the random number is less than CR, copy
the value from X ¢ into the trial vector.

Step 6 Calculate the cost of the trial vector and the target vector:
For a minimization problem, calculate the function value directly
and this is the cost. For a maximization problem, transform the ob-
jective function f(x) using the rule F(x)=1/[1+{{x)] and calculate
the value of the cost. Alternatively, directly calculate the value of
f(x) and this yields the profit. In case cost is calculated, the vector
that yields the lesser cost replaces the population member in the
initial population. In case profit is calculated, the vector with the
greater profit replaces the population member in the initial population.

Step 1-6 are continued until some stopping criterion is met. This
may be of two kinds. One may be some convergence criterion that
states that the error in the minimum or maximum between two pre-
vious generations should be less than some specified value. The
other may be an upper bound on the number of generations. The
stopping criterion may be a combination of the two. Either way,
once the stopping criterion is met, the computations are terminated.

Choosing DE Key Parameters NP, F, and CR is seldom difficult
and some general guidelines are available. Normally, NP ought to
be about 5 to 10 times the number of parameters in a vector. As for
F, it lies in the range 0.4 to 1.0. Initially, F=0.5 can be tried, then F
and/or NP is increased if the population converges prematurely. A
good first choice for CR is 0.1, but in general CR should be as large
a possible (Price and Storn, 1997).

Already, DE has been successfully applied for solving several
complex problems and is now being identified as a potential source
for accurate and faster optimization.

DE-BASED OPTIMIZATION OF SVR MODELS

There are different measures by which SVM performance is as-

Korean J. Chem. Eng.(Vol. 26, No. 5)



1180 S. K. Lahiri and K. C. Ghanta

sessed, validation and leave-one-out error estimates being the most
commonly used. Here we divide the total available data as training
data (75% of data) and test data (25% data chosen randomly). Where-
as, the SVR algorithm was trained on training data but the SVR
performance is estimated on test data.

The statistical analysis of SVR prediction is based on the fol-
lowing performance criteria:

1. The average absolute relative error (AARE) on test data should
be minimum:

N . .
AARE = lz (ypredlcted —'yexperlment)
N4 yexperimental

2. The standard deviation of error (o) on test data should be min-
imum:

o= ZV: 1 [|(ypredicted,—yexperimental ;)
"~ /5N -1/yexperimenatl,,| —~AARET

3. The cross-correlation co-efficient (R) between input and out-
put should be around unity:

(yexperimental (i) — yexperimental (mean))
= (ypredicted(i) —ypredicted(mean))

N
> (yexperimental (i) — yexperimental (mean))’

i=1

N
/\ J 3 (ypredicted(i) — ypredicted(mean))’
i=1

SVM learning is considered successful only if the system can
perform well on test data on which the system has not been trained.
The above five parameters of SVR are optimized by DE algorithm
stated below.

The objective function and the optimal problem of SVR model
of the present study are represented as

Minimize

AARE(X) on test set

Xe {x1,x2,x3, x4, x5}

where

x1={0to 10,000}

x2={0to 1}

x3={1,2}

x4={1,2, ..., 6}

x5={1,2, ., 6}

The objective function is minimization of average absolute rela-
tive error (AARE) on the test set and X is a solution string repre-
senting a design configuration. The design variable x1 takes any
values for C in the range of 0.0 to 10,000. X2 represents the & (ep-
silon) taking any values in the range of 0.0 to 1. x3 represents the
loss function types: e-insensitive loss function and Huber loss func-
tion represented by the numbers 1 and 2, respectively. X4 repre-
sents the Kernel types: all 6 kemels given in Table 1 represented
by the numbers 1 to 6 respectively. The variable x5 takes six values
of the kernel parameters (represents degree of polynomials etc.) in
the range 1 to 6 (1, 2, 3, 4, 5, 6) represented by numbers 1 to 6.

The total number of design combinations with these variables is
100x100x2x6x6=720,000. This means that if an exhaustive search
is to be performed it will take at the maximum 720,000 function
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evaluations before arriving at the global minimum AARE for the
test set (assuming 100 trials for each to arrive optimum C and é&).
So the strategy which takes few function evaluations is the best one.
Considering minimization of AARE as the objective function, dif-
ferential evolution technique is applied to find the optimum design
configuration of SVR model.

CASE STUDY: PREDICTION OF PRESSURE DROP
IN SOLID LIQUID SLURRY FLOW

1. Background and Importance of Pressure Drop

Pipeline transport has been a progressive technology for convey-
ing a large quantity of bulk materials. The modern way of pipelining
prefers the concentrated slurries since hydraulic transport of dense
hydro-mixtures can bring several advantages. Compared to a mechan-
ical transport, the use of a pipeline ensures a dust-free environment,
demands substantially less space, makes possible full automation
and requires a minimum of operating staff. On the other hand, it
brings higher operational pressures and considerable demands for
a high quality of pumping equipment and control system.

Power consumption represents a substantial portion of the over-
all pipeline transport operational costs. For that reason great atten-
tion was paid to reduction of the hydraulic losses. The prediction
of pressure drop of slurries and the understanding of rheological
behavior makes it possible to optimize energy and water require-
ments.

Despite the large area of application, the available models describ-
ing the suspension mechanism do not completely satisfy engineer-
ing needs. The behavior of solids in liquid flowing through pipelines
has been the subject of continuing investigation since the turn of
the 19” century. From the literature [7, 10, 18], Gillies et al. [11-13],
Govier et al. [14], it is found that attempts to solve slurry flow prob-
lems may be divided into two main categories. In the first approach,
one begins from the experimental facts and generalizes known cor-
relations for some parameters by dimensional analysis, without pro-
viding an insight into the flow mechanism (e.g., [19,24,31]; and
many others). In the second approach, one starts from the basic equa-
tions of motion and numerically solves these for some situations
with physical or mathematical assumptions for different terms.

Numbers of such phenomenological modeling have been pro-
posed by Wilson [27,28] Wilson and Pugh [29], Roco and Shook
[20,21], Doron et al. [7] and many others.

Both of the above methods have their own limitations generated
out of inherent complexity and poor understanding of two-phase
flow systems. A successful predictive model with sound understand-
ing of the fundamentals of particle laden turbulent flow, including
all significant interactions and the ability to integrate these quanti-
tatively, has not been developed until today as seen from various
literatures.

Pressure drop is the most significant parameter for solid liquid
transport in mineral and other solids handling industry. Power con-
sumption and subsequently the whole economics of the hydro-trans-
port depend on it. For this reason, pipeline design is mainly based
on optimization in pressure drop and initial investment. In spite of
the lack of detailed fundamental knowledge required for the for-
mulation and modeling of multiphase turbulent flows, the need to
predict shurry behavior handled in various industries has motivated
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work, aimed at obtaining approximate solutions. Various investiga-
tions ([7,9,13,26,27], etc.) have tried to show and propose correla-
tion relating pressure drop with other parameters of solid-liquid flow,
namely solids density, liquid density, particle size, concentration, pipe
diameter, viscosity of flowing media, velocity of suspension etc.

To facilitate the design and scale up of pipelines and slurry pumps,
there is a need for a correlation that can predict slurry pressure drop
over a wide range of operating conditions, physical properties and
particle size distributions. Industry needs quick and easily imple-
mented solutions. The model derived from the first principle is no
doubt the best solution. But in the scenario where the basic princi-
ples for pressure drop modeling accounting all the interactions for
slurry flow are absent, the numerical model may be promising to
give some quick, easy solutions for sturry pressure drop prediction.

This paper presents a systematic approach using robust hybrid
SVR-DE techniques to build a pressure drop correlation from avail-
able experimental data. This correlation has been derived from a
broad experimental data bank collected from the open literature (800
measurements covering a wide range of pipe dimensions, operat-
ing conditions and physical properties).

2. Development of the Support Vector Regression (SVR) Based
Correlation

The development of the SVR-based correlation was started with
the collection of a large databank. The next step was to perform a
support vector regression, and to validate it statistically.

2-1. Collection of Data

As mentioned earlier, over the years researchers have amply quan-
tified the pressure drop of slurry flow in pipeline. In this work, about
220 experimental points have been collected from 20 sources span-
ning the years 1977-2000. This wide range of database includes
experimental information from different physical systems to pro-
vide a unified correlation for pressure drop. Table 1 suggests the
wide range of the collected databank for pressure drop.

2-2. Identification of Input Parameters

After an extensive literature survey, all physical parameters that
influence pressure drop are put in a so-called ‘wish-list’.

Out of the number of inputs in ‘wish list’, we used support vector
regression to establish the best set of chosen inputs, which describes
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éﬁ-_{\ Suspended with sallalﬂfﬂ_ﬁ#_______
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dcwsilsl with ripples DlFfI

Volumetric concentration—=>

Fig. 2. Flow regimes in terms of velocity versus volumetric con-
centration [19].

Table 2. Different loss function

Case Name of loss function

Case 1
Case 2

€-insensitive loss function
Quadratic loss function

pressure drop. The following criteria guide the choice of the set of
inputs:

o The inputs should be as few as possible.

o Each input should be highly cross-correlated with the output
parameter.

o These inputs should be weakly cross-correlated with each other.

o The selected input set should give the best output prediction,
which is checked by using statistical analysis [e.g., average abso-
lute relative error (AARE), standard deviation)].

While choosing the most expressive inputs, there is a compro-
mise between the number of inputs and prediction. Based on dif-
ferent combinations of inputs, trial and error method was used to
finalize the input set which gives reasonable low prediction error
(AARE) when exposed to support vector regression.

Based on the above analysis, the input variables such as pipe dia-
meter, particle diameter, solids concentration, solid and liquid den-
sity and viscosity of flowing medium have been finalized to pre-
dict pressure drop in slurry pipeline. Table 2 shows some typical
data used for support vector regression.

RESULTS AND DISCUSSION

As the magnitude of inputs and outputs greatly differ from each
other, they are normalized in —1 to +1 scale. 75% of total dataset
was chosen randomly for training and the rest, 25%, was selected
for validation and testing.

Seven parameters were identified as input (Table 4) for SVR and

Table 3. System and parameter studied [7,9,10,12,18,20]

Slurry system: Coal water, Copper ore water, Sand water,
Gypsum water, Glass water and Gravel water

Pipe diameter (m) 0.019-0.495
Particle diameter (m)*10°° 38.3-13000
Liquid density (kg/m®) 1000-1250
Solids density (kg/m"®) 1370-2844
Liquid viscosity (Pa-m)*107 0.12-4
Velocity (m/s) 0.86-4.81
Solids concentration (volume fraction) 0.014-0.333
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Fig. 3. Plot of transitional mixture velocity with pressure drop.
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Table 4. Typical input and output data for SVR training

Input Output

Pipe dia Particle dia Liquid density Solid density Liquid viscosity Slurry velocity Solid conc. Dpdz
(cm) (micron) (g/ce) (g/ce) (cp) (m/s) (vol. frac.) (Pa/m)
2.54 40.1 1.00 2.84 0.85 1.06 0.07 560.00
2.54 40.1 1.00 2.84 0.85 1.13 0.07 600.00
2.54 40.1 1.00 2.84 0.85 1.15 0.07 600.00
1.90 40.1 1.00 2.84 0.85 1.10 0.07 1250.00
1.90 40.1 1.00 2.84 0.85 1.50 0.07 1500.00
1.90 40.1 1.00 2.84 0.85 1.70 0.07 1700.00
5.26 383 1.00 233 1.00 1.11 0.11 294.10
5.26 383 1.00 2.33 1.00 3.01 0.11 1651.30
5.26 383 1.00 2.33 1.00 4.81 0.11 3822.90
5.26 383 1.00 233 1.00 1.33 0.31 542.90
5.26 383 1.00 2.33 1.00 3.12 0.31 2352.60
5.26 383 1.00 233 1.00 4.70 0.31 4727.70
20.85 190.0 1.00 1.37 1.14 2.59 0.33 266.50
20.85 190.0 1.00 1.37 1.14 2.34 0.33 226.30
20.85 190.0 1.00 1.37 1.14 2.01 0.33 177.30
20.85 190.0 1.00 1.37 1.14 1.78 0.33 147.00
20.85 190.0 1.00 1.37 1.14 1.59 0.32 123.40
20.85 190.0 1.00 1.37 1.14 1.37 0.33 99.90
5.15 165.0 1.00 2.65 1.00 1.66 0.07 666.20
5.15 165.0 1.00 2.65 1.00 3.78 0.09 2449.20
5.15 165.0 1.00 2.65 1.00 1.66 0.17 901.30
5.15 165.0 1.00 2.65 1.00 4.17 0.19 3428.90
5.15 165.0 1.00 2.65 1.00 1.66 0.27 1136.40
5.15 165.0 1.00 2.65 1.00 433 0.29 4408.10
26.30 165.0 1.00 2.65 1.00 2.90 0.09 261.60
26.30 165.0 1.00 2.65 1.00 3.50 0.09 334.10
26.30 165.0 1.00 2.65 1.00 2.90 0.18 305.70
26.30 165.0 1.00 2.65 1.00 3.50 0.17 382.10
26.30 165.0 1.00 2.65 1.00 2.90 0.26 355.60
26.30 165.0 1.00 2.65 1.00 3.50 0.26 453.60
26.30 165.0 1.00 2.65 1.00 2.90 0.33 414.40
26.30 165.0 1.00 2.65 1.00 3.50 0.32 526.10
49.50 165.0 1.00 2.65 1.00 3.16 0.09 143.00
49.50 165.0 1.00 2.65 1.00 3.76 0.09 186.10
49.50 165.0 1.00 2.65 1.00 3.07 0.17 157.70
49.50 165.0 1.00 2.65 1.00 3.76 0.17 210.60
49.50 165.0 1.00 2.65 1.00 3.16 0.26 193.00
49.50 165.0 1.00 2.65 1.00 3.76 0.26 254.70
15.85 190.0 1.00 2.65 1.30 2.50 0.14 475.20
15.85 190.0 1.00 2.65 1.30 2.50 0.29 630.90
15.85 190.0 1.00 2.65 0.12 3.00 0.13 648.90
15.85 190.0 1.00 2.65 0.12 2.90 0.28 866.70
5.07 520.0 1.00 2.65 1.00 1.90 0.09 1175.60
5.07 520.0 1.00 2.65 1.00 2.00 0.21 1763.40
4.00 580.0 1.25 227 4.00 2.88 0.16 3926.00
4.00 580.0 1.25 227 4.00 2.70 0.14 3580.00
4.00 580.0 1.25 227 4.00 2.01 0.10 2217.00
4.00 580.0 1.25 227 4.00 1.05 0.06 845.00
26.30 13000.0 1.00 2.65 1.00 3.20 0.04 842.50
26.30 13000.0 1.00 2.65 1.00 4.00 0.04 989.50

September, 2009



SVR with parameter tuning assisted by DE technique: Study on pressure drop of slurry flow in pipeline 1183

| Read experimental input and output data as Xi and Yi respectively |

A 4

‘ Segregate randomly the 75% of the records as training set and rest 25% as test set ‘

v

Initialize generation index Ngen=0

v

Generate NP random vectors as the initial population within user defined bounds. This
means generate random values for C, €, Kernel types, Loss function and Kernel
parameters for each vector and generate such NP random vectors.

le

| d

Apply these random vectors to SVR model to compute the output for each of the population
Find out the vector with the lowest AARE on test set i.e. the best vector so far

'

Choose randomly a target vector from the population of size NP

}

Choose two vectors at random from the population and find the weighted difference.
From that find the noisy random vector

l

Perform crossover between target vector and random vector to find the trial vector l

v

Perform crossover between farget vector and random vector to find the trial vector ‘

h 4

Calculate the AARE of the trial vector and the target vector by SVR model ‘

v

The vector with the lower AARE replaces the population member in the initial population.

A 4

Update generation index Ngen=Ngen+1

A 4

Ngen > Ngenmax ?

NO

YES

Top ranked vectors constituted the optimal solution vector i.e. optimal value for C, €,
Kernel types, Loss function and Kernel parameters.

Apply these optimum solution vector to SVR model to find out the lowest AARE

Fig. 4. Schematic for SVR algorithm implementation.

Table 5. Prediction error by SVR based model

Prediction performance by SVR

Training Testing
AARE 0.125 0.127
Sigma 0.163 0.169
R 0.978 0.977

the pressure drop was put as target. These data then were exposed
to the hybrid SVR-DE model described above. After optimization

of five SVR parameters described above, the model output was sum-
marized in Table 5. The low AARE (12.7%) may be considered as
a excellent prediction performance considering the poor understand-
ing of slurry flow phenomena and large databank for training com-
prising various systems. The optimum value of SVR meta param-
eters are summarized in Table 6. From Table 6 it is clear that there
exist almost five different feasible solutions which lead to the same
prediction error.

In a separate study, we exposed the same dataset to the SVR al-
gorithm only (without the DE algorithm) and tried to optimize the
different parameters based on exhaustive search. We found that it

Korean J. Chem. Eng.(Vol. 26, No. 5)
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Table 6. Optimum parameters obtained by hybrid SVR-DE algorithm

Sr No C € Kernel type Type of loss function Kernel parameter AARE
1 5043.82 0.50 erbf e-insensitive 2 0.127
2 6698.16 0.36 erbf e-insensitive 3 0.127
3 7954.35 0.48 erbf e-insensitive 4 0.127
4 8380.98 0.54 erbf e-insensitive 5 0.127

Table 7. Comparison of performance of SVR-DE hybrid model Vs SVR model

Performance criteria

Prediction performance by hybrid

Prediction performance by SVR model

SVR-DE model without DE tuning after exhaustive search
Testing Testing
AARE 0.127 0.132
Sigma 0.169 0.170
R 0.977 0.975
Execution time (hr) 1 4

Table 8. Performance of different correlations to predict pressure

drop
Sl no Author % AARE
1 Wilson (1942) 49.51
2 Durand and Condolios (1952) 36.53
3 Newitt et al. (1955) 93.43
4 Zandi and Govatos (1967) 50.02
5 Shook (1969) 34.50
6 Turian and Yuan (1977) 39.97
7 Wasp et al. (1977) 26.68
8 Gillies et al. (1999) 22.31
9 Kaushal (2002) 22.01
10 Present work 12.70
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Fig. 5. Experimental Vs predicted pressure drop for erbf kernel.

was not possible to reach the best solutions starting from arbitrary
initial conditions. In particular, the optimum choice of C and € is
very difficult to arrive after starting with some discrete value. Many
times the solutions got stuck in sub optimal local minima. These
experiments justified the use of a hybrid technique for SVR param-
eter tuning, The best prediction after exhaustive search along with
SVR parameters is summarized in Table 7. From the table it is clear
that even after 720,000 runs, the SVR algorithm is unable to locate
the global minima and the time of execution is 4 hrs on a Pentium
4 processor. On the other hand, the hybrid SVR-DE technique is
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able to locate the global minima with 2000 runs within 1 hr. The
prediction accuracy is also much better. Moreover, it relieves the
non-expert users to choose the different parameters and find opti-
mum SVR meta parameters with a good accuracy.

All the 800 experimental data collected from open literature was
also exposed to different formulas and correlations for pressure drop
available in the open literature and AARE were calculated for each
of them (Table 8). From Table 8, it is evident that the prediction error
of pressure drop has reduced considerably in the present work.

CONCLUSION

Support vector machine regression methodology with a robust
parameter tuning procedure has been described in this work. The
method employs a hybrid SVR-DE approach for minimizing the
generalization error. Superior prediction performances were obtained
for the case study of pressure drop, and a comparison with selected
correlations in the literature showed that the developed SVR corre-
lation noticeably improved prediction of pressure drop over a wide
range of operating conditions, physical properties, and pipe diame-
ters. The proposed hybrid technique (SVR-DE) also relieves the
non-expert users to choose the meta parameters of the SVR algo-
rithm for their case study and find the optimum value of these meta
parameters on their own. The results indicate that SVR-based tech-
nique with the DE based parameters tuning approach described in
this work can yield excellent generalization and can be advanta-
geously employed for a large class of regression problems encoun-
tered in process engineering.

NOMENCLATURE

a, o* : vectors of Lagrange’s multiplier

£ : precision parameter
&, - loss function parameter
g, - tolerance for termination criterion

o :width of kernel of radial basis function
/ : regularization constant
& &* :slack variables
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