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Abstract−Due to the complexity of plant-wide processes, many of the current multivariate statistical process monitor-
ing techniques are lacking in interpretation of the detected fault, and fault identification also becomes difficult. A new
two-level multiblock independent component analysis and principal component analysis (MBICA-PCA) method is
proposed in this paper. Different from the conventional method, the new approach can incorporate block information
into the high level for global process monitoring. Through the new method, the process monitoring task can be greatly
reduced and the interpretation for the process can be made more quickly. When a fault is detected, a two-step fault
identification method is proposed. The responsible sub-block is first identified by contribution plots, which is followed
by fault reconstruction in the corresponding sub-block for advanced fault identification. A case study of the Tennessee
Eastman (TE) process evaluates the feasibility and efficiency of the proposed method.
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INTRODUCTION

As a data-driven process monitoring methodology, multivariate
statistical process controls (MSPC) such as principal component
analysis (PCA) and partial least squares (PLS) have been inten-
sively researched and applied to chemical plants. There have been
representative researches on process monitoring and diagnosis based
on PCA and PLS for continuous [1], batch [2-4], dynamic [5], multi-
scale [6], and adaptive [7,8] processes. Other applications are also
widely reported [9-12].

However, most of the modern chemical processes are always very
complex with process variables coming from many different pro-
cessing units. Those processes are known as plant-wide processes.
Process monitoring and diagnosis of modern plant-wide processes
become complicated and the results obtained from traditional MSPC
methods are always difficult to interpret. In the last decade, hierar-
chical and multiblock approaches were developed, which divide
the total variable block into several meaningful sub-blocks [13-18].
However, most of the multiblock methods do not consider the cross-
information between divided sub-blocks. Therefore, it is possible
that a deviation of the cross-information will not be observed within
any sub-blocks.

Another limitation of the traditional MSPC method lies in its Gaus-
sian distributed assumption of process variables. In fact, some of
the process variables may be non-Gaussian, and chemical processes
are usually driven by fewer essential variables which may not be
measured. Independent component analysis (ICA) is an emerging
technique for finding several independent and non-Gaussian vari-
ables as linear combinations of measured variables. A number of
applications of ICA have been reported in speech processing, bio-
medical signal processing, machine vibration analysis, nuclear mag-

netic resonance spectroscopy, infrared optical source separation, radio
communications and so on. [19]. Lee et al. [20,21] used ICA for
process monitoring and extended it to dynamic processes. Kano et al.
[22-24] developed a unified framework for MSPC, which combined
PCA-based SPC and ICA-based SPC. Since the proposed combined
MSPC (CMSPC) could monitor both Gaussian and non-Gaussian
information of the process, good performance was shown in a multi-
variate system and a CSTR process. Our previous work also pro-
posed a two-step information extraction strategy based on ICA-PCA
[25].

After the fault has been detected, the fault identification step should
be carried out. Conventional fault identification methods include con-
tribution plot based methods [26], fault subspace based methods
[27], and so on. However, the contribution plot based method can
only narrow down the root cause of the detected fault. To deter-
mine the root cause of the fault more accurately, the reconstruction-
based method can be employed [28-31]. While the reconstruction
methods were developed in principal component subspace (PCS)
[29] and residual subspace (RS) [27], this method has not yet been
developed in the independent component subspace (ICS). By em-
ploying this method, the fault subspace should be preliminarily de-
fined. However, while it is easy to derive the fault subspace for sen-
sor faults, the derivation of the fault subspace is not straightforward
for process faults without any knowledge. To address this problem,
a subspace extraction method was proposed to extract fault direc-
tions from historical fault data [32].

In the present paper, a new plant-wide process monitoring strat-
egy is proposed, which is based on two-level multiblock ICA-PCA.
The total process variables are firstly divided into several sub-blocks,
and sub-models are built correspondingly. Then a global ICA-PCA
model is built on the high level for global process monitoring. The
cross-information between sub-blocks can be extracted by the high
level model, and also it can enhance further dimensionality reduction
for process variables. Once a fault is detected, contribution plots
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are first used to calculate the responsibility of each sub-block. Then
the reconstruction-based method is carried out in the responsible
sub-block for advanced fault identification. The contributions of
the present paper include: (1) a two-level multiblock model is pro-
posed; (2) a new reconstruction based method in the independent
component subspace is developed, and (3) a two-step fault identifi-
cation method is proposed to facilitate fault identification in plant-
wide processes. The rest of this paper is organized as follows. In
section 2, some preliminary materials are briefly described, includ-
ing the ICA, PCA and ICA-PCA methods. Section 3 demonstrates
the two-level multiblock ICA-PCA method, which is followed by
the fault detection, reconstruction and identification scheme in the
next section. A case study of the TE benchmark process is pre-
sented in section 5, and finally some conclusions are made.

PRELIMINARIES

1. Independent Component Analysis (ICA)
ICA was originally proposed to solve the blind source separation

problem [19]. To introduce the ICA algorithm, it is assumed that l
measured variables, x(k)=[x1(k), x2(k), …, xl(k)] at sample k can
be expressed as linear combinations of r(≤l) unknown independent
components [s1, s2, …, sr]T, and the relationship between them is
given by

X=A·S+E (1)

where n is the number of measurements, X=[x1, x2, …, xn]∈Rl×n is
the data matrix, A=[a1, a2, …, ar]∈Rl×r is the mixing matrix, S=[s1,
s2, …, sr]∈Rr×n is the independent component matrix, E∈Rl×n and
is the residual matrix. The basic problem of ICA is to estimate the
original component S and the mixing matrix A from X. Hyvärinen
[33] introduced a very simple and efficient fixed-point algorithm
(fastica) for ICA calculation.
2. Principal Component Analysis (PCA)

PCA is one of the popular multivariate statistical methods for
process monitoring. Its principle is to find combinations of variables
that capture the largest amount of information in the dataset. The
eigenvalues of the covariance matrix are arranged in descending
order--if the first k principal components (PCs) are selected, the PCA
model is built on these PCs--and two statistics (T2 and SPE) are built
for monitoring. In the present paper, PCA is carried out upon the
Gaussian information matrix after the non-Gaussian information
has been extracted by ICA. Thus E can be decomposed as follows:

E=T·PT+F (2)

where T is score matrix, P is loading matrix, and F is the residual
matrix after the analysis of PCA.
3. Two-step Information Extraction Strategy

Most of the process variables contain not only Gaussian infor-
mation, but also non-Gaussian information. ICA is efficient to extract
essential variables, which are non-Gaussian and independent of each
other. After the non-Gaussian information is extracted from the pro-
cess, the rest of the Gaussian part should also be analyzed. Com-
bining these two steps together, the original dataset X can be recalcu-
lated as:

(3)

MULTIBLOCK ICA-PCA (MBICA-PCA)

Assume the data matrix X∈Rl×n, where n is the number of ob-
servations and l is number of variables. According to the plant-wide
process, the number of variables l is always very large. Although
conventional MSPC methods show good efficiency for a multi-corre-
lated dataset, they are limited in fault diagnosis and identification.
Results obtained from these conventional MSPC methods are often
difficult to interpret. To improve fault detection and identification
for large complex processes, a new two-level multiblock method is
proposed. Process variables are divided into several sub-blocks based
on prior knowledge:

X=[X1 X2
… XB] (4)

where B is the number of sub-blocks, each sub-block Xb∈Rn×mb (b=
1, 2, …, B) has mb variables. The main idea of the two-level multi-
block ICA-PCA method is described as follows. A sub-model is
built for each of the sub-block; then a global model is built on a
high level, in which non-Gaussian and Gaussian information are
modeled separately. The proposed two-level multiblock ICA-PCA
method is illustrated in Fig. 1.

In the conventional multiblock PCA algorithm [15], each vari-
able in the data blocks Xb is often scaled to have zero mean and
variance of 1/mb to make each block contribute about the same vari-
ance to the super scores. For simplicity, we assume the dataset X
has already been scaled. Therefore, B sub-models are first built for
corresponding sub-blocks Xb (b=1, 2, …, B).

Xb=Ab·Sb+Eb (5)

Eb=Tb·Pb
T+Fb (6)

It is important to note that some sub-blocks only contain the Gauss-
ian information, which can be judged by negentropy [19]. For these
sub-blocks, PCA is enough for modeling the correlation within these
sub-blocks. After all of the B sub-models have been built, the ex-
tracted independent components and principal components in each
sub-block are arranged as follows.

Smix=[S1 S2
… SB]

T (7)

Tmix=[T1 T2
… TB] (8)

Although the correlations within each sub-block are well extracted,
the correlations between sub-blocks are not well extracted. There-
fore, a global model could be built on a high level to extract the cross-

X = A Ŝ + T PT
 + F⋅ ⋅ Fig. 1. Two-level MBICA-PCA model strategy.



Two-level multiblock statistical monitoring for plant-wide processes 1469

Korean J. Chem. Eng.(Vol. 26, No. 6)

information, and also to model non-Gaussian and Gaussian infor-
mation separately. According to the newly defined data matrix Smix

and Tmix, the global ICA-PCA model is built as follows.

Smix=Aglob·Sglob+Eglob (9)

Tmix=Tglob·P
T
glob+Fglob (10)

Note that block dividing plays an important role in the multi-
block method. It is therefore important to make intelligent selec-
tions of variable blocking based on process knowledge such that
the most important correlations are extracted within divided sub-
blocks. When the built model is used for process monitoring and
fault diagnosis, it is much easier to isolate and identify the detected
fault. Furthermore, with the development of the global model, cross-
information between sub-blocks can be efficiently extracted. The
variable dimension may also be reduced at the second time. Hence,
more redundant information can be removed from the monitoring
information, which will also enhance the performance of process
monitoring.

PROCESS MONITORING BASED
ON TWO-LEVEL MBICA-PCA

In this section, the proposed method is demonstrated, including
fault detection and identification. Suppose we have already built all
of the models described in section 3, including a global model and
B sub-models. To monitor the Gaussian and non-Gaussian infor-
mation separately, three statistics will be established for each ICA-
PCA model. If the statistical confidence limits are exceeded, some
disturbance or fault may happen in the process. Then the contribu-
tion plot of each statistic can be used to identify the sub-block respon-
sible for the abnormal event. Then, advanced fault identification can
be carried out in the responsible sub-block to find the root cause of
the detected fault.
1. Fault Detection

Given the sub-block data matrix Xb, suppose rb independent com-
ponents are extracted, Sb=[sb1, sb2, …, sbn]∈Rrb×n. To monitor the
non-Gaussian part of the process, the I2 statistic variable is defined
[20]:

Ib
2=sb

T·sb (11)

After the non-Gaussian information has been extracted, the resid-
ual matrix Eb is obtained. As mentioned in section 3, we use PCA
to analyze it, expanding Eb as below:

(12)

where kb is the number of principal components, Fb is the residual
resulting from the PCA model. Here we define the limits of Tb

2 and
SPEb statistics as follows [1,2]:

(13)

(14)

(15)

where kb is the number of PCs, θi=  for i=1, 2, 3, h0=1−(2θ1θ3/

3θ2
2), α is significance level, cα is the normal deviate correspond-

ing to the upper 1−α percentile.
On the high level of the model, the monitoring data matrices be-

come the new arranged data matrices Smix and Tmix; similar statis-
tics can be established. Suppose Sglob is the independent component
matrix calculated by the global ICA model, and Tglob is the score
matrix of Tmix which is calculated by the global PCA model. The
three statistics are established as below.

I2
glob=ST

glob·Sglob (16)

T2
glob=tglob·Λglob·t

T
glob (17)

SPEglob=fglob·f
T
glob (18)

In PCA monitoring, the confidence limits are based on a speci-
fied distribution shown in Eqs. (13)-(15) based upon the assumption
that the latent variables follow a Gaussian distribution. However,
in ICA monitoring, the independent component does not conform
to a specific distribution. Hence, the confidence limit of the I2 statistic
cannot be determined directly from a particular approximate distri-
bution. An alternative approach to define the nominal operating region
of the I2 statistic is to use kernel density estimation (KDE) [34,35].
For simplicity, the confidence limit of I2 can also be determined by
trial and error.
2. Fault Identification

After a fault has been detected, the contribution plot method is
first selected to identify the responsible sub-block. For advanced fault
identification, the reconstruction-based method is carried out in each
of the three subspaces: independent component subspace (ICS),
principal component subspace (PCS), and residual subspace (RS).
Therefore, the root cause of the detected fault can be further iden-
tified, and the fault interpretation is improved. To determine which
block takes the responsibility for the fault, block contributions are
defined as follows, which are average values of the variable contri-
butions in corresponding blocks.

(19)

(20)

(21)

where rb is the number of independent components extracted from
block b, kb is the number of principal component extracted from
block b. VI(b) means the independent component number extracted
in the b-th sub-block, VP(b) and means the principal component
number extracted in the b-th sub-block. The contributions of the i-
th component in Eqs. (19)-(21) are defined as [20,26]:

(22)

(23)

(24)

In the present paper, the fault subspace is supposed to be known.

Eb = ti
i=1

kb

∑ pi
T

 + Fb⋅

Tb
2

 = 
titi

T

λi
------- kb n −1( )

n − kb
-------------------Fk n−kb( ) α, ,≤

i=1

kb

∑

SPEb = f fT
 = e I − PbPb

T( )eT⋅ SPEα≤

SPEα = θ1 1+ 
cα 2θ2h0

2

θ1
--------------------- + 

θ2h0 h0  −1( )
θ1

2
--------------------------⋅

1/h0

λj
i

j=k+1

m

∑

I2Contblock b,  = I2Contglob i, /rb b =1 2 … B, , ,( )
i VI b( )∈
∑

T2Contblock b,  = T2Contglob i, /kb b =1 2 … B, , ,( )
i VP b( )∈
∑

SPEContblock b,  = SPEContglob i, /kb b =1 2 … B, , ,( )
i VP b( )∈
∑

I2Contglob i,  = 
Aglob Sfault glob i, ,⋅
Aglob Sfault glob i, ,⋅
---------------------------------- Sfault glob i, ,

T2Contglob i,  = 
ti

λi
----Pglob i, efault glob,⋅

i=1

k

∑

SPEContglob i,  = ffault glob i, ,  − f̂fault glob i, ,( )2
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Otherwise, it can be extracted by the singular vector decomposition
(SVD) method proposed by Yue et al. [32]. Suppose the fault set
includes J faults, which is described as {Fj, J=1, 2, …J}. Denote
{Θj, j=1, 2, …J} as the fault subspace with dimensions {dim(Θj)≥1,
j=1, 2, …J) for the defined fault set. Hence, both of the unidimen-
sional and multidimensional faults are considered.

After the fault subspace has been defined, the normal value x*

can be reconstructed from the corrupted value x in each of the IC,
PC, and residual subspaces. Suppose a fault Fj has happened; a re-
constructed value xj can be obtained as an adjustment of the cor-
rupted value x moving along a given fault direction Θj:

xj=x−Θjfj (25)

where fj is the estimated fault vector with ||f|| as its magnitude such
that xj is closest to the normal region.

In the IC subspace, theoretically, the optimal reconstruction is
obtained by minimizing ||xj−x*||. However, this is infeasible because
the normal value x* is unknown. In the present paper, the recon-
struction is realized by moving the corrupted value x along the de-
fined fault direction Θj in ICS. The reconstruction can be formu-
lized in the following optimization problem:

(26)

Denoting ∆j=WΘj, the solution of Eq. (26) is straightforward by
least square technique, which yields the following:

fj=(∆j
T∆j)−1∆j

TWx (27)

where the column rank of the matrix ∆j is assumed to be full. If the
matrix ∆j suffers a column rank deficiency, then the corresponding
solution of the optimization problem in Eq. (26) will be

fj=∆j
+Wx (28)

where the matrix ∆j
+ is the Moore-Penrose pseudo-inverse of ∆j.

Hence, the reconstructed data vector can be represented as Eq. (25).
The new I2 statistic value of this reconstructed data sample can be
calculated as follows:

Ij
2=Sj

TSj (29)

where Sj=Wxj, then the identification index in IC subspace is de-
fined as

(30)

where I2
fault is the statistical value with faulty data. Therefore, when

the fault subspace Θj is matched, the value of ηICS, j will be reduced
significantly.

Similarly, the detected fault can be reconstructed in both PCS
and RS. Related works have been published, including Qin [27],
Wang [29], and Lieftuche [30,31]. Therefore, the T2 and SPE statis-
tic values of the reconstructed data sample can be calculated, respec-
tively, in PCS and RS:

Tj
2=||λ−1/2PTxj||2 (31)

SPEj=||(I−PPT)xj||2 (32)

where λ is the eigenvalue matrix, I is an identity matrix with ap-
propriate dimension. Then the identification index in PC and resid-

ual subspaces can be defined as

(33)

(34)

In summary, two steps are taken for fault identification. First, the
contribution plot method is used to identify the responsible sub-
block for the detected fault. Although with this method it is hard to
pinpoint the specific cause of the fault, it can narrow down the pos-
sible causes to a specific sub-block or several sub-blocks. After the
responsible sub-block has been determined, fault reconstruction and
identification can be carried out in any of the three subspaces (ICS,
PCS, and RS) as long as it can be detected by its corresponding sta-
tistic.

CASE STUDY

In this section, the proposed method is tested through the TE pro-
cess [36]. As a benchmark simulation, the TE process has been widely
used to test the performance of various monitoring approaches [37].
This process has 41 measured variables (22 continuous process meas-
urements and 19 composition measurements) and 12 manipulated
variables, and a set of 21 programmed faults are introduced to the
process. The details on the process description are well explained in
by Chiang et al. [37]. In the present paper, 33 variables are selected
for process monitoring, which are listed in Lee et al. [21]. The simula-
tion data which we have collected are separated into two parts: train-
ing datasets and test datasets. They both consisted of 960 observations
for each operation mode, and their sampling interval was 3 min.
All process faults are introduced in the process after sample 160.

Previously, it has been logical to divide the process into sub-blocks
that describe a unit or a specific physical or chemical operation. Since
the TE process consists of five major units, we can divide the pro-
cess variables into five sub-blocks, each block corresponding to one
unit. However, because the condenser unit and the compressor unit
only have two variables, they are suggested to be integrated into
the other three sub-blocks. Therefore, these 33 monitoring vari-
ables are divided into three sub-blocks. There are 16 (1-9, 21, 23-
26, 32, 33), 10 (10-14, 20, 22, 27-29) and 7 (15-19, 30, 31) variables
in these three sub-blocks. To build the sub-model in the first sub-
block, 4 independent components (ICs) and 6 principal components
(PCs) are selected. The other two selections of the corresponding
sub-models are 3 ICs, 4 PCs and 2 ICs, 3 PCs. On the high level
modeling, 7 independent components and 10 principal components
are selected. To examine the rationality of our choices of component
numbers, the Jarque-Bera test is introduced. In this paper, the jbtest
function in MATLAB toolbox is used. If the value of the jbtest func-

fj = arg W x − Θjf( ) 2

f
lim

ηICS j,  = 
Ij

2

Ifault
2--------

ηPCS j,  = 
Tj

2

Tfault
2---------

ηRS j,  = 
SPEj

SPEfault
----------------

Table 1. Jarque-Bera test results of independent and principal com-
ponents

Components ICglob4 ICglob5 ICglob6 ICglob7 PCglob1 PCglob2 PCglob3 PCglob4

H 1 1 1 1 0 0 0 0
Components PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

H 1 1 1 1 1 1 1 1
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tion equals to 1, it means that the tested component is non-Gauss-
ian. On the other hand, if the value is zero, the tested component is
considered to be Gaussian. Results of the Jarque-Bera test are tabu-
lated in Table 1. For comparison, principal components of conven-
tional PCA are also tested. Results of the last 4 ICs and the first 4
PCs of the global model are shown in the second row of Table 1,
and results of the first 8 PCs of the PCA model are given in the last
row of the table. As shown in the table, the values of ICglob7 and PCglob1

are 1 and 0, which means that the non-Gaussian information is ap-
proximately extracted by 7 ICs. However, the first 8 PCs of PCA
are all considered non-Gaussian. In fact, if 19 PCs are chosen for
the PCA model, among which the first 12 PCs are considered to
be non-Gaussian, only 7 PCs (13-19) are Gaussian distributed.

To evaluate the monitoring performance of the proposed method,
a sensor fault is first simulated in the TE process. A constant value
is added to variable 5, and 960 samples are collected. Global process

Fig. 2. Monitoring results of the sensor fault: (a) fault detection; (b) sub-block identification.

Fig. 3. Advanced monitoring results of the sensor fault: (a) fault detection results of sub-block 1; (b) fault detection results of sub-block 2;
(c) fault detection results of sub-block 3; (d) advanced fault identification results of the sensor fault.
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monitoring results of this sensor fault are given in Fig. 2. As indi-
cated, all three statistical confidence limits have been exceeded, which
means that a fault has been detected. To determine which sub-block
takes the most responsibility for the fault, the contribution plot method
is employed. It is clearly shown in Fig. 2(b) that the first sub-block
should be the most responsible one for the detected fault. The re-
sults of contribution plots are straightforward and easy to interpret,
since the faulty sensor is included in the first sub-block. Monitor-

ing results of three sub-blocks are given in Fig. 3. It can be inferred
that this sensor fault has happened in the first sub-block, since most
of the statistical values exceed their corresponding control limits.
However, the statistical confidence limits in Fig. 3(b) and Fig. 3(c)
are not violated during the operating process. To gain further inter-
pretation and determine the exact root cause of the fault, advanced
fault detection and identification can be carried out. Thus the recon-
struction-based method is employed in the first sub-block. Final

Fig. 4. Monitoring results of the sensor fault by Multiblock PCA: (a) fault detection results of sub-block 1; (b) fault detection results of
sub-block 2; (c) fault detection results of sub-block 3; (d) fault identification results of the sensor fault.

Fig. 5. Monitoring results of fault 4: (a) fault detection; (b) sub-block identification.
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identification results are shown in Fig. 3(d). One can find that the
faulty variable (variable 5) is correctly identified in any of the three
subspaces (ICS, PCS and RS). For comparison, monitoring results
of multiblock PCA are given in Fig. 4. Because no super model
has been built for global process monitoring, three sub-blocks should
be monitored separately. If there are many sub-blocks, the moni-
toring tasks will become troublesome. However, if the two-level
multiblock model is used, one can first use the global model to mon-
itor the whole process, and then the advanced process monitoring
should only be done in the responsible sub-block. Although the fault
detection and identification results of the two methods seem to be
identical in this case, the two-level multiblock method has more
potential for monitoring plant-wide processes.

Next, fault 4 is considered. Unlike the sensor fault, whose fault
subspace is easily derived, fault subspace derivations of process
faults are not straightforward. To this end, Yue et al. [32] proposed
a fault subspace extraction strategy for the reconstruction-based fault
identification method. Before carrying out fault identification, all of
the 21 fault subspaces in the TE process are supposed to be extracted
and preserved. Fault detection and identification results of both meth-
ods for fault 4 are shown in Figs. 6-8. As seen in Fig. 5, three mon-
itoring statistics all indicate that a fault has happened, and the con-
tribution plots given in Fig. 5(b) indicate that the first sub-block takes
the most responsibility. Therefore, the first sub-block is further moni-
tored and advanced fault identification is also carried out in this sub-

block. To illustrate the responsibility of the first sub-block, fault de-
tection results of the second and third sub-blocks are also given in
Fig. 6. Besides, the results of advanced fault identification are also
given in Fig. 6(d), in which the fourth fault subspace is found to be
the most likely one that could happen in the process. However, the
11-th fault subspace seems to be similar to the identified fault sub-
space, which makes the fault identification result puzzling. In this
case, the performance could be improved by incorporating some
process or expert knowledge. Similar fault detection results are ob-
tained by multiblock PCA, which are given in Fig. 7. However, the
fault identification results seem to be worse than that in Fig. 6(d).

CONCLUSIONS

A novel strategy has been developed for plant-wide process mon-
itoring. The new proposed method is based on two-level multiblock
ICA-PCA. The multiblock method first divides the process into sev-
eral sub-blocks. Sub-models are built for these divided sub-blocks.
Then the extracted information from these sub-blocks is integrated
on the high level. A global monitoring model is developed on this
high level to extract further cross-information between sub-blocks.
When a fault has been detected by the global monitoring charts, a
two-step fault identification method is proposed, which is based on
the contribution plots and the fault reconstruction method. Com-
pared to the conventional approach, the new proposed method is

Fig. 6. Advanced monitoring results of fault 4: (a) fault detection results of sub-block 1; (b) fault detection results of sub-block 2; (c) fault
detection results of sub-block 3; (d) advanced fault identification results of fault 4.
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more efficient for both fault detection and identification. The TE case
study shows the feasibility and efficiency of the proposed method.
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