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Abstract—The radial migration of a single neutrally buoyant particle in Poiseuille flow is numerically investigated
by direct numerical simulations. The simulation results show that the Segré and Silberberg equilibrium position moves
towards the wall as the Reynolds number increases and as the particle size decreases. At high Reynolds numbers, inner
equilibrium positions are found at positions closer to the centerline and move towards the centerline as the Reynolds
number increases. At higher Reynolds numbers, the Segré and Silberberg equilibrium position disappears and only
the inner equilibrium position exists. We prove that the inner annuluses in the measurements of Matas, Morris & Guazzelli
(J. Fluid Mech. 515, 171-195, 2004) are not transient radial positions, but are real equilibrium positions. The results
on the inner equilibrium positions and unstable equilibrium positions are new and convince us of the existence of multiple
equilibrium radial positions for neutrally buoyant particles.
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INTRODUCTION

Inhomogeneous radial distributions of particles in suspensions
flowing through a tube have always been of great interest in both
biological and non-biological fields because of the importance of
radial migration phenomena in suspension rheology [1,2]. Such a
phenomenon is due to the small inertia and wall effect, which cause
particle migration across the streamlines of an undisturbed laminar
flow [3]. The quantitative experimental evidence of the radial migra-
tion was first reported by Segré and Silberberg [1,4] who performed
experiments with a dilute suspension of spherical particles in Poi-
seuille flow through a tube at Reynolds numbers Re=2-700 (Re=
U,..R/vwhere U, is the maximum velocity, R is the tube radius,
and vis the kinematic viscosity). They found that the particles migrate
to an equilibrium radial position of about 0.6 tube radius, irrespec-
tive of the radial positions at which the particles are released at the
entry. This phenomenon, termed the tubular pinch effect (or the Segré-
Silberberg effect), has had a great influence on studies of particle
migration and lift in tube flow.

Following their works, a number of experimental studies were
performed in several flow configurations (vertical or horizontal flows
and channel or tube flows) and with different particle properties
(neutrally or non-neutrally buoyant particles) [5-15]. These studies
confirmed the Segré and Silberberg’s observations and also showed
that the general behavior of particles depends strongly on flow con-
figurations and particle properties. For example, these experiments
showed that a neutrally buoyant particle in Poiseuille flow stays at
the initial radial position at very small Reynolds numbers, migrates
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to an equilibrium radial position between the centerline and the wall
at finite Reynolds numbers, as well as that the equilibrium radial
position shifts towards the wall when the Reynolds number is in-
creased and towards the centerline when the particle diameter is
increased. Han et al. [16] confirmed that the Segré-Silberberg effect
is a very robust phenomenon that is observable for volume frac-
tions up to ¢=0.2.

In addition to experimental studies, analytical studies of the lift
force, which causes the particle to migrate transversely, were per-
formed using a matched asymptotic expansion method [17,18]. Al-
though these studies explained some of the physics of the Segré-
Silberberg effect in the case of non-neutrally buoyant particles, they
cannot explain Segré-Silberberg’s observations for neutrally buoy-
ant particles. Later, Ho and Leal [2] and Schonberg and Hinch [19]
predicted most of the experimental observations for neutrally and
non-neutrally buoyant particles in linear or quadratic flow using a
regular perturbation method including the influence of the walls
and the quadratic nature of the non-perturbed fluid velocity. Schon-
berg and Hinch [19] calculated the force on a neutrally buoyant par-
ticle in two-dimensional quadratic flow for channel Reynolds num-
bers (Re=U,,..//v where [ is the channel width) up to 150 by inte-
grating the solution of the matched asymptotic expansion problem in
Fourier space. Later, Asmolov [20] extended this method to chan-
nel Reynolds numbers up to 3,000. It should be noted that in order
for these theories to be valid, the particle scale Reynolds number
must be very small: Re,=Re (d//)’<<1 where d is the particle diam-
eter. This limitation makes it difficult to apply these analytical meth-
ods to practical problems where the particle scale Reynolds number
is finite. Besides, since these analytical calculations are made for
plane Poiseuille flow, they cannot capture the possible influence of
curvature effects in tube flow.
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Since a two-dimensional finite-element scheme based on unstruc-
tured body-fitted moving grids was first introduced by Hu et al. [21],
several direct numerical simulations of particle migration were per-
formed for Couette flows and plane Poiseuille flows [22-25]. In
particular, Patankar et al. [23] and Wang and Joseph [25] obtained
correlations of the lift force for a single circular particle in plane
Poiseuille flow by processing numerical data. However, the results
from two-dimensional simulations are difficult to compare with ex-
perimental results because the majority of the experiments are for
spherical particles in circular tube flows. In the two-dimensional
simulations, the equilibrium radial position shifts towards the chan-
nel centerline, while in the experiments it shifts towards the wall as
the Reynolds number is increased. There have been few studies which
simulate the radial migration of a neutrally buoyant particle in Poi-
seuille flow [26].

Recently, very interesting observations were reported by Matas
et al. [27,28] who measured radial migration of dilute suspensions
of neutrally buoyant spherical particles in pipe flows at elevated
Reynolds numbers. They found that a single equilibrium radial posi-
tion (the Segré and Silberberg annulus or outer annulus) was ob-
served which moved towards the wall as the Reynolds number in-
creased in the range of 67 to 350. Another annulus (inner annulus)
closer to the centerline, not predicted in the analytical studies using
the asymptotic theories, was observed at about 0.5+0.2 times the
tube radius for elevated Reynolds numbers (Re>600). As the Rey-
nolds number increased (Re>1,650), the outer annulus disappeared
and only the inner annulus was clearly observed. They questioned
whether this inner annulus corresponds to a true zero of the lift force
or is a transient feature, observed only when the entrance length is
longer than the system. However, they did not exclude the possi-
bility that the inner annulus is a real equilibrium radial position not
captured by the asymptotic theories [20]. The existence of multiple
equilibrium radial positions has been confirmed for non-neutrally
buoyant particles in plane Poiseuille flows [23,24,29], but not for
neutrally buoyant particles in Poiseuille flows. The observations of
Matas et al. [27,28] prompt us to consider the possibility of multi-
ple equilibrium radial positions for neutrally buoyant particles in
Poiseuille flows. The existence of multiple equilibrium radial posi-
tions for neutrally buoyant particles in tube flow has remained an
open question.

The present work focuses on the radial migration of a neutrally
buoyant spherical particle in Poiseuille tube flow. The radial migra-
tion is numerically investigated with direct numerical simulations.
The radial lift forces and velocities with radial positions are calcu-
lated and the equilibrium radial positions are obtained with Rey-
nolds numbers. To date, only few studies have simulated the radial
migration of a neutrally buoyant particle in Poiseuille flow through
a tube at elevated Reynolds numbers. In the present work, numerical
simulations are extended to high Reynolds numbers up to 1,500,
matching the experimental conditions under which multiple equi-
librium radial positions were observed by Matas et al. [27,28]. Our
simulation results are compared with previous experimental obser-
vations and with analytical predictions for plane Poiseuille flow.
The simulation results at elevated Reynolds numbers provide a clue
as to whether the inner annulus is only a transient radial position
where particles are still moving towards the tube wall or another
real equilibrium radial position where the radial lift force is zero.

Poiseuille flow

- -

Fig. 1. Schematic of a migration problem of a spherical particle
suspended in Poiseuille flow. The particle is neutrally buoy-
ant.

PROBLEM DESCRIPTION, GOVERNING
EQUATIONS AND DIMENSIONLESS PARAMETERS

A schematic of the problem considered in the present work is
shown in Fig. 1. A neutrally buoyant spherical particle with radius
a is freely placed at a radial position r on the x-y plane passing the
center of a tube with a radius of R and a length of L. The incom-
pressible Newtonian fluid flows in the positive x-direction, and the
flow is laminar.

The governing equations for fluid flow in the problem are

V-u=0 (1)

)
p,(a—ltl +(u-V)u) =—Vp+uV'u )

where u is the flow velocity, 0 is the fluid density, p is the pressure,
and u is the molecular viscosity of the fluid.

The translational and rotational motions of the suspended parti-
cle satisfy, respectively,

m,,dd—‘iﬂ=j[—pe+ 7]-ndS=F,+F, 3)
dQ
182 [(x-X, )X (1= pe+ 7 m)dS =T, +T, @)

where m, is the mass of the particle, U, is the translational velocity
of the particle, £J, is the angular velocity of the particle, e is the unit
tensor. 7is the shear stress tensor and n is the unit normal vector of
the particle surface pointing outward. S is the surface boundary of
the particle. I is the moment of inertia of the particle and X, is the
coordinate of the center of mass of the particle. m,=0,47°/3 where
0, is the density of the particle and I=2m,a’/5. The hydrodynamic
force F and moment T acting on the particle are obtained by in-
tegrating the fluid stress over the particle surface. The no-slip condi-
tion is satisfied on the particle boundary. The velocity at a point of
the particle can be expressed in the following equation:

u=U+02x(x-X) )

The velocity profile in the tube Poiseuille flow without the particle
is given by

u(n)=U,(1-r/R?) ©)
where U, is the maximum velocity at the centerline of the tube. r
is the radial position and R is the radius of the tube.

Relative motions between the fluid and the particle, which may
be characterized by slip velocities, are essential to understanding
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the lift force on the particle [24]. The slip translational and angular
velocities of the particle at steady state are defined as:

U=U,—~U,, the slip translational velocity ™
Q=0Q-09=0Q+ 7 /2, the slip angular velocity ®)

where U, and (2 are the fluid velocity and angular velocity, respec-
tively, evaluated at the location of the particle center in undisturbed
flow. y is the local shear rate. The angular velocity discrepancy,
defined as £2— €2, where 2, is the slip angular velocity at equilib-
rium, changes sign across the equilibrium position just as the lift
force does [24].

Here, we introduce dimensionless parameters since they allow
us to examine simulation results conveniently [26]. The ratio of the
spherical particle radius a (=d/2) to the tube radius R (=D/2) and
the dimensionless radial position are defined, respectively, in the
following equations:

a=a/R and r=r/R. )
The dimensionless lift is given by

L=2£= (10)

The tube Reynolds number (in this paper, termed the Reynolds num-
ber) and the particle scale Reynolds number are given by

_PUnaR _ d :
Re= —/l and Re,= Re(D) . (11)
The undisturbed tube Poiseuille flow without particles is given by
Eq. (6). The shear rate at the wall (=R) is given by »,=2U,,./R.
We define the velocity V=2ay, as the characteristic velocity. The
shear Reynolds number is

y 2 2
ReFﬂN!(lZa) =/0,»}<122a) _8a sz' (12)

The dimensionless translational and angular slip velocities are defined
as

U,=pU,(2a)/y, 2=p2(2a)"/u and Q2,=02.2a)/u. (13)
NUMERICAL METHODS

1. Fluid-particle Interaction Scheme

Since the motions of the fluid and particle in the problem are fully
coupled to each other, the governing equations have to be solved
using two-way coupling in order to determine the hydrodynamic
forces acting on the particles and to obtain the motions of both the
fluid and the particle without using empirical correlations. Since an ap-
proach (called direct numerical simulation, DNS) to simulate the mo-
tion of both the fluid and the particles using the arbitrary Lagrangian-
Eulerian (ALE) technique was first introduced by [21], the approach
has been used in several studies of fluid-particle systems. More de-
tails are given by Hu [30] and Hu et al. [31]. Hu and coworkers in-
troduced two schemes: a fully explicit scheme where the particle
position and velocity are explicitly updated at each time step, and
an explicit-implicit scheme where the particle position and the mesh
nodes in the fluid domain are updated explicitly, whereas the parti-
cle velocity and the fluid flow field are determined implicitly.

July, 2010

In the present work, we modified some parts of the fully explicit
scheme introduced by Hu and coworkers to avoid numerical insta-
bilities and to ensure a strong coupling between the fluid flow and
the particle motion in two-way coupling fashion. The calculation
procedure for the modified scheme is as follows:

Step 1. Initialize all properties and solution variables.

Step 2. Update the time step.

Step 3. Solve the flow fields (u(x, t,) and p(x, t,)) with a typical
CFD method, using particle velocities (U(t,.,) and £2t,_,)) as bound-
ary conditions.

Step 4. Calculate the hydrodynamic force (F(t,)) and moment
(T(t,)) acting on the particle, using the flow fields (u(x, t,) and p(x,
t)).

Step 5. Update the particle velocities (U(t,) and £At,)) using the
force (F(t,)) and moment (T(t,)) by the backward Euler scheme.

Step 6. Update the particle positions and orientations (X(t,) and
At,)) using the particle velocities (U(t,,) and £At,_,)). In the case
of the fully explicit scheme introduced by Hu and coworkers, the
calculation now proceeds to the next time step (go to Step 2) so that
Step 7 (below) does not occur.

Step 7. Check the convergence. If [F(t,)/m,— U(t,_,)| and [T(t,)/
I- 2 (t,_,) are less than a given tolerance of &, the calculation pro-
ceeds to the next time step and is restarted at the Step 2. If not, another
sub-iteration is started at Step 3 with the values predicted by the
previous sub-iteration until the convergence criterion is satisfied.
Here, U(t,_,) and 2 (t,_,) are the translational and angular acceler-
ations predicted at the previous iteration, respectively.

Step 8. The above steps are continued until the end time is reached.
2. Mesh Updating Scheme

The motion of the particle interacting with the fluid flow causes
a change in the mesh system in the ALE approach. The mesh sys-
tem initially designed can be deformed or re-meshed in accordance
with the moving particle by a dynamic mesh method in FLUENT
(ANSYS, USA). The deforming mesh uses a spring-based method
which allows robust mesh deformation under the assumption that
the mesh element edges behave like an idealized network of inter-
connected springs. The re-meshing is adopted to properly treat de-
generated cells through the agglomeration of cells that violate a given
skewness criterion and the local partition of the agglomerated cells.
The mesh is locally updated with new cells satisfying the skew-
ness criterion where the solutions are interpolated from those based
on the old cells.

3. Unconstrained and Constrained Simulations

For a neutrally buoyant particle in tube flow, equilibrium can be
achieved when the particle migrates to and stays at a radial position
(i.e., an equilibrium position t,) where steady rectilinear motion
may be observed, the acceleration and angular acceleration vanish,
and the hydrodynamic lift force is zero. In the present work, un-
constrained and constrained simulations are performed to determine
the equilibrium radial position and to investigate the radial migra-
tion of a neutrally buoyant particle. In the unconstrained simula-
tion, the particle is allowed, with free translation and rotation, to
migrate to its equilibrium position, just as in physical experiments.
The unconstrained simulation is useful for predicting the particle
trajectory. In the constrained simulation first introduced by Patankar
et al. [23], the particle is allowed to move only along a line parallel
to the axis of the tube and rotate freely while its radial position is
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Fig. 2. Computational domain with a periodic boundary in a coor-
dinate system fixed on the particle to simulate the migra-
tion of a spherical particle suspended in a Poiseuille flow.
The simulations using this approach generate a fully devel-
oped parabolic velocity profile, u(r)=2QR*-r*)//R*-U, ,,
at the left and right boundaries, since the periodic length L
of the tube is chosen to be large enough, with L/2a=150. The
pressure at the left boundary is higher than that at the right
boundary and the pressure difference is approximately Ap=

8LLQ/7R".

fixed so that it does not translate in the radial direction. When such a
constrained motion reaches steady state in which the particle trans-
lates in the axial direction at a constant velocity and rotates at a con-
stant angular velocity, a hydrodynamic radial lift force L can be ob-
tained as a function of the radial position with zero radial lift force
at the equilibrium position.

The steady state translational and angular velocities as well as
the hydrodynamic radial lift force obtained from the constrained
simulation are independent of the particle density used. In the present
work, we place the particle at (y=r, z=0) (Fig. 1) so that the lift force
at steady state is in the y-direction, with no net force in the z-di-
rection. The only components of the particle translational and angu-
lar velocity at steady state are U, and £2, respectively.

4. Computational Domain and Treatment of Boundary Con-
ditions

Numerical simulations are performed in a periodic domain, and
a periodic boundary condition is imposed at both ends as shown in
Fig. 2. As the particle moves relative to the tube wall, an exact simu-
lation of the system with a fixed set of coordinates requires repeated
updates of the computational domain or the use of a very long com-
putational domain to account for the entrance length, which allows
the particle to reach steady state.

In the present work, instead of the system with a fixed set of co-
ordinates, we will use a coordinate system fixed on the particle and
simulate the particle migration in a periodic domain as shown in
Fig. 2, where the particle is always located at the center of the com-
putational domain without being translated in the axial direction.
Here, the velocity of the tube wall is set to be U, ,=—U, , where
U, . is equivalent to the axial velocity of the particle U, , in Fig. 1.
U, , is initially set to be the velocity at the initial center position of
the particle in undisturbed Poiseuille flow under a specific flow rate
Q and is continuously adjusted during the simulation so that the
net axial hydrodynamic force exerted on the particle can be zero.
That is, U, .en =U, «oatU, . where U, , is the axial velocity of
the particle newly derived from Eq. (3) during every sub-iteration
(Step 5 of the calculation procedure explained in Section 3.1). Since
the velocity of the tube wall is adjusted at every sub-iteration, the
flow rate imposed as the boundary condition should also be adjusted,
as follows:

_(nR°0,.-2Q)

Q(new) - 4Q (14)

The simulations using the above approach generate a fully devel-
oped parabolic velocity profile, u(r)=2QR*-r*)/7R*~ U, ., at the
left and right boundaries since the periodic length L of the tube is
chosen to be sufficiently large, with L/2a=150. The pressure at the
left boundary is higher than that at the right boundary, and the pres-
sure difference is approximately Ap=841.Q/7R". The calculated
steady-state hydrodynamic forces on the particle in the two config-
urations of Figs. 1 and 2 are identical.

The typical mesh used in the present simulations consists of
about 500,000 tetrahedral finite-element cells with refined meshes
in the vicinity of the particle and the tube wall. Preliminary calcu-
lations have shown that the current mesh system provides suffi-
cient mesh-independent solutions (this issue is not presented in detail
in this paper due to limited space). We found that the nodes of the
first layer adjacent to the particle surface should be placed as close
as possible for stable convergence to a steady state and for reliable
prediction.

RESULTS AND DISCUSSION

1. Inertial Migration of a Neutrally Buoyant Particle

Numerical simulations are performed in the computational domain
shown in Fig. 2. The diameters of the tube and the particle are 5
cm and 0.75 cm, respectively (the diameter ratio of the particle and
tube D/d is 6.67). The periodic length L is 1.1 m, which is chosen
to be large enough, with L/d=150, so that solutions are indepen-
dent of its value. The fluid density is 1.0 g cm™ and the viscosity is
1.0 poise. The particle suspended in the tube is neutrally buoyant.

The evolutions to equilibrium of the particle which started at two
different radial positions T =0.2 and 0.8 in the tube flow at Re=50
(U,=0.2 ms™) are shown in Fig. 3. These results are obtained from
unconstrained simulations where initial flow conditions come from
constrained simulations at the above initial radial positions, which
are performed using a constrained motion in the radial direction to
obtain a fully developed velocity profile. In the unconstrained simu-
lations, the radial motion constraint is released; therefore, the parti-
cle can travel to a preferential equilibrium radial position where the
lift force is zero. The results show that, no matter where the particle
is released, it migrates to an equilibrium radial position of T =0.632.
The translational and angular velocities finally converge to equilib-
rium values of U=0.114 m s™' and £2=5.01s™', respectively. The
radial migration velocities become zero when the particles reach
the equilibrium radial position where the lift force is zero.

The steady-state results at different radial positions calculated in
constrained simulations under the above flow conditions are plot-
ted in Figs. 4 and 5. The translational and angular velocities obtained
in the constrained simulations are slightly different from the ones
evaluated at the particle center in undisturbed flow. However, the
differences are relatively prominent as the particle is closer to the
wall. The equilibrium radial positions of the particle are the points
where the lift force is zero. Two zero-lift points are found in Fig,
4(c). The zero-lift point at the centerline is an unstable equilibrium
radial position while the zero-lift point between the centerline and
the wall is a stable equilibrium radial position. There are subtle dif-
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Fig. 3. Evolution to equilibrium of a neutrally buoyant spherical
particle with a diameter ratio of D/d=6.67 in the tube flow
at Re=50 calculated in an unconstrained simulation. The
particle is released at two different radial positions, r=0.2
and 0.8. (a) radial position, (b) angular velocity, and (c) trans-
lational velocity.

ferences between stable and unstable equilibrium radial positions.
When a particle is disturbed away from an unstable equilibrium
radial position, the particle is driven further away from the unstable
equilibrium radial position. On the other hand, when a particle is
disturbed away from a stable equilibrium radial position, the lift
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Fig. 4. Steady-state results at different radial positions calculated
in constrained simulations for a neutrally buoyant spheri-
cal particle with a diameter ratio of D/d=6.67 in the tube
flow at Re=50. (a) translational velocity, (b) angular veloc-
ity, and (c) lift force on the particle.

tends to push the particle back to the stable equilibrium radial posi-
tion. In the present study, the unstable equilibrium position at the
centerline will not be considered. The lift force is positive when
the particle is below the stable equilibrium radial position and is
negative when it is above. As shown in Fig. 5, the slip velocity is
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Fig. 5. Slip translational velocities and slip angular velocity discrep-
ancy at different radial positions calculated in constrained
simulations for a neutrally buoyant spherical particle with
a diameter ratio of D/d=6.67 in the tube flow at Re=50. (a)
slip translational velocity and (b) slip angular velocity dis-
crepancy.

always positive, and the sign of the angular slip velocity discrep-
ancy, £2—£2,, changes with the sign of the lift force across the equilib-
rium radial position. Similar results can also be found in the work
of Joseph and Ocando [24] who studied the lift force on a circular
particle in plane Poiseuille flow perpendicular to gravity. The con-
strained simulations predict that the translational and angular veloci-
ties and the equilibrium radial position are U,=0.116 m s™', £2=5.03
s™', and 7,=0.633, respectively, which are almost the same as the
values calculated in the above unconstrained simulations.

Running the above two sets of simulations, we found that con-
strained simulations are more economical because it takes much
longer for solutions to reach equilibrium in unconstrained simula-
tions. Constrained simulations are also more suitable for this study
in that they provide the distributions of the lift force and particle
velocities along with the radial positions at steady state. Steady state
solutions are important in the study of lift force because of the ab-
sence of complicating effects of particle acceleration. Constrained
simulations also provide the radial position and velocities of the
particle at equilibrium.

The lift forces at different radial positions calculated in constrained
simulations are plotted in Fig. 6 for a neutrally buoyant particle with
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Fig. 6. Lift forces at different radial positions for a particle with
diameter ratio D/d=6.67. The four curves in (a) correspond
to Re=50, 100, 250, and 500, and the three curves in (b) cor-
respond to Re=750, 1,000, and 1,500, respectively.

a diameter ratio D/d=6.67 for tube flows ranging from Re=50 to
1,500. The equilibrium radial positions and translational and angu-
lar velocities of the particle with the Reynolds number are summa-
rized in Table 1. For Re<500, a single stable equilibrium radial po-
sition exists between the centerline and the wall, and the position
moves towards the wall as the Reynolds number increases. For Re=
500, the curve of the lift force as a function of the radial position
becomes more complicated and a local lift minimum exists at ap-
proximately T =0.55 between the centerline and the stable equilib-
rium radial position. For Re=750, three zero-lift points are observed
at approximately T =0.54, 0.58, and 0.75 between the centerline and
the wall. Two zero-lift points at T =0.54 and 0.75 are stable equi-
librium radial positions and the other at ¥ =0.58 is an unstable equi-
librium radial position. This result means that neutrally buoyant par-
ticles in tube flow can accumulate at multiple radial positions with
different translational and angular velocities, as noted in Table 1.
The possibility of multiple equilibrium radial positions will be dis-
cussed in the next section in detail. As the Reynolds number in-
creases further, two equilibrium radial positions closer to the wall
disappear. Only the stable equilibrium radial position close to the
centerline exists and it moves towards the centerline, in contrast
with the trend for Re=5-500. The equilibrium radial positions for
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Table 1. Equilibrium radial positions and translational and angular velocities of a neutrally buoyant spherical particle with the Reynolds
number. F.=r,/R, U,=pU,2a)/1 and 2,=0,2(2a)"/u wherer,, U, and (2, are values at equilibrium

Re Stable/
D/d
5 50 100 250 500 750 1,000 1,500 Unstable
6.67 £ 0.61 0.63 0.66 0.72 0.75 0.75 Stable
0.54 0.51 0.45
0.58 Unstable
U. 0.9 8.7 16.2 35.2 62.8 95.1 219.5 357.1 Stable
156.5
145.2 Unstable
Q2 0.3 2.8 5.8 14.8 29.7 43.0 415 56.6 Stable
322
33.9 Unstable
9 3 0.63 0.65 0.68 0.75 0.79 0.81 0.81 0.81 Stable
0.52 0.50 0.50 0.49
0.57 0.65 0.68 0.78 Unstable
U. 0.7 6.2 11.6 24.1 40.8 56.5 74.1 116.1 Stable
79.8 124.3 165.5 253.5
74.2 94.1 118.1 128.9 Unstable
Q, 0.2 1.6 3.4 8.8 18.0 26.7 35.6 51.7 Stable
125 18.2 24.7 36.8
133 21.7 30.0 49.5 Unstable

Re=1,000 and 1,500 are t =0.51 and t =0.45, respectively, which
are closer to the centerline than the equilibrium radial positions (T =
0.61-0.75) calculated for Re=5-500.

To ensure the possible presence of multiple equilibrium radial
positions for a neutrally buoyant particle in the tube flow at Re=
750, as shown in Fig. 6, constrained simulations were performed
with a smaller particle of diameter ratio D/d=9. The lift forces are
plotted in Fig, 7, and the equilibrium radial positions and translational
and angular velocities of the particle with the Reynolds number are
summarized in Table 1. For Re=50-250, only a single stable equi-
librium position exists, which moves towards the wall as the Rey-
nolds number increases. On the other hand, for Re=500-1,500, mul-
tiple equilibrium radial positions exist between the centerline and

T ™
A a

N

I~ 5L .
Re=50 |
-0 + Re=100 : | ]
—+— Re=250 \
- 1
-15 . 1 i 1 i 1 . 1 N
0.0 0.2 0.4 0.6 0.8 1.0

7 =rR[]

the wall. As the Reynolds number increases, two stable equilibrium
radial positions close to the centerline and the wall are slightly shifted
towards the centerline and the wall, respectively, and the unstable
equilibrium radial position moves slightly towards the wall. These
results mean that a neutrally buoyant particle can migrate to a radial
position of approximately T =0.5 or ¥ =0.8 in the tube flows at Re>
500. For D/d=9, multiple equilibrium state exists in wide range of
Reynolds number (500-1,500) compared to the case of D/d=6.67.
It might be due to the influence of the relative curvature effects be-
tween the pipe and particle.

The curves of the lift force as a function of the radial position at
high Reynolds numbers shown in Figs. 6 and 7 consist of multiple
positive and negative slope branches. When the Reynolds number

(b) 150 . . : ;

100 + vyl i Multiple equilibrium §

positions exist

50

0 F -
Z 50 4
-]
=100 . i S—-— R f Foaraer -
oy ——Re=500 b ]
—+—Re=750
2200 F —+— Re=1,000. . i
+— Re=1,500 \J
_250 " 1 i 1 M 1 L 1 "
0.0 0.2 0.4 0.6 0.8 1.0
7 =rR[-]

Fig. 7. Lift forces at different radial positions for a particle with diameter ratio D/d=9. The three curves in (a) correspond to Re=50, 100,
and 250, and the four curves in (b) correspond to Re=500, 750, 1,000, and 1,500, respectively.
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Fig. 8. Lift forces at different radial positions for a particle in tube flow at Re=750. (a) D/d=6.69 (b) D/d=9. The equilibrium radial position
of a neutrally buoyant particle is the point where the lift force is zero. There are two stable equilibrium positions and two unstable

equilibrium positions.

is small, only a pair of positive and negative slope branches is found.
The positive-slope branch is an unstable branch, while the nega-
tive-slope branch is a stable branch as indicated in Fig. 8. If a particle
is on an unstable branch, the particle experiences an increase in the
lift force as the particle migrates to an equilibrium radial position.
On the other hand, a particle on a stable branch experiences a de-
crease in the lift force. Such a complicated distribution of the lift
forces at high Reynolds numbers is more apparent for a smaller par-

(a) 10 — ;

s| e ]
- .y o
L -‘_.‘f':-:::__‘ ————a
0 1 _
— _5 i T
= ot A\ .
-5t 4 -
e Total lift \
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25 I i i i
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c T T T
( ) 100 i .
.-
0 ke b A 4
}L_/" N *
=50 - H ; /z \t .
p— / I
LI o . 1 -
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1
-150 I|I‘ 1
|
200 F e ol lif | ]
—e— Lifi due to pressure |
250k . Lift due to viscous shear stress L T
_300 i 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

F=rR [

-]

ticle with a ratio of D/d=9, as shown in Fig. 8(b). Similar compli-
cated distributions of the lift force at high Reynolds numbers are
found in Asmolov’s calculation of the lift force on a small neu-
trally buoyant sphere in plane Poiseuille flow [20], using matched
asymptotic methods. In his Fig. 8, only a pair of positive and nega-
tive slope branches are found on the curves for Re=15 and 100.
For Re=300, 1,000, and 3,000, two pairs of positive and negative
slope branches on the curves are observed and a local minimum of

(b)

50
25

-25

=100
-125
-150
-175

(d) 200

100

= 100

| =

=200

-300

-400

0.0 0.2

0.0 0.2

\
|

L i \& i

| —=— Total lift i

—=— Lift due to pressure |

= —&— Lift due 1o viscous shear stress | .

0.4 0.6
F=r/R[-]

—=— Total lift |
—e— Lift due to pressure 1 1
—&— Lift due to viscous shear stress |

1 N 1 " 1 " L

0.4 0.6
7=r/R[-]

Fig. 9. Contributions of the lift forces due to pressure and viscous shear stress at different radial positions for a particle with diameter
ratio D/d=6.67. (a) Re=100, (b) Re=500, (c) Re=750, and (d) Re=1,000. For Re=750, there are two stable equilibrium positions and

two unstable equilibrium positions.
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the lift force exists. However, his calculations predict only a single
equilibrium radial position between the centerline and the wall.

The total lift force acting on a neutrally buoyant particle sus-
pended in tube flow is the sum of the lift forces due to pressure and
viscous shear stress on the particle. Both lift forces acting along the
y-direction balance at equilibrium radial positions. That is, the total
lift force is zero. The contribution of pressure and viscous shear stress
to the total lift forces is plotted in Fig. 9 for a particle of D/d=6.67
at Re=100, 500, 750, and 1,000. When the particle is below the equi-
librium radial position, the lift force due to pressure is always posi-
tive. The lift force due to viscous shear stress changes the sign below
the equilibrium radial position. At the equilibrium radial position,
the sum of two lift forces is zero; the lift due to pressure is positive,
while the lift due to viscous shear stress is negative. This contribu-
tion pattern shows that the viscous shear stress plays an important
role in determining the equilibrium radial position, since the pres-
sure force pushes the particle to the wall in most regions except for
the region very close to the wall, while the shear force changes the
sign below the equilibrium radial position. The velocity vectors and
pressure distributions at four positions (a-d), indicated in Fig. 9(c),
are plotted in Fig. 10. Due to the balance of the lift forces, the par-
ticles in (a) and (b) move to a stable equilibrium radial position of
t =0.54, while the particles in (c) and (d) are shifted to the other
stable equilibrium radial position t =0.75. The pressure gradient
near the particle is significant when the particle is closer to the wall,
which leads the lift force due to pressure to be negative in the region
close to the wall, that is, the pressure pushes the particle to the cen-
terline.
2. Multiple Equilibrium Radial Positions of Neutrally Buoy-
ant Particles

The variation in the calculated equilibrium radial position as a
function of the Reynolds number for each set of particles is pre-

= Total lift (+)
= Pressure lift (+)

1 LLLLN

N I

d

R (- Total lift (+)
N Pressure lift (+)

L ITTTTITeTTere

(c)
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sented in Fig. 11, together with results of previous experimental stud-
ies [1,27] and an analytical study using asymptotic theory [20]. Segré
and Silberberg [1] do not explicitly give the maximum of the histo-
gram for their measurements, but offer the outer radial position where
the concentration goes to zero, r;,, and the mean radial position, T .
The value r,, overestimates the equilibrium radial position, while
the value T certainly underestimates it. The equilibrium radial posi-
tions of Segré and Silberberg [1] indicated in Fig. 11 are the values
evaluated from 1 /R, where R is the radius of the tube. The error
between our results and the measured data results from the broad-
ness of the maximum concentration in their measurements, and is
larger at small Reynolds numbers (Re<50) than at large Reynolds
numbers. However, it can be seen that our results for large Rey-
nolds numbers (Re>50) are in good agreement with their measure-
ments.

Matas et al. [27] measured lateral migration of dilute suspensions
of neutrally buoyant spherical particles (D/d=8-42) in pipe flows at
higher Reynolds numbers, Re=67-2,400. They found that a single
annulus is observed for Re<350, and the equilibrium position is
shifted closer to the wall as the Reynolds number increases. They
reported that a second annulus is observed on the cross-section at a
smaller radius (approximately t =0.5, spreading from 0.3 to 0.7)
for Re>600 when D/d=9-17, and for Re>1,200 when D/d=42. They
also reported that, for Re>1,650, the first annulus close to the wall
disappears and that only the second annulus is clearly observed.
They tried to explain the second annulus using the change in con-
vexity in the lift force profiles obtained from matched asymptotic
methods (Fig. 8 in Asmolov [20]). They argued that, though the
particles still tend to leave the centerline, they accumulate in the
region of low radial force situated at T =0.5+0.2. In their paper, they
chose to take the position of the local maximum concentration at
larger r to be the Segré and Silberberg annulus when the maximum

Total lift (-)
= Pressure lift (+)
Shear lift (-)

- - Total lift (-)
Pressure lift (-)
= Shear lift (-)

ol

Fig. 10. Velocity vectors and pressure distributions at four different radial positions corresponding to a-d, indicated in Fig. 9(c), for a particle
with diameter ratio D/d=6.67 in tube flow at Re=750. For Re=750, there are two stable equilibrium positions (r=0.54 and 0.75).
(a) r=0.35 (U=195, 2=22.7), (b) r=0.55 (U=153, £2=32.7), (c) r=0.7 (U=111, £2=39.6), and (d) r=0.8 (U=79, 2=45.7). The
plotted velocity vectors present the vectors converted into the general coordinate system shown Fig. 1.
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Fig. 11. Equilibrium radial pesition of a neutrally buoyant spherical particle as a function of Reynolds number for different particle sizes.

(b) is an enlargement of part of (a).

concentration corresponds to the position of the second annulus.
However, they did not exclude the possibility that the second annu-
lus could be a real equilibrium radial position not captured by the
asymptotic theories [20]. We plot both the positions of the maxi-
mum and the local maximum in Fig. 11 when multiple annuluses
are observed in their measurements. For a particle of D/d=9, the
Segré and Silberberg equilibrium positions (which are closer to the
wall) calculated in our simulations are in good agreement with theirs.
The inner equilibrium radial positions are seen within the same range
of ¥=0.5%0.1 in both our results and their measurements. Their
paper does not give detailed data related to the inner annulus for
other size particles except for D/d=17.

The results of Fig. 11 clearly show that, at a given particle size,
the Segré and Silberberg equilibrium radial position (which is closer
to the wall) moves towards the wall as the Reynolds number in-
creases, in agreement with the prediction of the asymptotic theory
for point particles (the solid line in Fig. 11). At a given Reynolds
number, this equilibrium radial position is shifted towards the wall
as D/d increases, i.e., as the particle size decreases for a given pipe
diameter. This result implies that the smaller the particle is, the closer
the equilibrium radial position is to the prediction of the asymptotic
theory for point particles. The inner equilibrium radial positions
observed for Re=750 when D/d=6.67 and for Re=500 when D/
d=9 are found at closer positions to the centerline than the Segré

and Silberberg equilibrium radial positions and move towards the
centerline as the Reynolds number increases, in contrast with the
Segré and Silberberg equilibrium position. The unstable equilib-
rium radial position for Re=750 when D/d=6.67 and for Re=500
when D/d=9 is indicated in Fig. 11 and is shifted towards the wall
as the Reynolds number increases. The results related to the inner
equilibrium radial positions and the unstable equilibrium radial posi-
tions are new and convince us of the existence of multiple equilibrium
radial positions for neutrally buoyant particles for certain Reynolds
numbers.

We can explain better the remarkable observations in Matas et
al. [27] based on our simulation results. For example, the inner an-
nuluses in their measurements are not transient radial positions that
occur prior to the Segré and Silberberg equilibrium radial positions
(which are closer to the wall), but rather are real equilibrium radial
positions where the radial lift forces are zero, as shown in Figs. 6
and 7. The curves of the lift forces in Figs. 6-8 allow us to explain
why the concentration in the inner annulus is higher than that in
the outer annulus when multiple annuluses are observed in their
measurements. The reason is as follows. The particles initially placed
between the centerline and the unstable equilibrium radial position
finally accumulate in the inner annulus, while the particles between
the unstable equilibrium radial position and the wall accumulate in
the outer annulus. Therefore, the higher concentration in the inner
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annulus results from the much longer distance between the center-
line and the unstable equilibrium radial position.

CONCLUSION

The radial migration of a single neutrally buoyant particle in Poi-
seuille flow has been investigated by direct numerical simulations.
Two types of simulations, unconstrained and constrained simula-
tion, have been performed to obtain solutions at equilibrium and
both of them have predicted almost the same radial position and
translational and angular velocities at equilibrium. Our simulation
results are qualitatively and quantitatively in good agreement with
the results in experimental and analytical studies.

The simulation results clearly show that, at a given particle size,
the Segré and Silberberg equilibrium radial position, which is closer
to the wall, moves towards the wall as the Reynolds number in-
creases, in agreement with the prediction of the asymptotic theory
for point particles. At a given Reynolds number, this equilibrium
radial position is shifted towards the wall as the particle size de-
creases for a given pipe diameter. This result implies that the smaller
the particle is, the closer the equilibrium radial position is to the pre-
diction of the asymptotic theory for point particles. At high Reynolds
numbers, the inner equilibrium radial positions are found at closer
positions to the centerline than the Segré and Silberberg equilib-
rium positions, and move towards the centerline as the Reynolds
number increases, in contrast with the Segré and Silberberg equi-
librium radial position. The unstable equilibrium radial position is
shifted towards the wall as the Reynolds number increases. The Segré
and Silberberg equilibrium position disappears at higher Reynolds
numbers and only an inner equilibrium radial position exists. The
contribution to lift force also shows that the viscous shear stress plays
an important role in determining the equilibrium radial position at
higher Reynolds numbers. The pressure force pushes the particle
to the wall in most regions except for the region very close to the
wall, while the shear force changes the sign below the equilibrium
radial position.

In this study, we have clearly proved that the inner annuluses in
the measurements of Matas et al. [27] are not transient radial posi-
tions prior to the occurrence of Segré and Silberberg equilibrium
positions, but rather are real equilibrium radial positions where the
radial lift forces are zero. The results related involving inner equi-
librium radial positions and unstable equilibrium radial positions
are new and convince us of the existence of multiple equilibrium
radial positions for neutrally buoyant particles for certain Reynolds
numbers. To the best of our knowledge, this study is the first attempt
to prove the possible presence of multiple equilibrium radial posi-
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tions for neutrally buoyant particles.
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